2015-02-02 00:15:07 +08:00
|
|
|
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
|
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2015-02-02 00:15:07 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains the X86 implementation of TargetFrameLowering class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "X86FrameLowering.h"
|
|
|
|
#include "X86InstrBuilder.h"
|
|
|
|
#include "X86InstrInfo.h"
|
|
|
|
#include "X86MachineFunctionInfo.h"
|
|
|
|
#include "X86Subtarget.h"
|
|
|
|
#include "X86TargetMachine.h"
|
|
|
|
#include "llvm/ADT/SmallSet.h"
|
2019-09-09 22:59:34 +08:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2015-12-03 07:06:39 +08:00
|
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
2015-02-02 00:15:07 +08:00
|
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
2015-09-09 06:44:41 +08:00
|
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
2015-02-02 00:15:07 +08:00
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
|
|
#include "llvm/MC/MCSymbol.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
2017-06-06 19:49:48 +08:00
|
|
|
#include "llvm/Target/TargetOptions.h"
|
2015-02-02 00:15:07 +08:00
|
|
|
#include <cstdlib>
|
|
|
|
|
2019-09-09 22:59:34 +08:00
|
|
|
#define DEBUG_TYPE "x86-fl"
|
|
|
|
|
|
|
|
STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
|
|
|
|
STATISTIC(NumFrameExtraProbe,
|
|
|
|
"Number of extra stack probes generated in prologue");
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
2015-06-18 05:50:02 +08:00
|
|
|
X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
|
[Alignment][NFC] Use Align for TargetFrameLowering/Subtarget
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68993
llvm-svn: 375084
2019-10-17 15:49:39 +08:00
|
|
|
MaybeAlign StackAlignOverride)
|
|
|
|
: TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
|
2015-06-18 05:50:02 +08:00
|
|
|
STI.is64Bit() ? -8 : -4),
|
2015-06-19 04:32:02 +08:00
|
|
|
STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
|
2015-06-18 05:50:02 +08:00
|
|
|
// Cache a bunch of frame-related predicates for this subtarget.
|
2015-06-19 04:32:02 +08:00
|
|
|
SlotSize = TRI->getSlotSize();
|
2015-06-18 05:50:02 +08:00
|
|
|
Is64Bit = STI.is64Bit();
|
|
|
|
IsLP64 = STI.isTarget64BitLP64();
|
|
|
|
// standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
|
|
|
|
Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
|
2015-06-19 04:32:02 +08:00
|
|
|
StackPtr = TRI->getStackRegister();
|
2015-06-18 05:50:02 +08:00
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
return !MF.getFrameInfo().hasVarSizedObjects() &&
|
2015-02-02 00:56:04 +08:00
|
|
|
!MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
|
|
|
|
/// call frame pseudos can be simplified. Having a FP, as in the default
|
|
|
|
/// implementation, is not sufficient here since we can't always use it.
|
|
|
|
/// Use a more nuanced condition.
|
|
|
|
bool
|
|
|
|
X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
|
|
|
|
return hasReservedCallFrame(MF) ||
|
2015-06-19 04:32:02 +08:00
|
|
|
(hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
|
|
|
|
TRI->hasBasePointer(MF);
|
2015-02-02 00:56:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// needsFrameIndexResolution - Do we need to perform FI resolution for
|
|
|
|
// this function. Normally, this is required only when the function
|
|
|
|
// has any stack objects. However, FI resolution actually has another job,
|
2018-07-31 03:41:25 +08:00
|
|
|
// not apparent from the title - it resolves callframesetup/destroy
|
2015-02-02 00:56:04 +08:00
|
|
|
// that were not simplified earlier.
|
|
|
|
// So, this is required for x86 functions that have push sequences even
|
|
|
|
// when there are no stack objects.
|
|
|
|
bool
|
|
|
|
X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
return MF.getFrameInfo().hasStackObjects() ||
|
2015-02-02 00:56:04 +08:00
|
|
|
MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated frame
|
|
|
|
/// pointer register. This is true if the function has variable sized allocas
|
|
|
|
/// or if frame pointer elimination is disabled.
