llvm-project/lldb/source/Target/StopInfo.cpp

1234 lines
46 KiB
C++
Raw Normal View History

Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
//===-- StopInfo.cpp ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/StopInfo.h"
// C Includes
// C++ Includes
#include <string>
// Other libraries and framework includes
// Project includes
#include "lldb/Core/Log.h"
#include "lldb/Breakpoint/Breakpoint.h"
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
#include "lldb/Breakpoint/BreakpointLocation.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Breakpoint/Watchpoint.h"
#include "lldb/Core/Debugger.h"
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObject.h"
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
#include "lldb/Expression/UserExpression.h"
#include "lldb/Target/Target.h"
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/UnixSignals.h"
using namespace lldb;
using namespace lldb_private;
StopInfo::StopInfo (Thread &thread, uint64_t value) :
m_thread_wp (thread.shared_from_this()),
m_stop_id (thread.GetProcess()->GetStopID()),
m_resume_id (thread.GetProcess()->GetResumeID()),
m_value (value),
m_description (),
Figure out the reply to "PlanExplainsStop" once when we stop and then use the cached value. This fixes problems, for instance, with the StepRange plans, where they know that they explained the stop because they were at their "run to here" breakpoint, then deleted that breakpoint, so when they got asked again, doh! I had done this for a couple of plans in an ad hoc fashion, this just formalizes it. Also add a "ResumeRequested" in Process so that the code in the completion handlers can tell the ShouldStop logic they want to resume rather than just directly resuming. That allows us to handle resuming in a more controlled fashion. Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when the target was immediately restarted. --This line, and those below , will be ignored-- M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py M include/lldb/Target/ThreadList.h M include/lldb/Target/ThreadPlanStepOut.h M include/lldb/Target/Thread.h M include/lldb/Target/ThreadPlanBase.h M include/lldb/Target/ThreadPlanStepThrough.h M include/lldb/Target/ThreadPlanStepInstruction.h M include/lldb/Target/ThreadPlanStepInRange.h M include/lldb/Target/ThreadPlanStepOverBreakpoint.h M include/lldb/Target/ThreadPlanStepUntil.h M include/lldb/Target/StopInfo.h M include/lldb/Target/Process.h M include/lldb/Target/ThreadPlanRunToAddress.h M include/lldb/Target/ThreadPlan.h M include/lldb/Target/ThreadPlanCallFunction.h M include/lldb/Target/ThreadPlanStepOverRange.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp M source/Target/StopInfo.cpp M source/Target/Process.cpp M source/Target/ThreadPlanRunToAddress.cpp M source/Target/ThreadPlan.cpp M source/Target/ThreadPlanCallFunction.cpp M source/Target/ThreadPlanStepOverRange.cpp M source/Target/ThreadList.cpp M source/Target/ThreadPlanStepOut.cpp M source/Target/Thread.cpp M source/Target/ThreadPlanBase.cpp M source/Target/ThreadPlanStepThrough.cpp M source/Target/ThreadPlanStepInstruction.cpp M source/Target/ThreadPlanStepInRange.cpp M source/Target/ThreadPlanStepOverBreakpoint.cpp M source/Target/ThreadPlanStepUntil.cpp M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme llvm-svn: 181381
2013-05-08 08:35:16 +08:00
m_override_should_notify (eLazyBoolCalculate),
LLDB AddressSanitizer instrumentation runtime plugin, breakpint on error and report data extraction Reviewed at http://reviews.llvm.org/D5592 This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API. More precisely this patch... adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable adds a collection of these plugins into the Process class AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now) SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream adds a test case for all of this I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose. Kuba llvm-svn: 219546
2014-10-11 07:43:03 +08:00
m_override_should_stop (eLazyBoolCalculate),
m_extended_info()
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
}
bool
StopInfo::IsValid () const
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
return thread_sp->GetProcess()->GetStopID() == m_stop_id;
return false;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
void
StopInfo::MakeStopInfoValid ()
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
m_stop_id = thread_sp->GetProcess()->GetStopID();
m_resume_id = thread_sp->GetProcess()->GetResumeID();
}
}
bool
StopInfo::HasTargetRunSinceMe ()
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
lldb::StateType ret_type = thread_sp->GetProcess()->GetPrivateState();
if (ret_type == eStateRunning)
{
return true;
}
else if (ret_type == eStateStopped)
{
// This is a little tricky. We want to count "run and stopped again before you could
// ask this question as a "TRUE" answer to HasTargetRunSinceMe. But we don't want to
// include any running of the target done for expressions. So we track both resumes,
// and resumes caused by expressions, and check if there are any resumes NOT caused
// by expressions.
