llvm-project/lldb/source/Plugins/Process/Utility/StopInfoMachException.cpp

429 lines
15 KiB
C++
Raw Normal View History

Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
//===-- StopInfoMachException.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "StopInfoMachException.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Breakpoint/Watchpoint.h"
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Target/ExecutionContext.h"
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/UnixSignals.h"
using namespace lldb;
using namespace lldb_private;
const char *
StopInfoMachException::GetDescription ()
{
if (m_description.empty() && m_value != 0)
{
ExecutionContext exe_ctx (m_thread.shared_from_this());
Target *target = exe_ctx.GetTargetPtr();
const llvm::Triple::ArchType cpu = target ? target->GetArchitecture().GetMachine() : llvm::Triple::UnknownArch;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
const char *exc_desc = NULL;
const char *code_label = "code";
const char *code_desc = NULL;
const char *subcode_label = "subcode";
const char *subcode_desc = NULL;
switch (m_value)
{
case 1: // EXC_BAD_ACCESS
exc_desc = "EXC_BAD_ACCESS";
subcode_label = "address";
switch (cpu)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::arm:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
case 0x101: code_desc = "EXC_ARM_DA_ALIGN"; break;
case 0x102: code_desc = "EXC_ARM_DA_DEBUG"; break;
}
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
case 0x101: code_desc = "EXC_PPC_VM_PROT_READ"; break;
case 0x102: code_desc = "EXC_PPC_BADSPACE"; break;
case 0x103: code_desc = "EXC_PPC_UNALIGNED"; break;
}
break;
default:
break;
}
break;
case 2: // EXC_BAD_INSTRUCTION
exc_desc = "EXC_BAD_INSTRUCTION";
switch (cpu)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::x86:
case llvm::Triple::x86_64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
if (m_exc_code == 1)
code_desc = "EXC_I386_INVOP";
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
case 1: code_desc = "EXC_PPC_INVALID_SYSCALL"; break;
case 2: code_desc = "EXC_PPC_UNIPL_INST"; break;
case 3: code_desc = "EXC_PPC_PRIVINST"; break;
case 4: code_desc = "EXC_PPC_PRIVREG"; break;
case 5: code_desc = "EXC_PPC_TRACE"; break;
case 6: code_desc = "EXC_PPC_PERFMON"; break;
}
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::arm:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
if (m_exc_code == 1)
code_desc = "EXC_ARM_UNDEFINED";
break;
default:
break;
}
break;
case 3: // EXC_ARITHMETIC
exc_desc = "EXC_ARITHMETIC";
switch (cpu)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::x86:
case llvm::Triple::x86_64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
case 1: code_desc = "EXC_I386_DIV"; break;
case 2: code_desc = "EXC_I386_INTO"; break;
case 3: code_desc = "EXC_I386_NOEXT"; break;
case 4: code_desc = "EXC_I386_EXTOVR"; break;
case 5: code_desc = "EXC_I386_EXTERR"; break;
case 6: code_desc = "EXC_I386_EMERR"; break;
case 7: code_desc = "EXC_I386_BOUND"; break;
case 8: code_desc = "EXC_I386_SSEEXTERR"; break;
}
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
case 1: code_desc = "EXC_PPC_OVERFLOW"; break;
case 2: code_desc = "EXC_PPC_ZERO_DIVIDE"; break;
case 3: code_desc = "EXC_PPC_FLT_INEXACT"; break;
case 4: code_desc = "EXC_PPC_FLT_ZERO_DIVIDE"; break;
case 5: code_desc = "EXC_PPC_FLT_UNDERFLOW"; break;
case 6: code_desc = "EXC_PPC_FLT_OVERFLOW"; break;
case 7: code_desc = "EXC_PPC_FLT_NOT_A_NUMBER"; break;
}
break;
default:
break;
}
break;
case 4: // EXC_EMULATION
exc_desc = "EXC_EMULATION";
break;
case 5: // EXC_SOFTWARE
exc_desc = "EXC_SOFTWARE";
if (m_exc_code == 0x10003)
{
subcode_desc = "EXC_SOFT_SIGNAL";
subcode_label = "signo";
}
break;
case 6: // EXC_BREAKPOINT