|
|
|
|
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
|
2015-06-19 04:32:02 +08:00
|
|
|
TRI->needsStackRealignment(MF) ||
|
2016-07-29 02:40:00 +08:00
|
|
|
MFI.hasVarSizedObjects() ||
|
|
|
|
MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
|
2015-02-02 00:15:07 +08:00
|
|
|
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
|
2016-12-02 03:32:15 +08:00
|
|
|
MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
|
2016-07-29 02:40:00 +08:00
|
|
|
MFI.hasStackMap() || MFI.hasPatchPoint() ||
|
|
|
|
MFI.hasCopyImplyingStackAdjustment());
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2019-11-08 00:48:35 +08:00
|
|
|
static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
|
2015-02-02 00:15:07 +08:00
|
|
|
if (IsLP64) {
|
|
|
|
if (isInt<8>(Imm))
|
|
|
|
return X86::SUB64ri8;
|
|
|
|
return X86::SUB64ri32;
|
|
|
|
} else {
|
|
|
|
if (isInt<8>(Imm))
|
|
|
|
return X86::SUB32ri8;
|
|
|
|
return X86::SUB32ri;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-08 00:48:35 +08:00
|
|
|
static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
|
2015-02-02 00:15:07 +08:00
|
|
|
if (IsLP64) {
|
|
|
|
if (isInt<8>(Imm))
|
|
|
|
return X86::ADD64ri8;
|
|
|
|
return X86::ADD64ri32;
|
|
|
|
} else {
|
|
|
|
if (isInt<8>(Imm))
|
|
|
|
return X86::ADD32ri8;
|
|
|
|
return X86::ADD32ri;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-08 00:48:35 +08:00
|
|
|
static unsigned getSUBrrOpcode(bool IsLP64) {
|
|
|
|
return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2019-11-08 00:48:35 +08:00
|
|
|
static unsigned getADDrrOpcode(bool IsLP64) {
|
|
|
|
return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
|
|
|
|
if (IsLP64) {
|
|
|
|
if (isInt<8>(Imm))
|
|
|
|
return X86::AND64ri8;
|
|
|
|
return X86::AND64ri32;
|
|
|
|
}
|
|
|
|
if (isInt<8>(Imm))
|
|
|
|
return X86::AND32ri8;
|
|
|
|
return X86::AND32ri;
|
|
|
|
}
|
|
|
|
|
2019-11-08 00:48:35 +08:00
|
|
|
static unsigned getLEArOpcode(bool IsLP64) {
|
2015-02-02 00:15:07 +08:00
|
|
|
return IsLP64 ? X86::LEA64r : X86::LEA32r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
|
|
|
|
/// when it reaches the "return" instruction. We can then pop a stack object
|
|
|
|
/// to this register without worry about clobbering it.
|
|
|
|
static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &MBBI,
|
2015-11-24 06:17:44 +08:00
|
|
|
const X86RegisterInfo *TRI,
|
2015-02-02 00:15:07 +08:00
|
|
|
bool Is64Bit) {
|
|
|
|
const MachineFunction *MF = MBB.getParent();
|
2017-12-16 06:22:58 +08:00
|
|
|
if (MF->callsEHReturn())
|
2015-02-02 00:15:07 +08:00
|
|
|
return 0;
|
|
|
|
|
2015-11-24 06:17:44 +08:00
|
|
|
const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2016-08-13 09:12:49 +08:00
|
|
|
if (MBBI == MBB.end())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
switch (MBBI->getOpcode()) {
|
2015-02-02 00:15:07 +08:00
|
|
|
default: return 0;
|
XRay: Add entry and exit sleds
Summary:
In this patch we implement the following parts of XRay:
- Supporting a function attribute named 'function-instrument' which currently only supports 'xray-always'. We should be able to use this attribute for other instrumentation approaches.
- Supporting a function attribute named 'xray-instruction-threshold' used to determine whether a function is instrumented with a minimum number of instructions (IR instruction counts).
- X86-specific nop sleds as described in the white paper.
- A machine function pass that adds the different instrumentation marker instructions at a very late stage.
- A way of identifying which return opcode is considered "normal" for each architecture.