uint32_t curr_resume_id = thread_sp->GetProcess()->GetResumeID();
uint32_t last_user_expression_id = thread_sp->GetProcess()->GetLastUserExpressionResumeID ();
if (curr_resume_id == m_resume_id)
{
return false;
}
else if (curr_resume_id > last_user_expression_id)
{
return true;
}
}
}
return false;
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
//----------------------------------------------------------------------
// StopInfoBreakpoint
//----------------------------------------------------------------------
namespace lldb_private
{
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
class StopInfoBreakpoint : public StopInfo
{
public:
StopInfoBreakpoint (Thread &thread, break_id_t break_id) :
StopInfo (thread, break_id),
m_should_stop (false),
m_should_stop_is_valid (false),
m_should_perform_action (true),
m_address (LLDB_INVALID_ADDRESS),
m_break_id(LLDB_INVALID_BREAK_ID),
m_was_one_shot (false)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
StoreBPInfo();
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
StopInfoBreakpoint (Thread &thread, break_id_t break_id, bool should_stop) :
StopInfo (thread, break_id),
m_should_stop (should_stop),
m_should_stop_is_valid (true),
m_should_perform_action (true),
m_address (LLDB_INVALID_ADDRESS),
m_break_id(LLDB_INVALID_BREAK_ID),
m_was_one_shot (false)
{
StoreBPInfo();
}
void
StoreBPInfo ()
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
BreakpointSiteSP bp_site_sp (thread_sp->GetProcess()->GetBreakpointSiteList().FindByID (m_value));
if (bp_site_sp)
{
if (bp_site_sp->GetNumberOfOwners() == 1)
{
BreakpointLocationSP bp_loc_sp = bp_site_sp->GetOwnerAtIndex(0);
if (bp_loc_sp)
{
m_break_id = bp_loc_sp->GetBreakpoint().GetID();
m_was_one_shot = bp_loc_sp->GetBreakpoint().IsOneShot();
}
}
m_address = bp_site_sp->GetLoadAddress();
}
}
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
virtual ~StopInfoBreakpoint ()
{
}
virtual bool
IsValidForOperatingSystemThread (Thread &thread)
{
ProcessSP process_sp (thread.GetProcess());
if (process_sp)
{
BreakpointSiteSP bp_site_sp (process_sp->GetBreakpointSiteList().FindByID (m_value));
if (bp_site_sp)
return bp_site_sp->ValidForThisThread (&thread);
}
return false;
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
virtual StopReason
GetStopReason () const
{
return eStopReasonBreakpoint;
}
virtual bool
ShouldStopSynchronous (Event *event_ptr)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
if (!m_should_stop_is_valid)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
// Only check once if we should stop at a breakpoint
BreakpointSiteSP bp_site_sp (thread_sp->GetProcess()->GetBreakpointSiteList().FindByID (m_value));
if (bp_site_sp)
{
ExecutionContext exe_ctx (thread_sp->GetStackFrameAtIndex(0));
StoppointCallbackContext context (event_ptr, exe_ctx, true);
bp_site_sp->BumpHitCounts();
m_should_stop = bp_site_sp->ShouldStop (&context);
}
else
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
if (log)
log->Printf ("Process::%s could not find breakpoint site id: %" PRId64 "...", __FUNCTION__, m_value);
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
m_should_stop = true;
}
m_should_stop_is_valid = true;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
return m_should_stop;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
return false;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
virtual bool
Figure out the reply to "PlanExplainsStop" once when we stop and then use the cached value. This fixes problems, for instance, with the StepRange plans, where they know that they explained the stop because they were at their "run to here" breakpoint, then deleted that breakpoint, so when they got asked again, doh! I had done this for a couple of plans in an ad hoc fashion, this just formalizes it. Also add a "ResumeRequested" in Process so that the code in the completion handlers can tell the ShouldStop logic they want to resume rather than just directly resuming. That allows us to handle resuming in a more controlled fashion. Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when the target was immediately restarted. --This line, and those below , will be ignored-- M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py M include/lldb/Target/ThreadList.h M include/lldb/Target/ThreadPlanStepOut.h M include/lldb/Target/Thread.h M include/lldb/Target/ThreadPlanBase.h M include/lldb/Target/ThreadPlanStepThrough.h M include/lldb/Target/ThreadPlanStepInstruction.h M include/lldb/Target/ThreadPlanStepInRange.h M include/lldb/Target/ThreadPlanStepOverBreakpoint.h M include/lldb/Target/ThreadPlanStepUntil.h M include/lldb/Target/StopInfo.h M include/lldb/Target/Process.h M include/lldb/Target/ThreadPlanRunToAddress.h M include/lldb/Target/ThreadPlan.h M include/lldb/Target/ThreadPlanCallFunction.h M include/lldb/Target/ThreadPlanStepOverRange.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp M source/Target/StopInfo.cpp M source/Target/Process.cpp M source/Target/ThreadPlanRunToAddress.cpp M source/Target/ThreadPlan.cpp M source/Target/ThreadPlanCallFunction.cpp M source/Target/ThreadPlanStepOverRange.cpp M source/Target/ThreadList.cpp M source/Target/ThreadPlanStepOut.cpp M source/Target/Thread.cpp M source/Target/ThreadPlanBase.cpp M source/Target/ThreadPlanStepThrough.cpp M source/Target/ThreadPlanStepInstruction.cpp M source/Target/ThreadPlanStepInRange.cpp M source/Target/ThreadPlanStepOverBreakpoint.cpp M source/Target/ThreadPlanStepUntil.cpp M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme llvm-svn: 181381
