llvm-project/clang/lib/Sema/SemaDeclCXX.cpp

1017 lines
40 KiB
C++
Raw Normal View History

//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ declarations.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/Support/Compiler.h"
#include <algorithm> // for std::equal
#include <map>
using namespace clang;
//===----------------------------------------------------------------------===//
// CheckDefaultArgumentVisitor
//===----------------------------------------------------------------------===//
namespace {
/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
/// the default argument of a parameter to determine whether it
/// contains any ill-formed subexpressions. For example, this will
/// diagnose the use of local variables or parameters within the
/// default argument expression.
class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
: public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
Expr *DefaultArg;
Sema *S;
public:
CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
: DefaultArg(defarg), S(s) {}
bool VisitExpr(Expr *Node);
bool VisitDeclRefExpr(DeclRefExpr *DRE);
};
/// VisitExpr - Visit all of the children of this expression.
bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
bool IsInvalid = false;
for (Stmt::child_iterator I = Node->child_begin(),
E = Node->child_end(); I != E; ++I)
IsInvalid |= Visit(*I);
return IsInvalid;
}
/// VisitDeclRefExpr - Visit a reference to a declaration, to
/// determine whether this declaration can be used in the default
/// argument expression.
bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
NamedDecl *Decl = DRE->getDecl();
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
// C++ [dcl.fct.default]p9
// Default arguments are evaluated each time the function is
// called. The order of evaluation of function arguments is
// unspecified. Consequently, parameters of a function shall not
// be used in default argument expressions, even if they are not
// evaluated. Parameters of a function declared before a default
// argument expression are in scope and can hide namespace and
// class member names.
return S->Diag(DRE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_param,
Param->getName(), DefaultArg->getSourceRange());
} else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
// C++ [dcl.fct.default]p7
// Local variables shall not be used in default argument
// expressions.
if (VDecl->isBlockVarDecl())
return S->Diag(DRE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_local,
VDecl->getName(), DefaultArg->getSourceRange());
}
// FIXME: when Clang has support for member functions, "this"
// will also need to be diagnosed.
return false;
}
}
/// ActOnParamDefaultArgument - Check whether the default argument
/// provided for a function parameter is well-formed. If so, attach it
/// to the parameter declaration.
void
Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
ExprTy *defarg) {
ParmVarDecl *Param = (ParmVarDecl *)param;
llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
QualType ParamType = Param->getType();
// Default arguments are only permitted in C++
if (!getLangOptions().CPlusPlus) {
Diag(EqualLoc, diag::err_param_default_argument,
DefaultArg->getSourceRange());
return;
}
// C++ [dcl.fct.default]p5
// A default argument expression is implicitly converted (clause
// 4) to the parameter type. The default argument expression has
// the same semantic constraints as the initializer expression in
// a declaration of a variable of the parameter type, using the
// copy-initialization semantics (8.5).
//
// FIXME: CheckSingleAssignmentConstraints has the wrong semantics
// for C++ (since we want copy-initialization, not copy-assignment),
// but we don't have the right semantics implemented yet. Because of
// this, our error message is also very poor.
QualType DefaultArgType = DefaultArg->getType();
Expr *DefaultArgPtr = DefaultArg.get();
AssignConvertType ConvTy = CheckSingleAssignmentConstraints(ParamType,
DefaultArgPtr);
if (DefaultArgPtr != DefaultArg.get()) {
DefaultArg.take();
DefaultArg.reset(DefaultArgPtr);
}
if (DiagnoseAssignmentResult(ConvTy, DefaultArg->getLocStart(),
ParamType, DefaultArgType, DefaultArg.get(),
"in default argument")) {
return;
}
// Check that the default argument is well-formed
CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
if (DefaultArgChecker.Visit(DefaultArg.get()))
return;
// Okay: add the default argument to the parameter
Param->setDefaultArg(DefaultArg.take());
}
/// CheckExtraCXXDefaultArguments - Check for any extra default
/// arguments in the declarator, which is not a function declaration
/// or definition and therefore is not permitted to have default
/// arguments. This routine should be invoked for every declarator
/// that is not a function declaration or definition.