There are some caveats here:
1) We don't handle PATCHABLE_RET in platforms other than x86_64 yet -- this means if IR used PATCHABLE_RET directly instead of a normal ret, instruction lowering for that platform might do the wrong thing. We think this should be handled at instruction selection time to by default be unpacked for platforms where XRay is not availble yet.
2) The generated section for X86 is different from what is described from the white paper for the sole reason that LLVM allows us to do this neatly. We're taking the opportunity to deviate from the white paper from this perspective to allow us to get richer information from the runtime library.
Reviewers: sanjoy, eugenis, kcc, pcc, echristo, rnk
Subscribers: niravd, majnemer, atrick, rnk, emaste, bmakam, mcrosier, mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D19904
llvm-svn: 275367
2016-07-14 12:06:33 +08:00
|
|
|
case TargetOpcode::PATCHABLE_RET:
|
2016-03-05 06:56:17 +08:00
|
|
|
case X86::RET:
|
2015-02-02 00:15:07 +08:00
|
|
|
case X86::RETL:
|
|
|
|
case X86::RETQ:
|
|
|
|
case X86::RETIL:
|
|
|
|
case X86::RETIQ:
|
|
|
|
case X86::TCRETURNdi:
|
|
|
|
case X86::TCRETURNri:
|
|
|
|
case X86::TCRETURNmi:
|
|
|
|
case X86::TCRETURNdi64:
|
|
|
|
case X86::TCRETURNri64:
|
|
|
|
case X86::TCRETURNmi64:
|
|
|
|
case X86::EH_RETURN:
|
|
|
|
case X86::EH_RETURN64: {
|
|
|
|
SmallSet<uint16_t, 8> Uses;
|
|
|
|
for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
|
|
|
|
MachineOperand &MO = MBBI->getOperand(i);
|
|
|
|
if (!MO.isReg() || MO.isDef())
|
|
|
|
continue;
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register Reg = MO.getReg();
|
2015-02-02 00:15:07 +08:00
|
|
|
if (!Reg)
|
|
|
|
continue;
|
2015-06-19 04:32:02 +08:00
|
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
|
2015-02-02 00:15:07 +08:00
|
|
|
Uses.insert(*AI);
|
|
|
|
}
|
|
|
|
|
2015-11-24 06:17:44 +08:00
|
|
|
for (auto CS : AvailableRegs)
|
2019-01-15 09:24:18 +08:00
|
|
|
if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
|
|
|
|
CS != X86::ESP)
|
2015-11-24 06:17:44 +08:00
|
|
|
return CS;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-02-17 08:17:33 +08:00
|
|
|
static bool isEAXLiveIn(MachineBasicBlock &MBB) {
|
|
|
|
for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
|
|
|
|
unsigned Reg = RegMask.PhysReg;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
|
|
|
|
Reg == X86::AH || Reg == X86::AL)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-12-02 09:22:54 +08:00
|
|
|
/// Check if the flags need to be preserved before the terminators.
|
|
|
|
/// This would be the case, if the eflags is live-in of the region
|
|
|
|
/// composed by the terminators or live-out of that region, without
|
|
|
|
/// being defined by a terminator.
|
|
|
|
static bool
|
|
|
|
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
|
2015-06-19 04:22:12 +08:00
|
|
|
for (const MachineInstr &MI : MBB.terminators()) {
|
2015-12-02 10:07:00 +08:00
|
|
|
bool BreakNext = false;
|
2015-06-19 04:22:12 +08:00
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
|
|
if (!MO.isReg())
|
|
|
|
continue;
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register Reg = MO.getReg();
|
2015-06-19 04:22:12 +08:00
|
|
|
if (Reg != X86::EFLAGS)
|
|
|
|
continue;
|
|
|
|
|
2015-12-02 09:22:54 +08:00
|
|
|
// This terminator needs an eflags that is not defined
|
|
|
|
// by a previous another terminator:
|
|
|
|
// EFLAGS is live-in of the region composed by the terminators.
|
2015-06-19 04:22:12 +08:00
|
|
|
if (!MO.isDef())
|
|
|
|
return true;
|
2015-12-02 09:22:54 +08:00
|
|
|
// This terminator defines the eflags, i.e., we don't need to preserve it.