2013-05-08 08:35:16 +08:00
DoShouldNotify (Event *event_ptr)
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
BreakpointSiteSP bp_site_sp (thread_sp->GetProcess()->GetBreakpointSiteList().FindByID (m_value));
if (bp_site_sp)
{
bool all_internal = true;
for (uint32_t i = 0; i < bp_site_sp->GetNumberOfOwners(); i++)
{
if (!bp_site_sp->GetOwnerAtIndex(i)->GetBreakpoint().IsInternal())
{
all_internal = false;
break;
}
}
return all_internal == false;
}
}
return true;
}
virtual const char *
GetDescription ()
{
if (m_description.empty())
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
BreakpointSiteSP bp_site_sp (thread_sp->GetProcess()->GetBreakpointSiteList().FindByID (m_value));
if (bp_site_sp)
{
StreamString strm;
// If we have just hit an internal breakpoint, and it has a kind description, print that instead of the
// full breakpoint printing:
if (bp_site_sp->IsInternal())
{
size_t num_owners = bp_site_sp->GetNumberOfOwners();
for (size_t idx = 0; idx < num_owners; idx++)
{
const char *kind = bp_site_sp->GetOwnerAtIndex(idx)->GetBreakpoint().GetBreakpointKind();
if (kind != NULL)
{
m_description.assign (kind);
return kind;
}
}
}
strm.Printf("breakpoint ");
bp_site_sp->GetDescription(&strm, eDescriptionLevelBrief);
m_description.swap (strm.GetString());
}
else
{
StreamString strm;
if (m_break_id != LLDB_INVALID_BREAK_ID)
{
BreakpointSP break_sp = thread_sp->GetProcess()->GetTarget().GetBreakpointByID(m_break_id);
if (break_sp)
{
if (break_sp->IsInternal())
{
const char *kind = break_sp->GetBreakpointKind();
if (kind)
strm.Printf ("internal %s breakpoint(%d).", kind, m_break_id);
else
strm.Printf ("internal breakpoint(%d).", m_break_id);
}
else
{
strm.Printf ("breakpoint %d.", m_break_id);
}
}
else
{
if (m_was_one_shot)
strm.Printf ("one-shot breakpoint %d", m_break_id);
else
strm.Printf ("breakpoint %d which has been deleted.", m_break_id);
}
}
else if (m_address == LLDB_INVALID_ADDRESS)
strm.Printf("breakpoint site %" PRIi64 " which has been deleted - unknown address", m_value);
else
strm.Printf("breakpoint site %" PRIi64 " which has been deleted - was at 0x%" PRIx64, m_value, m_address);
m_description.swap (strm.GetString());
}
}
}
return m_description.c_str();
}
protected:
bool
ShouldStop (Event *event_ptr)
{
// This just reports the work done by PerformAction or the synchronous stop. It should
// only ever get called after they have had a chance to run.
assert (m_should_stop_is_valid);
return m_should_stop;
}
virtual void
PerformAction (Event *event_ptr)
{
if (!m_should_perform_action)
return;
m_should_perform_action = false;
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
Log *log = lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS | LIBLLDB_LOG_STEP);
if (!thread_sp->IsValid())
{
// This shouldn't ever happen, but just in case, don't do more harm.
if (log)
{
log->Printf ("PerformAction got called with an invalid thread.");
}
m_should_stop = true;
m_should_stop_is_valid = true;
return;
}
BreakpointSiteSP bp_site_sp (thread_sp->GetProcess()->GetBreakpointSiteList().FindByID (m_value));
std::unordered_set<break_id_t> precondition_breakpoints;
if (bp_site_sp)
{
// Let's copy the owners list out of the site and store them in a local list. That way if
// one of the breakpoint actions changes the site, then we won't be operating on a bad list.
BreakpointLocationCollection site_locations;
size_t num_owners = bp_site_sp->CopyOwnersList(site_locations);
if (num_owners == 0)
{
m_should_stop = true;
}
else
{
// We go through each location, and test first its precondition - this overrides everything. Note,
// we only do this once per breakpoint - not once per location...
// Then check the condition. If the condition says to stop,
// then we run the callback for that location. If that callback says to stop as well, then
// we set m_should_stop to true; we are going to stop.
// But we still want to give all the breakpoints whose conditions say we are going to stop a
// chance to run their callbacks.
// Of course if any callback restarts the target by putting "continue" in the callback, then
// we're going to restart, without running the rest of the callbacks. And in this case we will
// end up not stopping even if another location said we should stop. But that's better than not
// running all the callbacks.
m_should_stop = false;
ExecutionContext exe_ctx (thread_sp->GetStackFrameAtIndex(0));
Process *process = exe_ctx.GetProcessPtr();
if (process->GetModIDRef().IsLastResumeForUserExpression())
{
// If we are in the middle of evaluating an expression, don't run asynchronous breakpoint commands or
// expressions. That could lead to infinite recursion if the command or condition re-calls the function
// with this breakpoint.
// TODO: We can keep a list of the breakpoints we've seen while running expressions in the nested
// PerformAction calls that can arise when the action runs a function that hits another breakpoint,
// and only stop running commands when we see the same breakpoint hit a second time.
m_should_stop_is_valid = true;
if (log)
log->Printf ("StopInfoBreakpoint::PerformAction - Hit a breakpoint while running an expression,"
" not running commands to avoid recursion.");
bool ignoring_breakpoints = process->GetIgnoreBreakpointsInExpressions();
if (ignoring_breakpoints)
{
m_should_stop = false;
// Internal breakpoints will always stop.
