llvm-project/lldb/source/Core/ValueObjectMemory.cpp

284 lines
8.6 KiB
C++
Raw Normal View History

//===-- ValueObjectMemory.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObjectMemory.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Core/Module.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObject.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
ValueObjectSP
ValueObjectMemory::Create (ExecutionContextScope *exe_scope,
const char *name,
const Address &address,
lldb::TypeSP &type_sp)
{
return (new ValueObjectMemory (exe_scope, name, address, type_sp))->GetSP();
}
ValueObjectSP
ValueObjectMemory::Create (ExecutionContextScope *exe_scope,
const char *name,
const Address &address,
const ClangASTType &ast_type)
{
return (new ValueObjectMemory (exe_scope, name, address, ast_type))->GetSP();
}
ValueObjectMemory::ValueObjectMemory (ExecutionContextScope *exe_scope,
const char *name,
const Address &address,
lldb::TypeSP &type_sp) :
ValueObject(exe_scope),
m_address (address),
m_type_sp(type_sp),
m_clang_type()
{
// Do not attempt to construct one of these objects with no variable!
assert (m_type_sp.get() != NULL);
SetName (ConstString(name));
m_value.SetContext(Value::eContextTypeLLDBType, m_type_sp.get());
TargetSP target_sp (GetTargetSP());
lldb::addr_t load_address = m_address.GetLoadAddress(target_sp.get());
if (load_address != LLDB_INVALID_ADDRESS)
{
m_value.SetValueType(Value::eValueTypeLoadAddress);
m_value.GetScalar() = load_address;
}
else
{
lldb::addr_t file_address = m_address.GetFileAddress();
if (file_address != LLDB_INVALID_ADDRESS)
{
m_value.SetValueType(Value::eValueTypeFileAddress);
m_value.GetScalar() = file_address;
}
else
{
m_value.GetScalar() = m_address.GetOffset();
m_value.SetValueType (Value::eValueTypeScalar);
}
}
}
ValueObjectMemory::ValueObjectMemory (ExecutionContextScope *exe_scope,
const char *name,
const Address &address,
const ClangASTType &ast_type) :
ValueObject(exe_scope),
m_address (address),
m_type_sp(),
m_clang_type(ast_type)
{
// Do not attempt to construct one of these objects with no variable!
assert (m_clang_type.GetASTContext());
assert (m_clang_type.GetOpaqueQualType());
TargetSP target_sp (GetTargetSP());
SetName (ConstString(name));
// m_value.SetContext(Value::eContextTypeClangType, m_clang_type.GetOpaqueQualType());
m_value.SetClangType(m_clang_type);
lldb::addr_t load_address = m_address.GetLoadAddress (target_sp.get());
if (load_address != LLDB_INVALID_ADDRESS)
{
m_value.SetValueType(Value::eValueTypeLoadAddress);
m_value.GetScalar() = load_address;
}
else
{
lldb::addr_t file_address = m_address.GetFileAddress();
if (file_address != LLDB_INVALID_ADDRESS)
{
m_value.SetValueType(Value::eValueTypeFileAddress);
m_value.GetScalar() = file_address;
}
else
{
m_value.GetScalar() = m_address.GetOffset();
m_value.SetValueType (Value::eValueTypeScalar);
}
}
}
ValueObjectMemory::~ValueObjectMemory()
{
}
ClangASTType
ValueObjectMemory::GetClangTypeImpl ()
{
if (m_type_sp)
return m_type_sp->GetClangForwardType();
return m_clang_type;
}
ConstString
ValueObjectMemory::GetTypeName()
{
if (m_type_sp)
return m_type_sp->GetName();
return m_clang_type.GetConstTypeName();
}
Introduce the concept of a "display name" for types Rationale: Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as std::__1::vector<int, std::__1::allocator<.... rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code Proposed solution: Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type Caveats: - for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet. - while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters llvm-svn: 209072
2014-05-18 03:14:17 +08:00
ConstString
ValueObjectMemory::GetDisplayTypeName()
{
if (m_type_sp)
return m_type_sp->GetClangForwardType().GetDisplayTypeName();
return m_clang_type.GetDisplayTypeName();
}
size_t
ValueObjectMemory::CalculateNumChildren()
{
if (m_type_sp)
return m_type_sp->GetNumChildren(true);
const bool omit_empty_base_classes = true;
return m_clang_type.GetNumChildren (omit_empty_base_classes);
}
uint64_t
ValueObjectMemory::GetByteSize()
{
if (m_type_sp)
return m_type_sp->GetByteSize();
return m_clang_type.GetByteSize ();
}
lldb::ValueType
ValueObjectMemory::GetValueType() const
{
// RETHINK: Should this be inherited from somewhere?
return lldb::eValueTypeVariableGlobal;
}
bool
ValueObjectMemory::UpdateValue ()
{
SetValueIsValid (false);
m_error.Clear();
ExecutionContext exe_ctx (GetExecutionContextRef());
Target *target = exe_ctx.GetTargetPtr();
if (target)
{
m_data.SetByteOrder(target->GetArchitecture().GetByteOrder());
m_data.SetAddressByteSize(target->GetArchitecture().GetAddressByteSize());
}
Value old_value(m_value);
if (m_address.IsValid())
{
Value::ValueType value_type = m_value.GetValueType();
switch (value_type)
{
default:
assert(!"Unhandled expression result value kind...");
break;
case Value::eValueTypeScalar:
// The variable value is in the Scalar value inside the m_value.
// We can point our m_data right to it.
m_error = m_value.GetValueAsData (&exe_ctx, m_data, 0, GetModule().get());
break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
// The DWARF expression result was an address in the inferior
// process. If this variable is an aggregate type, we just need
// the address as the main value as all child variable objects
// will rely upon this location and add an offset and then read
// their own values as needed. If this variable is a simple
// type, we read all data for it into m_data.
// Make sure this type has a value before we try and read it
// If we have a file address, convert it to a load address if we can.
if (value_type == Value::eValueTypeFileAddress && exe_ctx.GetProcessPtr())
{
lldb::addr_t load_addr = m_address.GetLoadAddress(target);
if (load_addr != LLDB_INVALID_ADDRESS)
{
m_value.SetValueType(Value::eValueTypeLoadAddress);
m_value.GetScalar() = load_addr;
}
}
if (!CanProvideValue())
{
// this value object represents an aggregate type whose
// children have values, but this object does not. So we
// say we are changed if our location has changed.
SetValueDidChange (value_type != old_value.GetValueType() || m_value.GetScalar() != old_value.GetScalar());
}
else
{
// Copy the Value and set the context to use our Variable
// so it can extract read its value into m_data appropriately
Value value(m_value);
if (m_type_sp)
value.SetContext(Value::eContextTypeLLDBType, m_type_sp.get());
else
{
//value.SetContext(Value::eContextTypeClangType, m_clang_type.GetOpaqueQualType());
value.SetClangType(m_clang_type);
}
m_error = value.GetValueAsData(&exe_ctx, m_data, 0, GetModule().get());
}
break;
}
SetValueIsValid (m_error.Success());
}
return m_error.Success();
}
bool
ValueObjectMemory::IsInScope ()
{
// FIXME: Maybe try to read the memory address, and if that works, then
// we are in scope?
return true;
}
lldb::ModuleSP
ValueObjectMemory::GetModule()
{
return m_address.GetModule();
}