|
2015-12-02 10:07:00 +08:00
|
|
|
// However, we still need to check this specific terminator does not
|
|
|
|
// read a live-in value.
|
|
|
|
BreakNext = true;
|
2015-06-19 04:22:12 +08:00
|
|
|
}
|
2015-12-02 10:07:00 +08:00
|
|
|
// We found a definition of the eflags, no need to preserve them.
|
|
|
|
if (BreakNext)
|
|
|
|
return false;
|
2015-06-19 04:22:12 +08:00
|
|
|
}
|
2015-12-02 09:22:54 +08:00
|
|
|
|
|
|
|
// None of the terminators use or define the eflags.
|
|
|
|
// Check if they are live-out, that would imply we need to preserve them.
|
|
|
|
for (const MachineBasicBlock *Succ : MBB.successors())
|
|
|
|
if (Succ->isLiveIn(X86::EFLAGS))
|
|
|
|
return true;
|
|
|
|
|
2015-06-19 04:22:12 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
|
|
|
|
/// stack pointer by a constant value.
|
2015-05-23 02:10:47 +08:00
|
|
|
void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &MBBI,
|
2018-02-15 01:35:52 +08:00
|
|
|
const DebugLoc &DL,
|
2015-06-19 04:22:12 +08:00
|
|
|
int64_t NumBytes, bool InEpilogue) const {
|
2015-02-02 00:15:07 +08:00
|
|
|
bool isSub = NumBytes < 0;
|
|
|
|
uint64_t Offset = isSub ? -NumBytes : NumBytes;
|
2017-03-18 04:25:49 +08:00
|
|
|
MachineInstr::MIFlag Flag =
|
|
|
|
isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
uint64_t Chunk = (1LL << 31) - 1;
|
|
|
|
|
2019-09-09 22:59:34 +08:00
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
|
|
|
const X86TargetLowering &TLI = *STI.getTargetLowering();
|
|
|
|
const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
|
|
|
|
|
|
|
|
// It's ok to not take into account large chunks when probing, as the
|
|
|
|
// allocation is split in smaller chunks anyway.
|
|
|
|
if (EmitInlineStackProbe && !InEpilogue) {
|
|
|
|
|
|
|
|
// stack probing may involve looping, and control flow generations is
|
|
|
|
// disallowed at this point. Rely to later processing through
|
|
|
|
// `inlineStackProbe`.
|
|
|
|
MachineInstr *Stub = emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
|
|
|
|
|
|
|
|
// Encode the static offset as a metadata attached to the stub.
|
|
|
|
LLVMContext &Context = MF.getFunction().getContext();
|
|
|
|
MachineInstrBuilder(MF, Stub).addMetadata(
|
|
|
|
MDTuple::get(Context, {ConstantAsMetadata::get(ConstantInt::get(
|
|
|
|
IntegerType::get(Context, 64), Offset))}));
|
|
|
|
return;
|
|
|
|
} else if (Offset > Chunk) {
|
2017-03-18 04:25:49 +08:00
|
|
|
// Rather than emit a long series of instructions for large offsets,
|
|
|
|
// load the offset into a register and do one sub/add
|
|
|
|
unsigned Reg = 0;
|
|
|
|
unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2017-03-18 04:25:49 +08:00
|
|
|
if (isSub && !isEAXLiveIn(MBB))
|
|
|
|
Reg = Rax;
|
|
|
|
else
|
|
|
|
Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
|
|
|
|
|
|
|
|
unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
|
|
|
|
unsigned AddSubRROpc =
|
|
|
|
isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
|
|
|
|
if (Reg) {
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
|
|
|
|
.addImm(Offset)
|
|
|
|
.setMIFlag(Flag);
|
|
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addReg(Reg);
|
|
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
|
|
return;
|
|
|
|
} else if (Offset > 8 * Chunk) {
|
|
|
|
// If we would need more than 8 add or sub instructions (a >16GB stack
|
|
|
|
// frame), it's worth spilling RAX to materialize this immediate.