for (size_t j = 0; j < num_owners; j++)
{
lldb::BreakpointLocationSP bp_loc_sp = bp_site_sp->GetOwnerAtIndex(j);
if (bp_loc_sp->GetBreakpoint().IsInternal())
{
m_should_stop = true;
break;
}
}
}
else
{
m_should_stop = true;
}
if (log)
log->Printf ("StopInfoBreakpoint::PerformAction - in expression, continuing: %s.",
m_should_stop ? "true" : "false");
process->GetTarget().GetDebugger().GetAsyncOutputStream()->Printf("Warning: hit breakpoint while "
"running function, skipping commands and conditions to prevent recursion.");
return;
}
StoppointCallbackContext context (event_ptr, exe_ctx, false);
// For safety's sake let's also grab an extra reference to the breakpoint owners of the locations we're
// going to examine, since the locations are going to have to get back to their breakpoints, and the
// locations don't keep their owners alive. I'm just sticking the BreakpointSP's in a vector since
// I'm only using it to locally increment their retain counts.
std::vector<lldb::BreakpointSP> location_owners;
for (size_t j = 0; j < num_owners; j++)
{
BreakpointLocationSP loc(site_locations.GetByIndex(j));
location_owners.push_back(loc->GetBreakpoint().shared_from_this());
}
for (size_t j = 0; j < num_owners; j++)
{
lldb::BreakpointLocationSP bp_loc_sp = site_locations.GetByIndex(j);
// If another action disabled this breakpoint or its location, then don't run the actions.
if (!bp_loc_sp->IsEnabled() || !bp_loc_sp->GetBreakpoint().IsEnabled())
continue;
// The breakpoint site may have many locations associated with it, not all of them valid for
// this thread. Skip the ones that aren't:
if (!bp_loc_sp->ValidForThisThread(thread_sp.get()))
{
if (log)
{
StreamString s;
bp_loc_sp->GetDescription(&s, eDescriptionLevelBrief);
log->Printf ("Breakpoint %s hit on thread 0x%llx but it was not for this thread, continuing.",
s.GetData(),
static_cast<unsigned long long>(thread_sp->GetID()));
}
continue;
}
// First run the precondition, but since the precondition is per breakpoint, only run it once
// per breakpoint.
std::pair<std::unordered_set<break_id_t>::iterator, bool> result
= precondition_breakpoints.insert(bp_loc_sp->GetBreakpoint().GetID());
if (!result.second)
continue;
bool precondition_result = bp_loc_sp->GetBreakpoint().EvaluatePrecondition(context);
if (!precondition_result)
continue;
// Next run the condition for the breakpoint. If that says we should stop, then we'll run
// the callback for the breakpoint. If the callback says we shouldn't stop that will win.
if (bp_loc_sp->GetConditionText() != NULL)
{
Error condition_error;
bool condition_says_stop = bp_loc_sp->ConditionSaysStop(exe_ctx, condition_error);
if (!condition_error.Success())
{
Debugger &debugger = exe_ctx.GetTargetRef().GetDebugger();
StreamSP error_sp = debugger.GetAsyncErrorStream ();
error_sp->Printf ("Stopped due to an error evaluating condition of breakpoint ");
bp_loc_sp->GetDescription (error_sp.get(), eDescriptionLevelBrief);
error_sp->Printf (": \"%s\"",
bp_loc_sp->GetConditionText());
error_sp->EOL();
const char *err_str = condition_error.AsCString("<Unknown Error>");
if (log)
log->Printf("Error evaluating condition: \"%s\"\n", err_str);
error_sp->PutCString (err_str);
error_sp->EOL();
error_sp->Flush();
}
else
{
if (log)
{
StreamString s;
bp_loc_sp->GetDescription(&s, eDescriptionLevelBrief);
log->Printf ("Condition evaluated for breakpoint %s on thread 0x%llx conditon_says_stop: %i.",
s.GetData(),
static_cast<unsigned long long>(thread_sp->GetID()),
condition_says_stop);
}
if (!condition_says_stop)
{
// We don't want to increment the hit count of breakpoints if the condition fails.
// We've already bumped it by the time we get here, so undo the bump:
bp_loc_sp->UndoBumpHitCount();
continue;
}
}
}
bool callback_says_stop;
// FIXME: For now the callbacks have to run in async mode - the first time we restart we need
// to get out of there. So set it here.
// When we figure out how to nest breakpoint hits then this will change.
Debugger &debugger = thread_sp->CalculateTarget()->GetDebugger();
bool old_async = debugger.GetAsyncExecution();
debugger.SetAsyncExecution (true);
callback_says_stop = bp_loc_sp->InvokeCallback (&context);
debugger.SetAsyncExecution (old_async);
if (callback_says_stop)
m_should_stop = true;
// If we are going to stop for this breakpoint, then remove the breakpoint.
if (callback_says_stop && bp_loc_sp && bp_loc_sp->GetBreakpoint().IsOneShot())
{
thread_sp->GetProcess()->GetTarget().RemoveBreakpointByID (bp_loc_sp->GetBreakpoint().GetID());
}
// Also make sure that the callback hasn't continued the target.
