llvm-project/llvm/lib/CodeGen/AsmPrinter/EHStreamer.cpp

691 lines
27 KiB
C++
Raw Normal View History

//===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing exception info into assembly files.
//
//===----------------------------------------------------------------------===//
#include "EHStreamer.h"
#include "llvm/CodeGen/AsmPrinter.h"
2009-08-20 05:55:33 +08:00
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
EHStreamer::~EHStreamer() {}
/// How many leading type ids two landing pads have in common.
unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
unsigned Count = 0;
for (; Count != MinSize; ++Count)
if (LIds[Count] != RIds[Count])
return Count;
return Count;
}
/// Compute the actions table and gather the first action index for each landing
/// pad site.
unsigned EHStreamer::
computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
SmallVectorImpl<ActionEntry> &Actions,
SmallVectorImpl<unsigned> &FirstActions) {
// The action table follows the call-site table in the LSDA. The individual
// records are of two types:
//
// * Catch clause
// * Exception specification
//
// The two record kinds have the same format, with only small differences.
// They are distinguished by the "switch value" field: Catch clauses
// (TypeInfos) have strictly positive switch values, and exception
// specifications (FilterIds) have strictly negative switch values. Value 0
// indicates a catch-all clause.
//
// Negative type IDs index into FilterIds. Positive type IDs index into
// TypeInfos. The value written for a positive type ID is just the type ID
// itself. For a negative type ID, however, the value written is the
// (negative) byte offset of the corresponding FilterIds entry. The byte
// offset is usually equal to the type ID (because the FilterIds entries are
// written using a variable width encoding, which outputs one byte per entry
// as long as the value written is not too large) but can differ. This kind
// of complication does not occur for positive type IDs because type infos are
// output using a fixed width encoding. FilterOffsets[i] holds the byte
// offset corresponding to FilterIds[i].
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
for (std::vector<unsigned>::const_iterator
I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
Offset -= getULEB128Size(*I);
}
FirstActions.reserve(LandingPads.size());
int FirstAction = 0;
unsigned SizeActions = 0;
2014-04-24 14:44:33 +08:00
const LandingPadInfo *PrevLPI = nullptr;
for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
const LandingPadInfo *LPI = *I;
const std::vector<int> &TypeIds = LPI->TypeIds;
unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
unsigned SizeSiteActions = 0;
if (NumShared < TypeIds.size()) {
unsigned SizeAction = 0;
unsigned PrevAction = (unsigned)-1;
if (NumShared) {
2010-04-05 04:10:41 +08:00
unsigned SizePrevIds = PrevLPI->TypeIds.size();
assert(Actions.size());
PrevAction = Actions.size() - 1;
SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
getSLEB128Size(Actions[PrevAction].ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
SizeAction += -Actions[PrevAction].NextAction;
PrevAction = Actions[PrevAction].Previous;
}
}
// Compute the actions.
for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
int TypeID = TypeIds[J];
assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID =
isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
SizeAction = SizeTypeID + getSLEB128Size(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
Actions.push_back(Action);
PrevAction = Actions.size() - 1;
}
// Record the first action of the landing pad site.
FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
} // else identical - re-use previous FirstAction
// Information used when created the call-site table. The action record
// field of the call site record is the offset of the first associated
// action record, relative to the start of the actions table. This value is
// biased by 1 (1 indicating the start of the actions table), and 0
// indicates that there are no actions.
FirstActions.push_back(FirstAction);
// Compute this sites contribution to size.
SizeActions += SizeSiteActions;
PrevLPI = LPI;
}
return SizeActions;
}
/// Return `true' if this is a call to a function marked `nounwind'. Return
/// `false' otherwise.
bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
assert(MI->isCall() && "This should be a call instruction!");
bool MarkedNoUnwind = false;
bool SawFunc = false;
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI->getOperand(I);
2010-03-31 14:09:04 +08:00
if (!MO.isGlobal()) continue;
const Function *F = dyn_cast<Function>(MO.getGlobal());
2014-04-24 14:44:33 +08:00
if (!F) continue;
2010-03-31 14:09:04 +08:00
if (SawFunc) {
// Be conservative. If we have more than one function operand for this
// call, then we can't make the assumption that it's the callee and
// not a parameter to the call.