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
// C++ [dcl.fct.default]p3
// A default argument expression shall be specified only in the
// parameter-declaration-clause of a function declaration or in a
// template-parameter (14.1). It shall not be specified for a
// parameter pack. If it is specified in a
// parameter-declaration-clause, it shall not occur within a
// declarator or abstract-declarator of a parameter-declaration.
for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
if (chunk.Kind == DeclaratorChunk::Function) {
for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
if (Param->getDefaultArg()) {
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc,
Param->getDefaultArg()->getSourceRange());
Param->setDefaultArg(0);
}
}
}
}
}
// MergeCXXFunctionDecl - Merge two declarations of the same C++
// function, once we already know that they have the same
// type. Subroutine of MergeFunctionDecl.
FunctionDecl *
Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
// C++ [dcl.fct.default]p4:
//
// For non-template functions, default arguments can be added in
// later declarations of a function in the same
// scope. Declarations in different scopes have completely
// distinct sets of default arguments. That is, declarations in
// inner scopes do not acquire default arguments from
// declarations in outer scopes, and vice versa. In a given
// function declaration, all parameters subsequent to a
// parameter with a default argument shall have default
// arguments supplied in this or previous declarations. A
// default argument shall not be redefined by a later
// declaration (not even to the same value).
for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *OldParam = Old->getParamDecl(p);
ParmVarDecl *NewParam = New->getParamDecl(p);
if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
Diag(NewParam->getLocation(),
diag::err_param_default_argument_redefinition,
NewParam->getDefaultArg()->getSourceRange());
Diag(OldParam->getLocation(), diag::err_previous_definition);
} else if (OldParam->getDefaultArg()) {
// Merge the old default argument into the new parameter
NewParam->setDefaultArg(OldParam->getDefaultArg());
}
}
return New;
}
/// CheckCXXDefaultArguments - Verify that the default arguments for a
/// function declaration are well-formed according to C++
/// [dcl.fct.default].
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
unsigned NumParams = FD->getNumParams();
unsigned p;
// Find first parameter with a default argument
for (p = 0; p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (Param->getDefaultArg())
break;
}
// C++ [dcl.fct.default]p4:
// In a given function declaration, all parameters
// subsequent to a parameter with a default argument shall
// have default arguments supplied in this or previous
// declarations. A default argument shall not be redefined
// by a later declaration (not even to the same value).
unsigned LastMissingDefaultArg = 0;
for(; p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (!Param->getDefaultArg()) {
if (Param->getIdentifier())
Diag(Param->getLocation(),
diag::err_param_default_argument_missing_name,
Param->getIdentifier()->getName());
else
Diag(Param->getLocation(),
diag::err_param_default_argument_missing);
LastMissingDefaultArg = p;
}
}
if (LastMissingDefaultArg > 0) {
// Some default arguments were missing. Clear out all of the
// default arguments up to (and including) the last missing
// default argument, so that we leave the function parameters
// in a semantically valid state.
for (p = 0; p <= LastMissingDefaultArg; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (Param->getDefaultArg()) {
delete Param->getDefaultArg();
Param->setDefaultArg(0);
}
}
}
}
/// isCurrentClassName - Determine whether the identifier II is the
/// name of the class type currently being defined. In the case of
/// nested classes, this will only return true if II is the name of
/// the innermost class.
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *) {
if (CXXRecordDecl *CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext))
return &II == CurDecl->getIdentifier();
else
return false;
}
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
/// one entry in the base class list of a class specifier, for
/// example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
Sema::BaseResult
Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeTy *basetype, SourceLocation BaseLoc) {
RecordDecl *Decl = (RecordDecl*)classdecl;
QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
// Base specifiers must be record types.
if (!BaseType->isRecordType()) {
Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange);
return true;
}
// C++ [class.union]p1:
// A union shall not be used as a base class.
if (BaseType->isUnionType()) {
Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange);
return true;
}
// C++ [class.union]p1:
// A union shall not have base classes.
if (Decl->isUnion()) {
Diag(Decl->getLocation(), diag::err_base_clause_on_union,
SpecifierRange);
return true;
}
// C++ [class.derived]p2:
// The class-name in a base-specifier shall not be an incompletely
// defined class.
if (BaseType->isIncompleteType()) {
Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange);
return true;
}
// Create the base specifier.
return new CXXBaseSpecifier(SpecifierRange, Virtual,
BaseType->isClassType(), Access, BaseType);
}
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
/// class, after checking whether there are any duplicate base
/// classes.
void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
unsigned NumBases) {
if (NumBases == 0)
return;
// Used to keep track of which base types we have already seen, so
// that we can properly diagnose redundant direct base types. Note
// that the key is always the unqualified canonical type of the base
// class.
std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
// Copy non-redundant base specifiers into permanent storage.
CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
unsigned NumGoodBases = 0;
for (unsigned idx = 0; idx < NumBases; ++idx) {
QualType NewBaseType
= Context.getCanonicalType(BaseSpecs[idx]->getType());
NewBaseType = NewBaseType.getUnqualifiedType();
if (KnownBaseTypes[NewBaseType]) {
// C++ [class.mi]p3:
// A class shall not be specified as a direct base class of a
// derived class more than once.
Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
diag::err_duplicate_base_class,
KnownBaseTypes[NewBaseType]->getType().getAsString(),
BaseSpecs[idx]->getSourceRange());
// Delete the duplicate base class specifier; we're going to
// overwrite its pointer later.
delete BaseSpecs[idx];
} else {
// Okay, add this new base class.
KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
}
}
// Attach the remaining base class specifiers to the derived class.
CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
Decl->setBases(BaseSpecs, NumGoodBases);
// Delete the remaining (good) base class specifiers, since their
// data has been copied into the CXXRecordDecl.
for (unsigned idx = 0; idx < NumGoodBases; ++idx)
delete BaseSpecs[idx];
}
//===----------------------------------------------------------------------===//
// C++ class member Handling
//===----------------------------------------------------------------------===//
/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
/// definition, when on C++.
void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
PushDeclContext(Dcl);
FieldCollector->StartClass();
if (Dcl->getIdentifier()) {
// C++ [class]p2:
// [...] The class-name is also inserted into the scope of the
// class itself; this is known as the injected-class-name. For
// purposes of access checking, the injected-class-name is treated
// as if it were a public member name.
TypedefDecl *InjectedClassName
= TypedefDecl::Create(Context, Dcl, LBrace, Dcl->getIdentifier(),
Context.getTypeDeclType(Dcl), /*PrevDecl=*/0);
PushOnScopeChains(InjectedClassName, S);
}
}
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
/// bitfield width if there is one and 'InitExpr' specifies the initializer if
/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
/// declarators on it.
///
/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
/// an instance field is declared, a new CXXFieldDecl is created but the method
/// does *not* return it; it returns LastInGroup instead. The other C++ members
/// (which are all ScopedDecls) are returned after appending them to
/// LastInGroup.
Sema::DeclTy *
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
ExprTy *BW, ExprTy *InitExpr,
DeclTy *LastInGroup) {
const DeclSpec &DS = D.getDeclSpec();
IdentifierInfo *II = D.getIdentifier();
Expr *BitWidth = static_cast<Expr*>(BW);
Expr *Init = static_cast<Expr*>(InitExpr);
SourceLocation Loc = D.getIdentifierLoc();
// C++ 9.2p6: A member shall not be declared to have automatic storage
// duration (auto, register) or with the extern storage-class-specifier.
switch (DS.getStorageClassSpec()) {
case DeclSpec::SCS_unspecified:
case DeclSpec::SCS_typedef:
case DeclSpec::SCS_static:
// FALL THROUGH.
break;
default:
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),
diag::err_storageclass_invalid_for_member);
else
Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
bool isFunc = D.isFunctionDeclarator();
if (!isFunc &&
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
D.getNumTypeObjects() == 0) {
// Check also for this case:
//
// typedef int f();
// f a;
//
Decl *TD = static_cast<Decl *>(DS.getTypeRep());
isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
}
bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified &&
!isFunc);
Decl *Member;
bool InvalidDecl = false;
if (isInstField)
Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
else
Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
if (!Member) return LastInGroup;
assert((II || isInstField) && "No identifier for non-field ?");
// set/getAccess is not part of Decl's interface to avoid bloating it with C++
// specific methods. Use a wrapper class that can be used with all C++ class
// member decls.
CXXClassMemberWrapper(Member).setAccess(AS);
if (BitWidth) {
// C++ 9.6p2: Only when declaring an unnamed bit-field may the
// constant-expression be a value equal to zero.