// If it did, when we'll set m_should_start to false and get out of here.
if (HasTargetRunSinceMe ())
{
m_should_stop = false;
break;
}
}
}
// We've figured out what this stop wants to do, so mark it as valid so we don't compute it again.
m_should_stop_is_valid = true;
}
else
{
m_should_stop = true;
m_should_stop_is_valid = true;
Log * log_process(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log_process)
log_process->Printf ("Process::%s could not find breakpoint site id: %" PRId64 "...", __FUNCTION__, m_value);
}
if (log)
log->Printf ("Process::%s returning from action with m_should_stop: %d.", __FUNCTION__, m_should_stop);
}
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
private:
bool m_should_stop;
bool m_should_stop_is_valid;
bool m_should_perform_action; // Since we are trying to preserve the "state" of the system even if we run functions
// etc. behind the users backs, we need to make sure we only REALLY perform the action once.
lldb::addr_t m_address; // We use this to capture the breakpoint site address when we create the StopInfo,
// in case somebody deletes it between the time the StopInfo is made and the
// description is asked for.
lldb::break_id_t m_break_id;
bool m_was_one_shot;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
};
//----------------------------------------------------------------------
// StopInfoWatchpoint
//----------------------------------------------------------------------
class StopInfoWatchpoint : public StopInfo
{
public:
// Make sure watchpoint is properly disabled and subsequently enabled while performing watchpoint actions.
class WatchpointSentry {
public:
WatchpointSentry(Process *p, Watchpoint *w):
process(p),
watchpoint(w)
{
if (process && watchpoint)
{
const bool notify = false;
watchpoint->TurnOnEphemeralMode();
process->DisableWatchpoint(watchpoint, notify);
}
}
~WatchpointSentry()
{
if (process && watchpoint)
{
if (!watchpoint->IsDisabledDuringEphemeralMode())
{
const bool notify = false;
process->EnableWatchpoint(watchpoint, notify);
}
watchpoint->TurnOffEphemeralMode();
}
}
private:
Process *process;
Watchpoint *watchpoint;
};
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
StopInfoWatchpoint (Thread &thread, break_id_t watch_id, lldb::addr_t watch_hit_addr) :
StopInfo(thread, watch_id),
m_should_stop(false),
m_should_stop_is_valid(false),
m_watch_hit_addr(watch_hit_addr)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
}
virtual ~StopInfoWatchpoint ()
{
}
virtual StopReason
GetStopReason () const
{
return eStopReasonWatchpoint;
}
virtual const char *
GetDescription ()
{
if (m_description.empty())
{
StreamString strm;
strm.Printf("watchpoint %" PRIi64, m_value);
m_description.swap (strm.GetString());
}
return m_description.c_str();
}
protected:
virtual bool
ShouldStopSynchronous (Event *event_ptr)
{
// ShouldStop() method is idempotent and should not affect hit count.
// See Process::RunPrivateStateThread()->Process()->HandlePrivateEvent()
// -->Process()::ShouldBroadcastEvent()->ThreadList::ShouldStop()->
// Thread::ShouldStop()->ThreadPlanBase::ShouldStop()->
// StopInfoWatchpoint::ShouldStop() and
// Event::DoOnRemoval()->Process::ProcessEventData::DoOnRemoval()->
// StopInfoWatchpoint::PerformAction().
if (m_should_stop_is_valid)
return m_should_stop;
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
WatchpointSP wp_sp (thread_sp->CalculateTarget()->GetWatchpointList().FindByID(GetValue()));
if (wp_sp)
{
// Check if we should stop at a watchpoint.
ExecutionContext exe_ctx (thread_sp->GetStackFrameAtIndex(0));
StoppointCallbackContext context (event_ptr, exe_ctx, true);
m_should_stop = wp_sp->ShouldStop (&context);
}
else
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log)
log->Printf ("Process::%s could not find watchpoint location id: %" PRId64 "...",
__FUNCTION__, GetValue());
m_should_stop = true;
}
}
m_should_stop_is_valid = true;
return m_should_stop;
}
bool
ShouldStop (Event *event_ptr)
{
// This just reports the work done by PerformAction or the synchronous stop. It should
// only ever get called after they have had a chance to run.
assert (m_should_stop_is_valid);
return m_should_stop;
}
virtual void
PerformAction (Event *event_ptr)
{
Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_WATCHPOINTS);
// We're going to calculate if we should stop or not in some way during the course of
// this code. Also by default we're going to stop, so set that here.
m_should_stop = true;
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
WatchpointSP wp_sp (thread_sp->CalculateTarget()->GetWatchpointList().FindByID(GetValue()));
if (wp_sp)
{
ExecutionContext exe_ctx (thread_sp->GetStackFrameAtIndex(0));
Process* process = exe_ctx.GetProcessPtr();
// This sentry object makes sure the current watchpoint is disabled while performing watchpoint actions,
// and it is then enabled after we are finished.
WatchpointSentry sentry(process, wp_sp.get());
{
// check if this process is running on an architecture where watchpoints trigger
// before the associated instruction runs. if so, disable the WP, single-step and then
// re-enable the watchpoint
if (process)
{
uint32_t num;
bool wp_triggers_after;
if (process->GetWatchpointSupportInfo(num, wp_triggers_after).Success())
{
if (!wp_triggers_after)
{
StopInfoSP stored_stop_info_sp = thread_sp->GetStopInfo();
assert (stored_stop_info_sp.get() == this);
ThreadPlanSP new_plan_sp(thread_sp->QueueThreadPlanForStepSingleInstruction(false, // step-over
false, // abort_other_plans
true)); // stop_other_threads
new_plan_sp->SetIsMasterPlan (true);
new_plan_sp->SetOkayToDiscard (false);
new_plan_sp->SetPrivate (true);
process->GetThreadList().SetSelectedThreadByID (thread_sp->GetID());
process->ResumeSynchronous(NULL);
process->GetThreadList().SetSelectedThreadByID (thread_sp->GetID());
thread_sp->SetStopInfo(stored_stop_info_sp);
}
}
}
}
/*
* MIPS: Last 3bits of the watchpoint address are masked by the kernel. For example:
* 'n' is at 0x120010d00 and 'm' is 0x120010d04. When a watchpoint is set at 'm', then
* watch exception is generated even when 'n' is read/written. To handle this case,
* server emulates the instruction at PC and finds the base address of the load/store
* instruction and appends it in the description of the stop-info packet. If watchpoint
* is not set on this address by user then this do not stop.