|
|
|
|
// pushq %rax
|
|
|
|
// movabsq +-$Offset+-SlotSize, %rax
|
|
|
|
// addq %rsp, %rax
|
|
|
|
// xchg %rax, (%rsp)
|
|
|
|
// movq (%rsp), %rsp
|
|
|
|
assert(Is64Bit && "can't have 32-bit 16GB stack frame");
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
|
|
|
|
.addReg(Rax, RegState::Kill)
|
|
|
|
.setMIFlag(Flag);
|
|
|
|
// Subtract is not commutative, so negate the offset and always use add.
|
|
|
|
// Subtract 8 less and add 8 more to account for the PUSH we just did.
|
|
|
|
if (isSub)
|
|
|
|
Offset = -(Offset - SlotSize);
|
2015-02-02 00:15:07 +08:00
|
|
|
else
|
2017-03-18 04:25:49 +08:00
|
|
|
Offset = Offset + SlotSize;
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
|
|
|
|
.addImm(Offset)
|
|
|
|
.setMIFlag(Flag);
|
|
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
|
|
|
|
.addReg(Rax)
|
|
|
|
.addReg(StackPtr);
|
|
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
|
|
// Exchange the new SP in RAX with the top of the stack.
|
|
|
|
addRegOffset(
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
|
|
|
|
StackPtr, false, 0);
|
|
|
|
// Load new SP from the top of the stack into RSP.
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
|
|
|
|
StackPtr, false, 0);
|
|
|
|
return;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2017-03-18 04:25:49 +08:00
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2017-03-18 04:25:49 +08:00
|
|
|
while (Offset) {
|
2015-02-24 08:11:32 +08:00
|
|
|
uint64_t ThisVal = std::min(Offset, Chunk);
|
2017-03-18 04:25:49 +08:00
|
|
|
if (ThisVal == SlotSize) {
|
|
|
|
// Use push / pop for slot sized adjustments as a size optimization. We
|
|
|
|
// need to find a dead register when using pop.
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned Reg = isSub
|
2015-06-19 02:03:25 +08:00
|
|
|
? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
|
2015-06-19 04:32:02 +08:00
|
|
|
: findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
|
2015-02-02 00:15:07 +08:00
|
|
|
if (Reg) {
|
2015-06-19 04:22:12 +08:00
|
|
|
unsigned Opc = isSub
|
2015-06-19 02:03:25 +08:00
|
|
|
? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
|
|
|
|
: (Is64Bit ? X86::POP64r : X86::POP32r);
|
2017-03-18 04:25:49 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc))
|
|
|
|
.addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
|
|
|
|
.setMIFlag(Flag);
|
2015-02-02 00:15:07 +08:00
|
|
|
Offset -= ThisVal;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-18 04:25:49 +08:00
|
|
|
BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
|
|
|
|
.setMIFlag(Flag);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
Offset -= ThisVal;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-19 04:22:12 +08:00
|
|
|
MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
|
2016-06-12 23:39:02 +08:00
|
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
|
2015-06-19 04:22:12 +08:00
|
|
|
assert(Offset != 0 && "zero offset stack adjustment requested");
|
|
|
|
|
|
|
|
// On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
|
|
|
|
// is tricky.
|
|
|
|
bool UseLEA;
|
|
|
|
if (!InEpilogue) {
|
2015-12-02 03:49:31 +08:00
|
|
|
// Check if inserting the prologue at the beginning
|
|
|
|
// of MBB would require to use LEA operations.
|
2015-12-02 09:22:54 +08:00
|
|
|
// We need to use LEA operations if EFLAGS is live in, because
|
|
|
|
// it means an instruction will read it before it gets defined.
|
|
|
|
UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
|
2015-06-19 04:22:12 +08:00
|
|
|
} else {
|
|
|
|
// If we can use LEA for SP but we shouldn't, check that none
|
|
|
|
// of the terminators uses the eflags. Otherwise we will insert
|
|
|
|
// a ADD that will redefine the eflags and break the condition.
|
|
|
|
// Alternatively, we could move the ADD, but this may not be possible
|
|
|
|
// and is an optimization anyway.
