llvm-project/polly/test/ScopInfo/multidim_param_in_subscript...

90 lines
3.1 KiB
LLVM
Raw Normal View History

[ScopInfo] Disable memory folding in case it results in multi-disjunct relations Multi-disjunct access maps can easily result in inbound assumptions which explode in case of many memory accesses and many parameters. This change reduces compilation time of some larger kernel from over 15 minutes to less than 16 seconds. Interesting is the test case test/ScopInfo/multidim_param_in_subscript.ll which has a memory access [n] -> { Stmt_for_body3[i0, i1] -> MemRef_A[i0, -1 + n - i1] } which requires folding, but where only a single disjunct remains. We can still model this test case even when only using limited memory folding. For people only reading commit messages, here the comment that explains what memory folding is: To recover memory accesses with array size parameters in the subscript expression we post-process the delinearization results. We would normally recover from an access A[exp0(i) * N + exp1(i)] into an array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the range of exp1(i) - may be preferrable. Specifically, for cases where we know exp1(i) is negative, we want to choose the latter expression. As we commonly do not have any information about the range of exp1(i), we do not choose one of the two options, but instead create a piecewise access function that adds the (-1, N) offsets as soon as exp1(i) becomes negative. For a 2D array such an access function is created by applying the piecewise map: [i,j] -> [i, j] : j >= 0 [i,j] -> [i-1, j+N] : j < 0 After this patch we generate only the first case, except for situations where we can proove the first case to be invalid and can consequently select the second without introducing disjuncts. llvm-svn: 296679
2017-03-02 05:11:27 +08:00
; RUN: opt %loadPolly -polly-scops -analyze \
; RUN: -polly-precise-fold-accesses < %s | FileCheck %s
;
; void foo(long n, long m, float A[][n][m]) {
; for (long i = 0; i < 100; i++)
; for (long j = 0; j < n; j++)
; for (long k = 0; k < m; k++)
; A[i][j][k] += A[i][n - j - 1][m - k - 1];
; }
;
; Verify that the parameter in the subscript expression is correctly
; recovered.
;
; CHECK: Assumed Context:
; CHECK-NEXT: [n, m] -> { : }
; CHECK: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: [n, m] -> { Stmt_for_body6[i0, i1, i2] -> MemRef_A[i0, -1 + n - i1, -1 + m - i2] };
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @foo(i64 %n, i64 %m, float* %A) {
entry:
br label %for.cond
for.cond: ; preds = %for.inc18, %entry
%i.0 = phi i64 [ 0, %entry ], [ %inc19, %for.inc18 ]
%exitcond = icmp ne i64 %i.0, 100
br i1 %exitcond, label %for.body, label %for.end20
for.body: ; preds = %for.cond
br label %for.cond1
for.cond1: ; preds = %for.inc15, %for.body
%j.0 = phi i64 [ 0, %for.body ], [ %inc16, %for.inc15 ]
%cmp2 = icmp slt i64 %j.0, %n
br i1 %cmp2, label %for.body3, label %for.end17
for.body3: ; preds = %for.cond1
br label %for.cond4
for.cond4: ; preds = %for.inc, %for.body3
%k.0 = phi i64 [ 0, %for.body3 ], [ %inc, %for.inc ]
%cmp5 = icmp slt i64 %k.0, %m
br i1 %cmp5, label %for.body6, label %for.end
for.body6: ; preds = %for.cond4
%sub = sub nsw i64 %m, %k.0
%sub7 = add nsw i64 %sub, -1
%sub8 = sub nsw i64 %n, %j.0
%sub9 = add nsw i64 %sub8, -1
%tmp = mul nuw i64 %n, %m
%tmp1 = mul nsw i64 %i.0, %tmp
%tmp2 = mul nsw i64 %sub9, %m
%arrayidx.sum = add i64 %tmp1, %tmp2
%arrayidx10.sum = add i64 %arrayidx.sum, %sub7
%arrayidx11 = getelementptr inbounds float, float* %A, i64 %arrayidx10.sum
%tmp3 = load float, float* %arrayidx11, align 4
%tmp4 = mul nuw i64 %n, %m
%tmp5 = mul nsw i64 %i.0, %tmp4
%tmp6 = mul nsw i64 %j.0, %m
%arrayidx12.sum = add i64 %tmp5, %tmp6
%arrayidx13.sum = add i64 %arrayidx12.sum, %k.0
%arrayidx14 = getelementptr inbounds float, float* %A, i64 %arrayidx13.sum
%tmp7 = load float, float* %arrayidx14, align 4
%add = fadd float %tmp7, %tmp3
store float %add, float* %arrayidx14, align 4
br label %for.inc
for.inc: ; preds = %for.body6
%inc = add nuw nsw i64 %k.0, 1
br label %for.cond4
for.end: ; preds = %for.cond4
br label %for.inc15
for.inc15: ; preds = %for.end
%inc16 = add nuw nsw i64 %j.0, 1
br label %for.cond1
for.end17: ; preds = %for.cond1
br label %for.inc18
for.inc18: ; preds = %for.end17
%inc19 = add nuw nsw i64 %i.0, 1
br label %for.cond
for.end20: ; preds = %for.cond
ret void
}