*/
if (m_watch_hit_addr != LLDB_INVALID_ADDRESS)
{
WatchpointSP wp_hit_sp = thread_sp->CalculateTarget()->GetWatchpointList().FindByAddress(m_watch_hit_addr);
if (!wp_hit_sp)
m_should_stop = false;
}
if (m_should_stop && wp_sp->GetConditionText() != NULL)
{
// We need to make sure the user sees any parse errors in their condition, so we'll hook the
// constructor errors up to the debugger's Async I/O.
ExpressionResults result_code;
EvaluateExpressionOptions expr_options;
expr_options.SetUnwindOnError(true);
expr_options.SetIgnoreBreakpoints(true);
ValueObjectSP result_value_sp;
Error error;
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
result_code = UserExpression::Evaluate (exe_ctx,
expr_options,
wp_sp->GetConditionText(),
NULL,
result_value_sp,
error);
if (result_code == eExpressionCompleted)
{
if (result_value_sp)
{
Scalar scalar_value;
if (result_value_sp->ResolveValue (scalar_value))
{
if (scalar_value.ULongLong(1) == 0)
{
// We have been vetoed. This takes precedence over querying
// the watchpoint whether it should stop (aka ignore count and
// friends). See also StopInfoWatchpoint::ShouldStop() as well
// as Process::ProcessEventData::DoOnRemoval().
m_should_stop = false;
}
else
m_should_stop = true;
if (log)
log->Printf("Condition successfully evaluated, result is %s.\n",
m_should_stop ? "true" : "false");
}
else
{
m_should_stop = true;
if (log)
log->Printf("Failed to get an integer result from the expression.");
}
}
}
else
{
Debugger &debugger = exe_ctx.GetTargetRef().GetDebugger();
StreamSP error_sp = debugger.GetAsyncErrorStream ();
error_sp->Printf ("Stopped due to an error evaluating condition of watchpoint ");
wp_sp->GetDescription (error_sp.get(), eDescriptionLevelBrief);
error_sp->Printf (": \"%s\"",
wp_sp->GetConditionText());
error_sp->EOL();
const char *err_str = error.AsCString("<Unknown Error>");
if (log)
log->Printf("Error evaluating condition: \"%s\"\n", err_str);
error_sp->PutCString (err_str);
error_sp->EOL();
error_sp->Flush();
// If the condition fails to be parsed or run, we should stop.
m_should_stop = true;
}
}
// If the condition says to stop, we run the callback to further decide whether to stop.
if (m_should_stop)
{
StoppointCallbackContext context (event_ptr, exe_ctx, false);
bool stop_requested = wp_sp->InvokeCallback (&context);
// Also make sure that the callback hasn't continued the target.
// If it did, when we'll set m_should_stop to false and get out of here.
if (HasTargetRunSinceMe ())
m_should_stop = false;
if (m_should_stop && !stop_requested)
{
// We have been vetoed by the callback mechanism.
m_should_stop = false;
}
}
// Finally, if we are going to stop, print out the new & old values:
if (m_should_stop)
{
wp_sp->CaptureWatchedValue(exe_ctx);
Debugger &debugger = exe_ctx.GetTargetRef().GetDebugger();
StreamSP output_sp = debugger.GetAsyncOutputStream ();
wp_sp->DumpSnapshots(output_sp.get());
output_sp->EOL();
output_sp->Flush();
}
}
else
{
Log * log_process(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
if (log_process)
log_process->Printf ("Process::%s could not find watchpoint id: %" PRId64 "...", __FUNCTION__, m_value);
}
if (log)
log->Printf ("Process::%s returning from action with m_should_stop: %d.", __FUNCTION__, m_should_stop);
m_should_stop_is_valid = true;
}
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
private:
bool m_should_stop;
bool m_should_stop_is_valid;
lldb::addr_t m_watch_hit_addr;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
};
//----------------------------------------------------------------------
// StopInfoUnixSignal
//----------------------------------------------------------------------
class StopInfoUnixSignal : public StopInfo
{
public:
StopInfoUnixSignal (Thread &thread, int signo, const char *description) :
StopInfo (thread, signo)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
SetDescription (description);
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
virtual ~StopInfoUnixSignal ()
{
}
virtual StopReason
GetStopReason () const
{
return eStopReasonSignal;
}
virtual bool
ShouldStopSynchronous (Event *event_ptr)
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
return thread_sp->GetProcess()->GetUnixSignals()->GetShouldStop(m_value);
return false;
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
virtual bool
ShouldStop (Event *event_ptr)
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
return thread_sp->GetProcess()->GetUnixSignals()->GetShouldStop(m_value);
return false;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
// If should stop returns false, check if we should notify of this event
virtual bool
