llvm-project/llvm/lib/ProfileData/InstrProfWriter.cpp

253 lines
8.0 KiB
C++
Raw Normal View History

//=-- InstrProfWriter.cpp - Instrumented profiling writer -------------------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/OnDiskHashTable.h"
#include <tuple>
using namespace llvm;
namespace {
static support::endianness ValueProfDataEndianness = support::little;
class InstrProfRecordTrait {
public:
typedef StringRef key_type;
typedef StringRef key_type_ref;
typedef const InstrProfWriter::ProfilingData *const data_type;
typedef const InstrProfWriter::ProfilingData *const data_type_ref;
typedef uint64_t hash_value_type;
typedef uint64_t offset_type;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
// Value data
M += ValueProfData::getSize(ProfileData.second);
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
static void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N){
Out.write(K.data(), N);
}
static void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V,
offset_type) {
using namespace llvm::support;
endian::Writer<little> LE(Out);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts)
LE.write<uint64_t>(I);
// Write value data
std::unique_ptr<ValueProfData> VDataPtr =
ValueProfData::serializeFrom(ProfileData.second);
uint32_t S = VDataPtr->getSize();
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
Out.write((const char *)VDataPtr.get(), S);
}
}
};
}
// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(
support::endianness Endianness) {
ValueProfDataEndianness = Endianness;
}
std::error_code InstrProfWriter::addRecord(InstrProfRecord &&I,
uint64_t Weight) {
auto &ProfileDataMap = FunctionData[I.Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(I.Hash, InstrProfRecord()));
InstrProfRecord &Dest = Where->second;
instrprof_error Result;
if (NewFunc) {
// We've never seen a function with this name and hash, add it.
Dest = std::move(I);
// Fix up the name to avoid dangling reference.
Dest.Name = FunctionData.find(Dest.Name)->getKey();
Result = instrprof_error::success;
if (Weight > 1) {
for (auto &Count : Dest.Counts) {
bool Overflowed;
Count = SaturatingMultiply(Count, Weight, &Overflowed);
if (Overflowed && Result == instrprof_error::success) {
Result = instrprof_error::counter_overflow;
}
}
}
} else {
// We're updating a function we've seen before.
Result = Dest.merge(I, Weight);
}
// We keep track of the max function count as we go for simplicity.
// Update this statistic no matter the result of the merge.
if (Dest.Counts[0] > MaxFunctionCount)
MaxFunctionCount = Dest.Counts[0];
return Result;
}
std::pair<uint64_t, uint64_t> InstrProfWriter::writeImpl(raw_ostream &OS) {
OnDiskChainedHashTableGenerator<InstrProfRecordTrait> Generator;
// Populate the hash table generator.
for (const auto &I : FunctionData)
Generator.insert(I.getKey(), &I.getValue());
using namespace llvm::support;
endian::Writer<little> LE(OS);
// Write the header.
IndexedInstrProf::Header Header;
Header.Magic = IndexedInstrProf::Magic;
Header.Version = IndexedInstrProf::Version;
Header.MaxFunctionCount = MaxFunctionCount;
Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
Header.HashOffset = 0;
int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
// Only write out all the fields execpt 'HashOffset'. We need
// to remember the offset of that field to allow back patching
// later.
for (int I = 0; I < N - 1; I++)
LE.write<uint64_t>(reinterpret_cast<uint64_t *>(&Header)[I]);
// Save a space to write the hash table start location.
uint64_t HashTableStartLoc = OS.tell();
// Reserve the space for HashOffset field.
LE.write<uint64_t>(0);
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS);
return std::make_pair(HashTableStartLoc, HashTableStart);
}
void InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
auto TableStart = writeImpl(OS);
// Go back and fill in the hash table start.
using namespace support;
OS.seek(TableStart.first);
// Now patch the HashOffset field previously reserved.
endian::Writer<little>(OS).write<uint64_t>(TableStart.second);
}
static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};
void InstrProfWriter::writeRecordInText(const InstrProfRecord &Func,
InstrProfSymtab &Symtab,
raw_fd_ostream &OS) {
OS << Func.Name << "\n";
OS << "# Func Hash:\n" << Func.Hash << "\n";
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
OS << "# Counter Values:\n";
for (uint64_t Count : Func.Counts)
OS << Count << "\n";
uint32_t NumValueKinds = Func.getNumValueKinds();
if (!NumValueKinds) {
OS << "\n";
return;
}
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
OS << "# NumValueSites:\n" << NS << "\n";
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
OS << ND << "\n";
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
for (uint32_t I = 0; I < ND; I++) {
if (VK == IPVK_IndirectCallTarget)
OS << Symtab.getFuncName(VD[I].Value) << ":" << VD[I].Count << "\n";
else
OS << VD[I].Value << ":" << VD[I].Count << "\n";
}
}
}
OS << "\n";
}
void InstrProfWriter::writeText(raw_fd_ostream &OS) {
InstrProfSymtab Symtab;
for (const auto &I : FunctionData)
Symtab.addFuncName(I.getKey());
Symtab.finalizeSymtab();
for (const auto &I : FunctionData)
for (const auto &Func : I.getValue())
writeRecordInText(Func.second, Symtab, OS);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
llvm::raw_string_ostream OS(Data);
// Write the hash table.
auto TableStart = writeImpl(OS);
OS.flush();
// Go back and fill in the hash table start.
using namespace support;
uint64_t Bytes = endian::byte_swap<uint64_t, little>(TableStart.second);
Data.replace(TableStart.first, sizeof(uint64_t), (const char *)&Bytes,
sizeof(uint64_t));
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}