// FIXME: Check this.
if (D.isFunctionDeclarator()) {
// FIXME: Emit diagnostic about only constructors taking base initializers
// or something similar, when constructor support is in place.
Diag(Loc, diag::err_not_bitfield_type,
II->getName(), BitWidth->getSourceRange());
InvalidDecl = true;
} else if (isInstField) {
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
Diag(Loc, diag::err_not_integral_type_bitfield,
II->getName(), BitWidth->getSourceRange());
InvalidDecl = true;
}
} else if (isa<FunctionDecl>(Member)) {
// A function typedef ("typedef int f(); f a;").
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
Diag(Loc, diag::err_not_integral_type_bitfield,
II->getName(), BitWidth->getSourceRange());
InvalidDecl = true;
} else if (isa<TypedefDecl>(Member)) {
// "cannot declare 'A' to be a bit-field type"
Diag(Loc, diag::err_not_bitfield_type, II->getName(),
BitWidth->getSourceRange());
InvalidDecl = true;
} else {
assert(isa<CXXClassVarDecl>(Member) &&
"Didn't we cover all member kinds?");
// C++ 9.6p3: A bit-field shall not be a static member.
// "static member 'A' cannot be a bit-field"
Diag(Loc, diag::err_static_not_bitfield, II->getName(),
BitWidth->getSourceRange());
InvalidDecl = true;
}
}
if (Init) {
// C++ 9.2p4: A member-declarator can contain a constant-initializer only
// if it declares a static member of const integral or const enumeration
// type.
if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
// ...static member of...
CVD->setInit(Init);
// ...const integral or const enumeration type.
if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
CVD->getType()->isIntegralType()) {
// constant-initializer
if (CheckForConstantInitializer(Init, CVD->getType()))
InvalidDecl = true;
} else {
// not const integral.
Diag(Loc, diag::err_member_initialization,
II->getName(), Init->getSourceRange());
InvalidDecl = true;
}
} else {
// not static member.
Diag(Loc, diag::err_member_initialization,
II->getName(), Init->getSourceRange());
InvalidDecl = true;
}
}
if (InvalidDecl)
Member->setInvalidDecl();
if (isInstField) {
FieldCollector->Add(cast<CXXFieldDecl>(Member));
return LastInGroup;
}
return Member;
}
void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
DeclTy *TagDecl,
SourceLocation LBrac,
SourceLocation RBrac) {
ActOnFields(S, RLoc, TagDecl,
(DeclTy**)FieldCollector->getCurFields(),
FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
}
void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
FieldCollector->FinishClass();
PopDeclContext();
// Everything, including inline method definitions, have been parsed.
// Let the consumer know of the new TagDecl definition.
Consumer.HandleTagDeclDefinition(Rec);
}
/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
/// the declaration of the given C++ constructor ConDecl that was
/// built from declarator D. This routine is responsible for checking
/// that the newly-created constructor declaration is well-formed and
/// for recording it in the C++ class. Example:
///
/// @code
/// class X {
/// X(); // X::X() will be the ConDecl.
/// };
/// @endcode
Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
assert(ConDecl && "Expected to receive a constructor declaration");
// Check default arguments on the constructor
CheckCXXDefaultArguments(ConDecl);
CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
if (!ClassDecl) {
ConDecl->setInvalidDecl();
return ConDecl;
}
// Make sure this constructor is an overload of the existing
// constructors.
OverloadedFunctionDecl::function_iterator MatchedDecl;
if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
Diag(ConDecl->getLocation(),
diag::err_constructor_redeclared,
SourceRange(ConDecl->getLocation()));
Diag((*MatchedDecl)->getLocation(),
diag::err_previous_declaration,
SourceRange((*MatchedDecl)->getLocation()));
ConDecl->setInvalidDecl();
return ConDecl;
}
// C++ [class.copy]p3:
// A declaration of a constructor for a class X is ill-formed if
// its first parameter is of type (optionally cv-qualified) X and
// either there are no other parameters or else all other
// parameters have default arguments.
if ((ConDecl->getNumParams() == 1) ||
(ConDecl->getNumParams() > 1 &&
ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
QualType ParamType = ConDecl->getParamDecl(0)->getType();
QualType ClassTy = Context.getTagDeclType(
const_cast<CXXRecordDecl*>(ConDecl->getParent()));
if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
Diag(ConDecl->getLocation(),
diag::err_constructor_byvalue_arg,
SourceRange(ConDecl->getParamDecl(0)->getLocation()));
ConDecl->setInvalidDecl();
return 0;
}
}
// Add this constructor to the set of constructors of the current
// class.