Figure out the reply to "PlanExplainsStop" once when we stop and then use the cached value. This fixes problems, for instance, with the StepRange plans, where they know that they explained the stop because they were at their "run to here" breakpoint, then deleted that breakpoint, so when they got asked again, doh! I had done this for a couple of plans in an ad hoc fashion, this just formalizes it. Also add a "ResumeRequested" in Process so that the code in the completion handlers can tell the ShouldStop logic they want to resume rather than just directly resuming. That allows us to handle resuming in a more controlled fashion. Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when the target was immediately restarted. --This line, and those below , will be ignored-- M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py M include/lldb/Target/ThreadList.h M include/lldb/Target/ThreadPlanStepOut.h M include/lldb/Target/Thread.h M include/lldb/Target/ThreadPlanBase.h M include/lldb/Target/ThreadPlanStepThrough.h M include/lldb/Target/ThreadPlanStepInstruction.h M include/lldb/Target/ThreadPlanStepInRange.h M include/lldb/Target/ThreadPlanStepOverBreakpoint.h M include/lldb/Target/ThreadPlanStepUntil.h M include/lldb/Target/StopInfo.h M include/lldb/Target/Process.h M include/lldb/Target/ThreadPlanRunToAddress.h M include/lldb/Target/ThreadPlan.h M include/lldb/Target/ThreadPlanCallFunction.h M include/lldb/Target/ThreadPlanStepOverRange.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp M source/Target/StopInfo.cpp M source/Target/Process.cpp M source/Target/ThreadPlanRunToAddress.cpp M source/Target/ThreadPlan.cpp M source/Target/ThreadPlanCallFunction.cpp M source/Target/ThreadPlanStepOverRange.cpp M source/Target/ThreadList.cpp M source/Target/ThreadPlanStepOut.cpp M source/Target/Thread.cpp M source/Target/ThreadPlanBase.cpp M source/Target/ThreadPlanStepThrough.cpp M source/Target/ThreadPlanStepInstruction.cpp M source/Target/ThreadPlanStepInRange.cpp M source/Target/ThreadPlanStepOverBreakpoint.cpp M source/Target/ThreadPlanStepUntil.cpp M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme llvm-svn: 181381
2013-05-08 08:35:16 +08:00
DoShouldNotify (Event *event_ptr)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
bool should_notify = thread_sp->GetProcess()->GetUnixSignals()->GetShouldNotify(m_value);
if (should_notify)
{
StreamString strm;
strm.Printf ("thread %d received signal: %s",
thread_sp->GetIndexID(),
thread_sp->GetProcess()->GetUnixSignals()->GetSignalAsCString(m_value));
Process::ProcessEventData::AddRestartedReason(event_ptr, strm.GetData());
}
return should_notify;
}
return true;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
virtual void
WillResume (lldb::StateType resume_state)
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
if (thread_sp->GetProcess()->GetUnixSignals()->GetShouldSuppress(m_value) == false)
thread_sp->SetResumeSignal(m_value);
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
virtual const char *
GetDescription ()
{
if (m_description.empty())
{
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
{
StreamString strm;
const char *signal_name = thread_sp->GetProcess()->GetUnixSignals()->GetSignalAsCString(m_value);
if (signal_name)
strm.Printf("signal %s", signal_name);
else
strm.Printf("signal %" PRIi64, m_value);
m_description.swap (strm.GetString());
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
return m_description.c_str();
}
};
//----------------------------------------------------------------------
// StopInfoTrace
//----------------------------------------------------------------------
class StopInfoTrace : public StopInfo
{
public:
StopInfoTrace (Thread &thread) :
StopInfo (thread, LLDB_INVALID_UID)
{
}
virtual ~StopInfoTrace ()
{
}
virtual StopReason
GetStopReason () const
{
return eStopReasonTrace;
}
virtual const char *
GetDescription ()
{
if (m_description.empty())
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
return "trace";
else
return m_description.c_str();
}
};
//----------------------------------------------------------------------
// StopInfoException
//----------------------------------------------------------------------
class StopInfoException : public StopInfo
{
public:
StopInfoException (Thread &thread, const char *description) :
StopInfo (thread, LLDB_INVALID_UID)
{
if (description)
SetDescription (description);
}
virtual
~StopInfoException ()
{
}
virtual StopReason
GetStopReason () const
{
return eStopReasonException;
}
virtual const char *
GetDescription ()
{
if (m_description.empty())
return "exception";
else
return m_description.c_str();
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
};
//----------------------------------------------------------------------
// StopInfoThreadPlan
//----------------------------------------------------------------------
class StopInfoThreadPlan : public StopInfo
{
public:
StopInfoThreadPlan (ThreadPlanSP &plan_sp, ValueObjectSP &return_valobj_sp, ExpressionVariableSP &expression_variable_sp) :
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
StopInfo (plan_sp->GetThread(), LLDB_INVALID_UID),
m_plan_sp (plan_sp),
m_return_valobj_sp (return_valobj_sp),
m_expression_variable_sp (expression_variable_sp)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
}
virtual ~StopInfoThreadPlan ()
{
}
virtual StopReason
GetStopReason () const
{
return eStopReasonPlanComplete;
}
virtual const char *
GetDescription ()
{
if (m_description.empty())
{
StreamString strm;
m_plan_sp->GetDescription (&strm, eDescriptionLevelBrief);
m_description.swap (strm.GetString());
}
return m_description.c_str();
}
ValueObjectSP
GetReturnValueObject()
{
return m_return_valobj_sp;
}
ExpressionVariableSP
GetExpressionVariable()
{
return m_expression_variable_sp;
}
protected:
virtual bool
ShouldStop (Event *event_ptr)
{
if (m_plan_sp)
return m_plan_sp->ShouldStop(event_ptr);
else
return StopInfo::ShouldStop(event_ptr);
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
private:
ThreadPlanSP m_plan_sp;
ValueObjectSP m_return_valobj_sp;
ExpressionVariableSP m_expression_variable_sp;
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