{
exc_desc = "EXC_BREAKPOINT";
switch (cpu)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::x86:
case llvm::Triple::x86_64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
case 1: code_desc = "EXC_I386_SGL"; break;
case 2: code_desc = "EXC_I386_BPT"; break;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
case 1: code_desc = "EXC_PPC_BREAKPOINT"; break;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::arm:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (m_exc_code)
{
case 0x101: code_desc = "EXC_ARM_DA_ALIGN"; break;
case 0x102: code_desc = "EXC_ARM_DA_DEBUG"; break;
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
case 1: code_desc = "EXC_ARM_BREAKPOINT"; break;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
break;
default:
break;
}
}
break;
case 7:
exc_desc = "EXC_SYSCALL";
break;
case 8:
exc_desc = "EXC_MACH_SYSCALL";
break;
case 9:
exc_desc = "EXC_RPC_ALERT";
break;
case 10:
exc_desc = "EXC_CRASH";
break;
}
StreamString strm;
if (exc_desc)
strm.PutCString(exc_desc);
else
strm.Printf("EXC_??? (%" PRIu64 ")", m_value);
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
if (m_exc_data_count >= 1)
{
if (code_desc)
strm.Printf(" (%s=%s", code_label, code_desc);
else
strm.Printf(" (%s=%" PRIu64, code_label, m_exc_code);
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
if (m_exc_data_count >= 2)
{
if (subcode_desc)
strm.Printf(", %s=%s", subcode_label, subcode_desc);
else
strm.Printf(", %s=0x%" PRIx64, subcode_label, m_exc_subcode);
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
if (m_exc_data_count > 0)
strm.PutChar(')');
m_description.swap (strm.GetString());
}
return m_description.c_str();
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
StopInfoSP
StopInfoMachException::CreateStopReasonWithMachException
(
Thread &thread,
uint32_t exc_type,
uint32_t exc_data_count,
uint64_t exc_code,
uint64_t exc_sub_code,
uint64_t exc_sub_sub_code,
bool pc_already_adjusted,
bool adjust_pc_if_needed
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
)
{
if (exc_type != 0)
{
uint32_t pc_decrement = 0;
ExecutionContext exe_ctx (thread.shared_from_this());
Target *target = exe_ctx.GetTargetPtr();
const llvm::Triple::ArchType cpu = target ? target->GetArchitecture().GetMachine() : llvm::Triple::UnknownArch;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (exc_type)
{
case 1: // EXC_BAD_ACCESS
break;
case 2: // EXC_BAD_INSTRUCTION
switch (cpu)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (exc_code)
{
case 1: // EXC_PPC_INVALID_SYSCALL
case 2: // EXC_PPC_UNIPL_INST
case 3: // EXC_PPC_PRIVINST
case 4: // EXC_PPC_PRIVREG
break;
case 5: // EXC_PPC_TRACE
return StopInfo::CreateStopReasonToTrace (thread);
case 6: // EXC_PPC_PERFMON
break;
}
break;
default:
break;
}
break;
case 3: // EXC_ARITHMETIC
case 4: // EXC_EMULATION
break;
case 5: // EXC_SOFTWARE
if (exc_code == 0x10003) // EXC_SOFT_SIGNAL
return StopInfo::CreateStopReasonWithSignal (thread, exc_sub_code);
break;
case 6: // EXC_BREAKPOINT
{
bool is_software_breakpoint = false;
bool is_trace_if_software_breakpoint_missing = false;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
switch (cpu)
{
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::x86:
case llvm::Triple::x86_64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
if (exc_code == 1) // EXC_I386_SGL
{
if (!exc_sub_code)
return StopInfo::CreateStopReasonToTrace(thread);
// It's a watchpoint, then.
// The exc_sub_code indicates the data break address.
lldb::WatchpointSP wp_sp;
if (target)
wp_sp = target->GetWatchpointList().FindByAddress((lldb::addr_t)exc_sub_code);
if (wp_sp && wp_sp->IsEnabled())
{
// Debugserver may piggyback the hardware index of the fired watchpoint in the exception data.