ClassDecl->addConstructor(Context, ConDecl);
return (DeclTy *)ConDecl;
}
//===----------------------------------------------------------------------===//
// Namespace Handling
//===----------------------------------------------------------------------===//
/// ActOnStartNamespaceDef - This is called at the start of a namespace
/// definition.
Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
SourceLocation IdentLoc,
IdentifierInfo *II,
SourceLocation LBrace) {
NamespaceDecl *Namespc =
NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
Namespc->setLBracLoc(LBrace);
Scope *DeclRegionScope = NamespcScope->getParent();
if (II) {
// C++ [namespace.def]p2:
// The identifier in an original-namespace-definition shall not have been
// previously defined in the declarative region in which the
// original-namespace-definition appears. The identifier in an
// original-namespace-definition is the name of the namespace. Subsequently
// in that declarative region, it is treated as an original-namespace-name.
Decl *PrevDecl =
LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope,
/*enableLazyBuiltinCreation=*/false);
if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
// This is an extended namespace definition.
// Attach this namespace decl to the chain of extended namespace
// definitions.
NamespaceDecl *NextNS = OrigNS;
while (NextNS->getNextNamespace())
NextNS = NextNS->getNextNamespace();
NextNS->setNextNamespace(Namespc);
Namespc->setOriginalNamespace(OrigNS);
// We won't add this decl to the current scope. We want the namespace
// name to return the original namespace decl during a name lookup.
} else {
// This is an invalid name redefinition.
Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
Namespc->getName());
Diag(PrevDecl->getLocation(), diag::err_previous_definition);
Namespc->setInvalidDecl();
// Continue on to push Namespc as current DeclContext and return it.
}
} else {
// This namespace name is declared for the first time.
PushOnScopeChains(Namespc, DeclRegionScope);
}
}
else {
// FIXME: Handle anonymous namespaces
}
// Although we could have an invalid decl (i.e. the namespace name is a
// redefinition), push it as current DeclContext and try to continue parsing.
PushDeclContext(Namespc->getOriginalNamespace());
return Namespc;
}
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
Decl *Dcl = static_cast<Decl *>(D);
NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
assert(Namespc && "Invalid parameter, expected NamespaceDecl");
Namespc->setRBracLoc(RBrace);
PopDeclContext();
}
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
ExprTy **ExprTys, unsigned NumExprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
assert(NumExprs != 0 && ExprTys && "missing expressions");
Decl *RealDecl = static_cast<Decl *>(Dcl);
// If there is no declaration, there was an error parsing it. Just ignore
// the initializer.
if (RealDecl == 0) {
for (unsigned i = 0; i != NumExprs; ++i)
delete static_cast<Expr *>(ExprTys[i]);
return;
}
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
if (!VDecl) {
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
RealDecl->setInvalidDecl();
return;
}
// We will treat direct-initialization as a copy-initialization:
// int x(1); -as-> int x = 1;
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
//
// Clients that want to distinguish between the two forms, can check for
// direct initializer using VarDecl::hasCXXDirectInitializer().
// A major benefit is that clients that don't particularly care about which
// exactly form was it (like the CodeGen) can handle both cases without
// special case code.
// C++ 8.5p11:
// The form of initialization (using parentheses or '=') is generally
// insignificant, but does matter when the entity being initialized has a
// class type.
if (VDecl->getType()->isRecordType()) {
// FIXME: When constructors for class types are supported, determine how
// exactly semantic checking will be done for direct initializers.
unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error,
"initialization for class types is not handled yet");
Diag(VDecl->getLocation(), DiagID);
RealDecl->setInvalidDecl();
return;
}
if (NumExprs > 1) {
Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg,
SourceRange(VDecl->getLocation(), RParenLoc));
RealDecl->setInvalidDecl();
return;
}
// Let clients know that initialization was done with a direct initializer.
VDecl->setCXXDirectInitializer(true);
assert(NumExprs == 1 && "Expected 1 expression");
// Set the init expression, handles conversions.