//
2010-03-31 14:09:04 +08:00
// FIXME: Determine if there's a way to say that `F' is the callee or
// parameter.
MarkedNoUnwind = false;
break;
}
2010-03-31 14:09:04 +08:00
MarkedNoUnwind = F->doesNotThrow();
SawFunc = true;
}
return MarkedNoUnwind;
}
void EHStreamer::computePadMap(
const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
RangeMapType &PadMap) {
// Invokes and nounwind calls have entries in PadMap (due to being bracketed
// by try-range labels when lowered). Ordinary calls do not, so appropriate
// try-ranges for them need be deduced so we can put them in the LSDA.
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LandingPad = LandingPads[i];
for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
PadRange P = { i, j };
PadMap[BeginLabel] = P;
}
}
}
/// Compute the call-site table. The entry for an invoke has a try-range
/// containing the call, a non-zero landing pad, and an appropriate action. The
/// entry for an ordinary call has a try-range containing the call and zero for
/// the landing pad and the action. Calls marked 'nounwind' have no entry and
/// must not be contained in the try-range of any entry - they form gaps in the
/// table. Entries must be ordered by try-range address.
void EHStreamer::
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
const SmallVectorImpl<unsigned> &FirstActions) {
RangeMapType PadMap;
computePadMap(LandingPads, PadMap);
// The end label of the previous invoke or nounwind try-range.
2014-04-24 14:44:33 +08:00
MCSymbol *LastLabel = nullptr;
// Whether there is a potentially throwing instruction (currently this means
// an ordinary call) between the end of the previous try-range and now.
bool SawPotentiallyThrowing = false;
// Whether the last CallSite entry was for an invoke.
bool PreviousIsInvoke = false;
bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
// Visit all instructions in order of address.
for (const auto &MBB : *Asm->MF) {
for (const auto &MI : MBB) {
if (!MI.isEHLabel()) {
if (MI.isCall())
SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
continue;
}
// End of the previous try-range?
MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
if (BeginLabel == LastLabel)
SawPotentiallyThrowing = false;
// Beginning of a new try-range?
RangeMapType::const_iterator L = PadMap.find(BeginLabel);
if (L == PadMap.end())
// Nope, it was just some random label.
continue;
const PadRange &P = L->second;
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
"Inconsistent landing pad map!");
// For Dwarf exception handling (SjLj handling doesn't use this). If some
// instruction between the previous try-range and this one may throw,
// create a call-site entry with no landing pad for the region between the
// try-ranges.
if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
2014-04-24 14:44:33 +08:00
CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
CallSites.push_back(Site);
PreviousIsInvoke = false;
}
LastLabel = LandingPad->EndLabels[P.RangeIndex];
assert(BeginLabel && LastLabel && "Invalid landing pad!");
2010-03-31 14:09:04 +08:00
if (!LandingPad->LandingPadLabel) {
// Create a gap.
PreviousIsInvoke = false;
} else {
// This try-range is for an invoke.
CallSiteEntry Site = {
BeginLabel,
LastLabel,
LandingPad,
FirstActions[P.PadIndex]
};
// Try to merge with the previous call-site. SJLJ doesn't do this
if (PreviousIsInvoke && !IsSJLJ) {
CallSiteEntry &Prev = CallSites.back();
if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
// Extend the range of the previous entry.