// Set the hardware index if that's the case.
if (exc_data_count >=3)
wp_sp->SetHardwareIndex((uint32_t)exc_sub_sub_code);
return StopInfo::CreateStopReasonWithWatchpointID(thread, wp_sp->GetID());
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
else if (exc_code == 2 || // EXC_I386_BPT
exc_code == 3) // EXC_I386_BPTFLT
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
// KDP returns EXC_I386_BPTFLT for trace breakpoints
if (exc_code == 3)
is_trace_if_software_breakpoint_missing = true;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
is_software_breakpoint = true;
if (!pc_already_adjusted)
pc_decrement = 1;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
is_software_breakpoint = exc_code == 1; // EXC_PPC_BREAKPOINT
break;
Abtracted all mach-o and ELF out of ArchSpec. This patch is a modified form of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up doing was: - Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple to give us the machine type from llvm::Triple::ArchType. - There is a new ArchSpec::Core definition which further qualifies the CPU core we are dealing with into a single enumeration. If you need support for a new Core and want to debug it in LLDB, it must be added to this list. In the future we can allow for dynamic core registration, but for now it is hard coded. - The ArchSpec can now be initialized with a llvm::Triple or with a C string that represents the triple (it can just be an arch still like "i386"). - The ArchSpec can still initialize itself with a architecture type -- mach-o with cpu type and subtype, or ELF with e_machine + e_flags -- and this will then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core. The mach-o cpu type and subtype can be accessed using the getter functions: uint32_t ArchSpec::GetMachOCPUType () const; uint32_t ArchSpec::GetMachOCPUSubType () const; But these functions are just converting out internal llvm::Triple::ArchSpec + ArchSpec::Core back into mach-o. Same goes for ELF. All code has been updated to deal with the changes. This should abstract us until later when the llvm::TargetSpec stuff gets finalized and we can then adopt it. llvm-svn: 126278
2011-02-23 08:35:02 +08:00
case llvm::Triple::arm:
if (exc_code == 0x102)
{
// It's a watchpoint, then, if the exc_sub_code indicates a known/enabled
// data break address from our watchpoint list.
lldb::WatchpointSP wp_sp;
if (target)
wp_sp = target->GetWatchpointList().FindByAddress((lldb::addr_t)exc_sub_code);
if (wp_sp && wp_sp->IsEnabled())
{
// Debugserver may piggyback the hardware index of the fired watchpoint in the exception data.
// Set the hardware index if that's the case.
if (exc_data_count >=3)
wp_sp->SetHardwareIndex((uint32_t)exc_sub_sub_code);
return StopInfo::CreateStopReasonWithWatchpointID(thread, wp_sp->GetID());
}
// EXC_ARM_DA_DEBUG seems to be reused for EXC_BREAKPOINT as well as EXC_BAD_ACCESS
if (thread.GetTemporaryResumeState() == eStateStepping)
return StopInfo::CreateStopReasonToTrace(thread);
}
else if (exc_code == 1)
{
is_software_breakpoint = true;
is_trace_if_software_breakpoint_missing = true;
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
break;
default:
break;
}
if (is_software_breakpoint)
{
RegisterContextSP reg_ctx_sp (thread.GetRegisterContext());
addr_t pc = reg_ctx_sp->GetPC() - pc_decrement;
ProcessSP process_sp (thread.CalculateProcess());
lldb::BreakpointSiteSP bp_site_sp;
if (process_sp)
bp_site_sp = process_sp->GetBreakpointSiteList().FindByAddress(pc);
if (bp_site_sp && bp_site_sp->IsEnabled())
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
// Update the PC if we were asked to do so, but only do
// so if we find a breakpoint that we know about cause
// this could be a trap instruction in the code
if (pc_decrement > 0 && adjust_pc_if_needed)
reg_ctx_sp->SetPC (pc);
// If the breakpoint is for this thread, then we'll report the hit, but if it is for another thread,
// we can just report no reason. We don't need to worry about stepping over the breakpoint here, that
// will be taken care of when the thread resumes and notices that there's a breakpoint under the pc.
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
if (bp_site_sp->ValidForThisThread (&thread))
return StopInfo::CreateStopReasonWithBreakpointSiteID (thread, bp_site_sp->GetID());
else
return StopInfoSP();
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
// Don't call this a trace if we weren't single stepping this thread.
if (is_trace_if_software_breakpoint_missing && thread.GetTemporaryResumeState() == eStateStepping)
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-31 02:16:51 +08:00
{
return StopInfo::CreateStopReasonToTrace (thread);
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
}
break;
case 7: // EXC_SYSCALL
case 8: // EXC_MACH_SYSCALL
case 9: // EXC_RPC_ALERT
case 10: // EXC_CRASH
break;
}
return StopInfoSP(new StopInfoMachException (thread, exc_type, exc_data_count, exc_code, exc_sub_code));
}
return StopInfoSP();
}