AddInitializerToDecl(Dcl, ExprTys[0]);
}
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
/// determine whether they are reference-related,
/// reference-compatible, reference-compatible with added
/// qualification, or incompatible, for use in C++ initialization by
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
/// type, and the first type (T1) is the pointee type of the reference
/// type being initialized.
Sema::ReferenceCompareResult
Sema::CompareReferenceRelationship(QualType T1, QualType T2,
bool& DerivedToBase) {
assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
assert(!T2->isReferenceType() && "T2 cannot be a reference type");
T1 = Context.getCanonicalType(T1);
T2 = Context.getCanonicalType(T2);
QualType UnqualT1 = T1.getUnqualifiedType();
QualType UnqualT2 = T2.getUnqualifiedType();
// C++ [dcl.init.ref]p4:
// Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
// reference-related to “cv2 T2” if T1 is the same type as T2, or
// T1 is a base class of T2.
if (UnqualT1 == UnqualT2)
DerivedToBase = false;
else if (IsDerivedFrom(UnqualT2, UnqualT1))
DerivedToBase = true;
else
return Ref_Incompatible;
// At this point, we know that T1 and T2 are reference-related (at
// least).
// C++ [dcl.init.ref]p4:
// "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
// reference-related to T2 and cv1 is the same cv-qualification
// as, or greater cv-qualification than, cv2. For purposes of
// overload resolution, cases for which cv1 is greater
// cv-qualification than cv2 are identified as
// reference-compatible with added qualification (see 13.3.3.2).
if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
return Ref_Compatible;
else if (T1.isMoreQualifiedThan(T2))
return Ref_Compatible_With_Added_Qualification;
else
return Ref_Related;
}
/// CheckReferenceInit - Check the initialization of a reference
/// variable with the given initializer (C++ [dcl.init.ref]). Init is
/// the initializer (either a simple initializer or an initializer
/// list), and DeclType is the type of the declaration. When ICS is
/// non-null, this routine will compute the implicit conversion
/// sequence according to C++ [over.ics.ref] and will not produce any
/// diagnostics; when ICS is null, it will emit diagnostics when any
/// errors are found. Either way, a return value of true indicates
/// that there was a failure, a return value of false indicates that
/// the reference initialization succeeded.
bool
Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
ImplicitConversionSequence *ICS) {
assert(DeclType->isReferenceType() && "Reference init needs a reference");
QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
QualType T2 = Init->getType();
// Compute some basic properties of the types and the initializer.
bool DerivedToBase = false;
Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
ReferenceCompareResult RefRelationship
= CompareReferenceRelationship(T1, T2, DerivedToBase);
// Most paths end in a failed conversion.
if (ICS)
ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
// C++ [dcl.init.ref]p5:
// A reference to type “cv1 T1” is initialized by an expression
// of type “cv2 T2” as follows:
// -- If the initializer expression
bool BindsDirectly = false;
// -- is an lvalue (but is not a bit-field), and “cv1 T1” is
// reference-compatible with “cv2 T2,” or
//
// Note that the bit-field check is skipped if we are just computing
// the implicit conversion sequence (C++ [over.best.ics]p2).
if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
RefRelationship >= Ref_Compatible_With_Added_Qualification) {
BindsDirectly = true;
if (ICS) {
// C++ [over.ics.ref]p1:
// When a parameter of reference type binds directly (8.5.3)
// to an argument expression, the implicit conversion sequence
// is the identity conversion, unless the argument expression
// has a type that is a derived class of the parameter type,
// in which case the implicit conversion sequence is a
// derived-to-base Conversion (13.3.3.1).
ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
ICS->Standard.First = ICK_Identity;
ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
ICS->Standard.Third = ICK_Identity;
ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
ICS->Standard.ReferenceBinding = true;
ICS->Standard.DirectBinding = true;
// Nothing more to do: the inaccessibility/ambiguity check for
// derived-to-base conversions is suppressed when we're
// computing the implicit conversion sequence (C++
// [over.best.ics]p2).
return false;
} else {
// Perform the conversion.
// FIXME: Binding to a subobject of the lvalue is going to require
// more AST annotation than this.