Prev.EndLabel = Site.EndLabel;
continue;
}
}
// Otherwise, create a new call-site.
if (!IsSJLJ)
CallSites.push_back(Site);
else {
// SjLj EH must maintain the call sites in the order assigned
// to them by the SjLjPrepare pass.
unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
if (CallSites.size() < SiteNo)
CallSites.resize(SiteNo);
CallSites[SiteNo - 1] = Site;
}
PreviousIsInvoke = true;
}
}
}
// If some instruction between the previous try-range and the end of the
// function may throw, create a call-site entry with no landing pad for the
// region following the try-range.
if (SawPotentiallyThrowing && !IsSJLJ) {
2014-04-24 14:44:33 +08:00
CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
CallSites.push_back(Site);
}
}
/// Emit landing pads and actions.
///
/// The general organization of the table is complex, but the basic concepts are
/// easy. First there is a header which describes the location and organization
/// of the three components that follow.
///
/// 1. The landing pad site information describes the range of code covered by
/// the try. In our case it's an accumulation of the ranges covered by the
/// invokes in the try. There is also a reference to the landing pad that
/// handles the exception once processed. Finally an index into the actions
/// table.
/// 2. The action table, in our case, is composed of pairs of type IDs and next
/// action offset. Starting with the action index from the landing pad
/// site, each type ID is checked for a match to the current exception. If
/// it matches then the exception and type id are passed on to the landing
/// pad. Otherwise the next action is looked up. This chain is terminated
/// with a next action of zero. If no type id is found then the frame is
/// unwound and handling continues.
/// 3. Type ID table contains references to all the C++ typeinfo for all
/// catches in the function. This tables is reverse indexed base 1.
void EHStreamer::emitExceptionTable() {
const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
// Sort the landing pads in order of their type ids. This is used to fold
// duplicate actions.
SmallVector<const LandingPadInfo *, 64> LandingPads;
LandingPads.reserve(PadInfos.size());
for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
LandingPads.push_back(&PadInfos[i]);
// Order landing pads lexicographically by type id.
std::sort(LandingPads.begin(), LandingPads.end(),
[](const LandingPadInfo *L,
const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
// Compute the actions table and gather the first action index for each
// landing pad site.
SmallVector<ActionEntry, 32> Actions;
SmallVector<unsigned, 64> FirstActions;
unsigned SizeActions =
computeActionsTable(LandingPads, Actions, FirstActions);
// Compute the call-site table.
SmallVector<CallSiteEntry, 64> CallSites;
computeCallSiteTable(CallSites, LandingPads, FirstActions);
// Final tallies.
// Call sites.
bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
unsigned CallSiteTableLength;
if (IsSJLJ)
CallSiteTableLength = 0;
2010-04-05 04:10:41 +08:00
else {
unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4
unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
CallSiteTableLength =
2010-04-05 04:10:41 +08:00
CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
}
for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
CallSiteTableLength += getULEB128Size(CallSites[i].Action);
if (IsSJLJ)
CallSiteTableLength += getULEB128Size(i);
}
// Type infos.
MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
unsigned TTypeEncoding;
unsigned TypeFormatSize;
if (!HaveTTData) {
// For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
// that we're omitting that bit.
TTypeEncoding = dwarf::DW_EH_PE_omit;
// dwarf::DW_EH_PE_absptr
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. llvm-svn: 167222
2012-11-01 17:14:31 +08:00
TypeFormatSize = Asm->getDataLayout().getPointerSize();
} else {
// Okay, we have actual filters or typeinfos to emit. As such, we need to
// pick a type encoding for them. We're about to emit a list of pointers to
// typeinfo objects at the end of the LSDA. However, unless we're in static
// mode, this reference will require a relocation by the dynamic linker.
//
// Because of this, we have a couple of options:
//
// 1) If we are in -static mode, we can always use an absolute reference
// from the LSDA, because the static linker will resolve it.
//
// 2) Otherwise, if the LSDA section is writable, we can output the direct
// reference to the typeinfo and allow the dynamic linker to relocate
// it. Since it is in a writable section, the dynamic linker won't
// have a problem.
//
// 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
// we need to use some form of indirection. For example, on Darwin,
// we can output a statically-relocatable reference to a dyld stub. The
// offset to the stub is constant, but the contents are in a section
// that is updated by the dynamic linker. This is easy enough, but we
// need to tell the personality function of the unwinder to indirect
// through the dyld stub.
