[WebAssembly] Implement thread-local storage (local-exec model)
Summary:
Thread local variables are placed inside a `.tdata` segment. Their symbols are
offsets from the start of the segment. The address of a thread local variable
is computed as `__tls_base` + the offset from the start of the segment.
`.tdata` segment is a passive segment and `memory.init` is used once per thread
to initialize the thread local storage.
`__tls_base` is a wasm global. Since each thread has its own wasm instance,
it is effectively thread local. Currently, `__tls_base` must be initialized
at thread startup, and so cannot be used with dynamic libraries.
`__tls_base` is to be initialized with a new linker-synthesized function,
`__wasm_init_tls`, which takes as an argument a block of memory to use as the
storage for thread locals. It then initializes the block of memory and sets
`__tls_base`. As `__wasm_init_tls` will handle the memory initialization,
the memory does not have to be zeroed.
To help allocating memory for thread-local storage, a new compiler intrinsic
is introduced: `__builtin_wasm_tls_size()`. This instrinsic function returns
the size of the thread-local storage for the current function.
The expected usage is to run something like the following upon thread startup:
__wasm_init_tls(malloc(__builtin_wasm_tls_size()));
Reviewers: tlively, aheejin, kripken, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64537
llvm-svn: 366272
2019-07-17 06:00:45 +08:00
|
|
|
; RUN: llc < %s -mattr=-bulk-memory | FileCheck %s --check-prefixes NO-BULK-MEM
|
|
|
|
; RUN: llc < %s -mattr=+bulk-memory | FileCheck %s --check-prefixes BULK-MEM
|
[WebAssembly] Merge used feature sets, update atomics linkage policy
Summary:
It does not currently make sense to use WebAssembly features in some functions
but not others, so this CL adds an IR pass that takes the union of all used
feature sets and applies it to each function in the module. This allows us to
prevent atomics from being lowered away if some function has opted in to using
them. When atomics is not enabled anywhere, we detect whether there exists any
atomic operations or thread local storage that would be stripped and disallow
linking with objects that contain atomics if and only if atomics or tls are
stripped. When atomics is enabled, mark it as used but do not require it of
other objects in the link. These changes allow libraries that do not use atomics
to be built once and linked into both single-threaded and multithreaded
binaries.
Reviewers: aheejin, sbc100, dschuff
Subscribers: jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59625
llvm-svn: 357226
2019-03-29 08:14:01 +08:00
|
|
|
|
|
|
|
; Test that the target features section contains -atomics or +atomics
|
|
|
|
; for modules that have thread local storage in their source.
|
|
|
|
|
|
|
|
target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
|
|
|
|
target triple = "wasm32-unknown-unknown"
|
|
|
|
|
|
|
|
@foo = internal thread_local global i32 0
|
|
|
|
|
[WebAssembly] Implement thread-local storage (local-exec model)
Summary:
Thread local variables are placed inside a `.tdata` segment. Their symbols are
offsets from the start of the segment. The address of a thread local variable
is computed as `__tls_base` + the offset from the start of the segment.
`.tdata` segment is a passive segment and `memory.init` is used once per thread
to initialize the thread local storage.
`__tls_base` is a wasm global. Since each thread has its own wasm instance,
it is effectively thread local. Currently, `__tls_base` must be initialized
at thread startup, and so cannot be used with dynamic libraries.
`__tls_base` is to be initialized with a new linker-synthesized function,
`__wasm_init_tls`, which takes as an argument a block of memory to use as the
storage for thread locals. It then initializes the block of memory and sets
`__tls_base`. As `__wasm_init_tls` will handle the memory initialization,
the memory does not have to be zeroed.
To help allocating memory for thread-local storage, a new compiler intrinsic
is introduced: `__builtin_wasm_tls_size()`. This instrinsic function returns
the size of the thread-local storage for the current function.
The expected usage is to run something like the following upon thread startup:
__wasm_init_tls(malloc(__builtin_wasm_tls_size()));
Reviewers: tlively, aheejin, kripken, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64537
llvm-svn: 366272
2019-07-17 06:00:45 +08:00
|
|
|
; -bulk-memory
|
|
|
|
; NO-BULK-MEM-LABEL: .custom_section.target_features,"",@
|
|
|
|
; NO-BULK-MEM-NEXT: .int8 1
|
|
|
|
; NO-BULK-MEM-NEXT: .int8 45
|
|
|
|
; NO-BULK-MEM-NEXT: .int8 7
|
|
|
|
; NO-BULK-MEM-NEXT: .ascii "atomics"
|
|
|
|
; NO-BULK-MEM-NEXT: .bss.foo,"",@
|
[WebAssembly] Merge used feature sets, update atomics linkage policy
Summary:
It does not currently make sense to use WebAssembly features in some functions
but not others, so this CL adds an IR pass that takes the union of all used
feature sets and applies it to each function in the module. This allows us to
prevent atomics from being lowered away if some function has opted in to using
them. When atomics is not enabled anywhere, we detect whether there exists any
atomic operations or thread local storage that would be stripped and disallow
linking with objects that contain atomics if and only if atomics or tls are
stripped. When atomics is enabled, mark it as used but do not require it of
other objects in the link. These changes allow libraries that do not use atomics
to be built once and linked into both single-threaded and multithreaded
binaries.
Reviewers: aheejin, sbc100, dschuff
Subscribers: jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59625
llvm-svn: 357226
2019-03-29 08:14:01 +08:00
|
|
|
|
[WebAssembly] Implement thread-local storage (local-exec model)
Summary:
Thread local variables are placed inside a `.tdata` segment. Their symbols are
offsets from the start of the segment. The address of a thread local variable
is computed as `__tls_base` + the offset from the start of the segment.
`.tdata` segment is a passive segment and `memory.init` is used once per thread
to initialize the thread local storage.
`__tls_base` is a wasm global. Since each thread has its own wasm instance,
it is effectively thread local. Currently, `__tls_base` must be initialized
at thread startup, and so cannot be used with dynamic libraries.
`__tls_base` is to be initialized with a new linker-synthesized function,
`__wasm_init_tls`, which takes as an argument a block of memory to use as the
storage for thread locals. It then initializes the block of memory and sets
`__tls_base`. As `__wasm_init_tls` will handle the memory initialization,
the memory does not have to be zeroed.
To help allocating memory for thread-local storage, a new compiler intrinsic
is introduced: `__builtin_wasm_tls_size()`. This instrinsic function returns
the size of the thread-local storage for the current function.
The expected usage is to run something like the following upon thread startup:
__wasm_init_tls(malloc(__builtin_wasm_tls_size()));
Reviewers: tlively, aheejin, kripken, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64537
llvm-svn: 366272
2019-07-17 06:00:45 +08:00
|
|
|
; +bulk-memory
|
|
|
|
; BULK-MEM-LABEL: .custom_section.target_features,"",@
|
|
|
|
; BULK-MEM-NEXT: .int8 1
|
|
|
|
; BULK-MEM-NEXT: .int8 43
|
|
|
|
; BULK-MEM-NEXT: .int8 11
|
|
|
|
; BULK-MEM-NEXT: .ascii "bulk-memory"
|
|
|
|
; BULK-MEM-NEXT: .tbss.foo,"",@
|