};
class StopInfoExec : public StopInfo
{
public:
StopInfoExec (Thread &thread) :
StopInfo (thread, LLDB_INVALID_UID),
m_performed_action (false)
{
}
virtual
~StopInfoExec ()
{
}
virtual StopReason
GetStopReason () const
{
return eStopReasonExec;
}
virtual const char *
GetDescription ()
{
return "exec";
}
protected:
virtual void
PerformAction (Event *event_ptr)
{
// Only perform the action once
if (m_performed_action)
return;
m_performed_action = true;
ThreadSP thread_sp (m_thread_wp.lock());
if (thread_sp)
thread_sp->GetProcess()->DidExec();
}
bool m_performed_action;
};
} // namespace lldb_private
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
StopInfoSP
StopInfo::CreateStopReasonWithBreakpointSiteID (Thread &thread, break_id_t break_id)
{
return StopInfoSP (new StopInfoBreakpoint (thread, break_id));
}
StopInfoSP
StopInfo::CreateStopReasonWithBreakpointSiteID (Thread &thread, break_id_t break_id, bool should_stop)
{
return StopInfoSP (new StopInfoBreakpoint (thread, break_id, should_stop));
}
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
StopInfoSP
StopInfo::CreateStopReasonWithWatchpointID (Thread &thread, break_id_t watch_id, lldb::addr_t watch_hit_addr)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
return StopInfoSP (new StopInfoWatchpoint (thread, watch_id, watch_hit_addr));
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
StopInfoSP
StopInfo::CreateStopReasonWithSignal (Thread &thread, int signo, const char *description)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
return StopInfoSP (new StopInfoUnixSignal (thread, signo, description));
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
StopInfoSP
StopInfo::CreateStopReasonToTrace (Thread &thread)
{
return StopInfoSP (new StopInfoTrace (thread));
}
StopInfoSP
StopInfo::CreateStopReasonWithPlan (ThreadPlanSP &plan_sp,
ValueObjectSP return_valobj_sp,
ExpressionVariableSP expression_variable_sp)
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
{
return StopInfoSP (new StopInfoThreadPlan (plan_sp, return_valobj_sp, expression_variable_sp));
Abtracted the old "lldb_private::Thread::StopInfo" into an abtract class. This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo" that can completely describe any stop reason. It also provides a framework for doing intelligent things with the stop info at important times in the lifetime of the inferior. Examples include the signal stop info in StopInfoUnixSignal. It will check with the process to see that the current action is for the signal. These actions include wether to stop for the signal, wether the notify that the signal was hit, and wether to pass the signal along to the inferior process. The StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and this allows the stop info to determine if it should stop at the signal or continue the process. StopInfo subclasses must override the following functions: virtual lldb::StopReason GetStopReason () const = 0; virtual const char * GetDescription () = 0; StopInfo subclasses can override the following functions: // If the subclass returns "false", the inferior will resume. The default // version of this function returns "true" which means the default stop // info will stop the process. The breakpoint subclass will check if // the breakpoint wants us to stop by calling any installed callback on // the breakpoint, and also checking if the breakpoint is for the current // thread. Signals will check if they should stop based off of the // UnixSignal settings in the process. virtual bool ShouldStop (Event *event_ptr); // Sublasses can state if they want to notify the debugger when "ShouldStop" // returns false. This would be handy for breakpoints where you want to // log information and continue and is also used by the signal stop info // to notify that a signal was received (after it checks with the process // signal settings). virtual bool ShouldNotify (Event *event_ptr) { return false; } // Allow subclasses to do something intelligent right before we resume. // The signal class will figure out if the signal should be propagated // to the inferior process and pass that along to the debugger plug-ins. virtual void WillResume (lldb::StateType resume_state) { // By default, don't do anything } The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility folder and now doesn't polute the lldb_private::Thread class with platform specific code. llvm-svn: 110184
2010-08-04 09:40:35 +08:00
}
StopInfoSP
StopInfo::CreateStopReasonWithException (Thread &thread, const char *description)
{
return StopInfoSP (new StopInfoException (thread, description));
}
StopInfoSP
StopInfo::CreateStopReasonWithExec (Thread &thread)
{
return StopInfoSP (new StopInfoExec (thread));
}
ValueObjectSP
StopInfo::GetReturnValueObject(StopInfoSP &stop_info_sp)
{
if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonPlanComplete)
{
StopInfoThreadPlan *plan_stop_info = static_cast<StopInfoThreadPlan *>(stop_info_sp.get());
return plan_stop_info->GetReturnValueObject();
}
else
return ValueObjectSP();
}
ExpressionVariableSP
StopInfo::GetExpressionVariable(StopInfoSP &stop_info_sp)
{
if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonPlanComplete)
{
StopInfoThreadPlan *plan_stop_info = static_cast<StopInfoThreadPlan *>(stop_info_sp.get());
return plan_stop_info->GetExpressionVariable();
}
else
return ExpressionVariableSP();
}