ImpCastExprToType(Init, T1);
}
}
// -- has a class type (i.e., T2 is a class type) and can be
// implicitly converted to an lvalue of type “cv3 T3,”
// where “cv1 T1” is reference-compatible with “cv3 T3”
// 92) (this conversion is selected by enumerating the
// applicable conversion functions (13.3.1.6) and choosing
// the best one through overload resolution (13.3)),
// FIXME: Implement this second bullet, once we have conversion
// functions. Also remember C++ [over.ics.ref]p1, second part.
if (BindsDirectly) {
// C++ [dcl.init.ref]p4:
// [...] In all cases where the reference-related or
// reference-compatible relationship of two types is used to
// establish the validity of a reference binding, and T1 is a
// base class of T2, a program that necessitates such a binding
// is ill-formed if T1 is an inaccessible (clause 11) or
// ambiguous (10.2) base class of T2.
//
// Note that we only check this condition when we're allowed to
// complain about errors, because we should not be checking for
// ambiguity (or inaccessibility) unless the reference binding
// actually happens.
if (DerivedToBase)
return CheckDerivedToBaseConversion(T2, T1,
Init->getSourceRange().getBegin(),
Init->getSourceRange());
else
return false;
}
// -- Otherwise, the reference shall be to a non-volatile const
// type (i.e., cv1 shall be const).
if (T1.getCVRQualifiers() != QualType::Const) {
if (!ICS)
Diag(Init->getSourceRange().getBegin(),
diag::err_not_reference_to_const_init,
T1.getAsString(),
InitLvalue != Expr::LV_Valid? "temporary" : "value",
T2.getAsString(), Init->getSourceRange());
return true;
}
// -- If the initializer expression is an rvalue, with T2 a
// class type, and “cv1 T1” is reference-compatible with
// “cv2 T2,” the reference is bound in one of the
// following ways (the choice is implementation-defined):
//
// -- The reference is bound to the object represented by
// the rvalue (see 3.10) or to a sub-object within that
// object.
//
// -- A temporary of type “cv1 T2” [sic] is created, and
// a constructor is called to copy the entire rvalue
// object into the temporary. The reference is bound to
// the temporary or to a sub-object within the
// temporary.
//
//
// The constructor that would be used to make the copy
// shall be callable whether or not the copy is actually
// done.
//
// Note that C++0x [dcl.ref.init]p5 takes away this implementation
// freedom, so we will always take the first option and never build
// a temporary in this case. FIXME: We will, however, have to check
// for the presence of a copy constructor in C++98/03 mode.
if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
RefRelationship >= Ref_Compatible_With_Added_Qualification) {
if (ICS) {
ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
ICS->Standard.First = ICK_Identity;
ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
ICS->Standard.Third = ICK_Identity;
ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
ICS->Standard.ReferenceBinding = true;
ICS->Standard.DirectBinding = false;
} else {
// FIXME: Binding to a subobject of the rvalue is going to require
// more AST annotation than this.
ImpCastExprToType(Init, T1);
}
return false;
}
// -- Otherwise, a temporary of type “cv1 T1” is created and
// initialized from the initializer expression using the
// rules for a non-reference copy initialization (8.5). The
// reference is then bound to the temporary. If T1 is
// reference-related to T2, cv1 must be the same
// cv-qualification as, or greater cv-qualification than,
// cv2; otherwise, the program is ill-formed.
if (RefRelationship == Ref_Related) {
// If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
// we would be reference-compatible or reference-compatible with
// added qualification. But that wasn't the case, so the reference
// initialization fails.
if (!ICS)
Diag(Init->getSourceRange().getBegin(),
diag::err_reference_init_drops_quals,
T1.getAsString(),
InitLvalue != Expr::LV_Valid? "temporary" : "value",
T2.getAsString(), Init->getSourceRange());
return true;
}
// Actually try to convert the initializer to T1.
if (ICS) {
/// C++ [over.ics.ref]p2:
///
/// When a parameter of reference type is not bound directly to
/// an argument expression, the conversion sequence is the one
/// required to convert the argument expression to the
/// underlying type of the reference according to
/// 13.3.3.1. Conceptually, this conversion sequence corresponds
/// to copy-initializing a temporary of the underlying type with
/// the argument expression. Any difference in top-level
/// cv-qualification is subsumed by the initialization itself
/// and does not constitute a conversion.
*ICS = TryImplicitConversion(Init, T1);
return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
} else {
return PerformImplicitConversion(Init, T1);
}
}