//
// FIXME: When (3) is actually implemented, we'll have to emit the stubs
// somewhere. This predicate should be moved to a shared location that is
// in target-independent code.
//
TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
}
// Begin the exception table.
// Sometimes we want not to emit the data into separate section (e.g. ARM
// EHABI). In this case LSDASection will be NULL.
if (LSDASection)
Asm->OutStreamer->SwitchSection(LSDASection);
Asm->EmitAlignment(2);
// Emit the LSDA.
MCSymbol *GCCETSym =
Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
Twine(Asm->getFunctionNumber()));
Asm->OutStreamer->EmitLabel(GCCETSym);
Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym());
// Emit the LSDA header.
Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
Asm->EmitEncodingByte(TTypeEncoding, "@TType");
// The type infos need to be aligned. GCC does this by inserting padding just
// before the type infos. However, this changes the size of the exception
// table, so you need to take this into account when you output the exception
// table size. However, the size is output using a variable length encoding.
// So by increasing the size by inserting padding, you may increase the number
// of bytes used for writing the size. If it increases, say by one byte, then
// you now need to output one less byte of padding to get the type infos
// aligned. However this decreases the size of the exception table. This
// changes the value you have to output for the exception table size. Due to
// the variable length encoding, the number of bytes used for writing the
// length may decrease. If so, you then have to increase the amount of
// padding. And so on. If you look carefully at the GCC code you will see that
// it indeed does this in a loop, going on and on until the values stabilize.
// We chose another solution: don't output padding inside the table like GCC
// does, instead output it before the table.
unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
unsigned TTypeBaseOffset =
sizeof(int8_t) + // Call site format
CallSiteTableLengthSize + // Call site table length size
CallSiteTableLength + // Call site table length
SizeActions + // Actions size
SizeTypes;
unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
unsigned TotalSize =
sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
(HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size
TTypeBaseOffset; // TType base offset
unsigned SizeAlign = (4 - TotalSize) & 3;
if (HaveTTData) {
2010-02-27 05:31:01 +08:00
// Account for any extra padding that will be added to the call site table
// length.
Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
SizeAlign = 0;
}
bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
// SjLj Exception handling
if (IsSJLJ) {
Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
// Add extra padding if it wasn't added to the TType base offset.
Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
// Emit the landing pad site information.
unsigned idx = 0;
for (SmallVectorImpl<CallSiteEntry>::const_iterator
I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
const CallSiteEntry &S = *I;
// Offset of the landing pad, counted in 16-byte bundles relative to the
// @LPStart address.
if (VerboseAsm) {
Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
}
Asm->EmitULEB128(idx);
// Offset of the first associated action record, relative to the start of
// the action table. This value is biased by 1 (1 indicates the start of
// the action table), and 0 indicates that there are no actions.
if (VerboseAsm) {
if (S.Action == 0)
Asm->OutStreamer->AddComment(" Action: cleanup");
else
Asm->OutStreamer->AddComment(" Action: " +
Twine((S.Action - 1) / 2 + 1));
}
Asm->EmitULEB128(S.Action);
}
} else {
// Itanium LSDA exception handling
// The call-site table is a list of all call sites that may throw an
// exception (including C++ 'throw' statements) in the procedure
// fragment. It immediately follows the LSDA header. Each entry indicates,
// for a given call, the first corresponding action record and corresponding
// landing pad.
//
// The table begins with the number of bytes, stored as an LEB128
// compressed, unsigned integer. The records immediately follow the record
// count. They are sorted in increasing call-site address. Each record
// indicates:
//
// * The position of the call-site.
// * The position of the landing pad.
// * The first action record for that call site.
//
// A missing entry in the call-site table indicates that a call is not
// supposed to throw.
// Emit the landing pad call site table.
Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
// Add extra padding if it wasn't added to the TType base offset.
Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
unsigned Entry = 0;
for (SmallVectorImpl<CallSiteEntry>::const_iterator
I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
const CallSiteEntry &S = *I;
MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
MCSymbol *BeginLabel = S.BeginLabel;
2014-04-24 14:44:33 +08:00
if (!BeginLabel)
BeginLabel = EHFuncBeginSym;
MCSymbol *EndLabel = S.EndLabel;
2014-04-24 14:44:33 +08:00
if (!EndLabel)
EndLabel = Asm->getFunctionEnd();
// Offset of the call site relative to the previous call site, counted in
// number of 16-byte bundles. The first call site is counted relative to
// the start of the procedure fragment.
if (VerboseAsm)
Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
if (VerboseAsm)
Asm->OutStreamer->AddComment(Twine(" Call between ") +
BeginLabel->getName() + " and " +
EndLabel->getName());
Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
// Offset of the landing pad, counted in 16-byte bundles relative to the
// @LPStart address.
if (!S.LPad) {
if (VerboseAsm)
Asm->OutStreamer->AddComment(" has no landing pad");
Asm->OutStreamer->EmitIntValue(0, 4/*size*/);
} else {
if (VerboseAsm)
Asm->OutStreamer->AddComment(Twine(" jumps to ") +
S.LPad->LandingPadLabel->getName());
Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4);
}
// Offset of the first associated action record, relative to the start of
// the action table. This value is biased by 1 (1 indicates the start of
// the action table), and 0 indicates that there are no actions.
if (VerboseAsm) {
if (S.Action == 0)
Asm->OutStreamer->AddComment(" On action: cleanup");
else
Asm->OutStreamer->AddComment(" On action: " +
Twine((S.Action - 1) / 2 + 1));
}
Asm->EmitULEB128(S.Action);
}
}
// Emit the Action Table.
int Entry = 0;
for (SmallVectorImpl<ActionEntry>::const_iterator
I = Actions.begin(), E = Actions.end(); I != E; ++I) {
const ActionEntry &Action = *I;
if (VerboseAsm) {
// Emit comments that decode the action table.
Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
}
// Type Filter
//
// Used by the runtime to match the type of the thrown exception to the
// type of the catch clauses or the types in the exception specification.
if (VerboseAsm) {
if (Action.ValueForTypeID > 0)
Asm->OutStreamer->AddComment(" Catch TypeInfo " +
Twine(Action.ValueForTypeID));
else if (Action.ValueForTypeID < 0)
Asm->OutStreamer->AddComment(" Filter TypeInfo " +
Twine(Action.ValueForTypeID));
else
Asm->OutStreamer->AddComment(" Cleanup");
}
Asm->EmitSLEB128(Action.ValueForTypeID);
// Action Record
//
// Self-relative signed displacement in bytes of the next action record,
// or 0 if there is no next action record.
if (VerboseAsm) {
if (Action.NextAction == 0) {
Asm->OutStreamer->AddComment(" No further actions");
} else {
unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
Asm->OutStreamer->AddComment(" Continue to action "+Twine(NextAction));
}
}
Asm->EmitSLEB128(Action.NextAction);
}
emitTypeInfos(TTypeEncoding);
Asm->EmitAlignment(2);
}
void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
int Entry = 0;
// Emit the Catch TypeInfos.
if (VerboseAsm && !TypeInfos.empty()) {
Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
Asm->OutStreamer->AddBlankLine();
Entry = TypeInfos.size();
}
for (std::vector<const GlobalValue *>::const_reverse_iterator
I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
const GlobalValue *GV = *I;
if (VerboseAsm)
Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
Asm->EmitTTypeReference(GV, TTypeEncoding);
}
// Emit the Exception Specifications.
if (VerboseAsm && !FilterIds.empty()) {
Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
Asm->OutStreamer->AddBlankLine();
Entry = 0;
}
for (std::vector<unsigned>::const_iterator
I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
unsigned TypeID = *I;
if (VerboseAsm) {
--Entry;
if (isFilterEHSelector(TypeID))
Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
}
Asm->EmitULEB128(TypeID);
}
}