|
|
|
|
UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
|
|
|
|
if (UseLEA && !STI.useLeaForSP())
|
2015-12-02 09:22:54 +08:00
|
|
|
UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
|
2015-06-19 04:22:12 +08:00
|
|
|
// If that assert breaks, that means we do not do the right thing
|
|
|
|
// in canUseAsEpilogue.
|
2015-12-02 09:22:54 +08:00
|
|
|
assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
|
2015-06-19 04:22:12 +08:00
|
|
|
"We shouldn't have allowed this insertion point");
|
|
|
|
}
|
|
|
|
|
|
|
|
MachineInstrBuilder MI;
|
|
|
|
if (UseLEA) {
|
|
|
|
MI = addRegOffset(BuildMI(MBB, MBBI, DL,
|
|
|
|
TII.get(getLEArOpcode(Uses64BitFramePtr)),
|
|
|
|
StackPtr),
|
|
|
|
StackPtr, false, Offset);
|
|
|
|
} else {
|
|
|
|
bool IsSub = Offset < 0;
|
|
|
|
uint64_t AbsOffset = IsSub ? -Offset : Offset;
|
2019-09-09 22:59:34 +08:00
|
|
|
const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
|
|
|
|
: getADDriOpcode(Uses64BitFramePtr, AbsOffset);
|
2015-06-19 04:22:12 +08:00
|
|
|
MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addImm(AbsOffset);
|
|
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
|
|
}
|
|
|
|
return MI;
|
|
|
|
}
|
|
|
|
|
2015-05-23 02:10:47 +08:00
|
|
|
int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &MBBI,
|
2015-06-18 05:50:02 +08:00
|
|
|
bool doMergeWithPrevious) const {
|
2015-02-02 00:15:07 +08:00
|
|
|
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
|
|
|
|
(!doMergeWithPrevious && MBBI == MBB.end()))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
|
2018-04-24 18:32:08 +08:00
|
|
|
|
2017-01-04 20:08:35 +08:00
|
|
|
PI = skipDebugInstructionsBackward(PI, MBB.begin());
|
2018-04-24 18:32:08 +08:00
|
|
|
// It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
|
|
|
|
// instruction, and that there are no DBG_VALUE or other instructions between
|
|
|
|
// ADD/SUB/LEA and its corresponding CFI instruction.
|
|
|
|
/* TODO: Add support for the case where there are multiple CFI instructions
|
|
|
|
below the ADD/SUB/LEA, e.g.:
|
|
|
|
...
|
|
|
|
add
|
|
|
|
cfi_def_cfa_offset
|
|
|
|
cfi_offset
|
|
|
|
...
|
|
|
|
*/
|
|
|
|
if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
|
|
|
|
PI = std::prev(PI);
|
2017-01-04 20:08:35 +08:00
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned Opc = PI->getOpcode();
|
|
|
|
int Offset = 0;
|
|
|
|
|
|
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
2016-02-03 04:11:17 +08:00
|
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
|
2015-02-02 00:15:07 +08:00
|
|
|
PI->getOperand(0).getReg() == StackPtr){
|
2016-04-07 08:05:49 +08:00
|
|
|
assert(PI->getOperand(1).getReg() == StackPtr);
|
2018-04-24 18:32:08 +08:00
|
|
|
Offset = PI->getOperand(2).getImm();
|
2016-02-03 04:11:17 +08:00
|
|
|
} else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
|
2016-04-07 08:05:49 +08:00
|
|
|
PI->getOperand(0).getReg() == StackPtr &&
|
|
|
|
PI->getOperand(1).getReg() == StackPtr &&
|
|
|
|
PI->getOperand(2).getImm() == 1 &&
|
|
|
|
PI->getOperand(3).getReg() == X86::NoRegister &&
|
|
|
|
PI->getOperand(5).getReg() == X86::NoRegister) {
|
2016-02-03 04:11:17 +08:00
|
|
|
// For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
|
2018-04-24 18:32:08 +08:00
|
|
|
Offset = PI->getOperand(4).getImm();
|
2015-02-02 00:15:07 +08:00
|
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
2016-04-07 08:05:49 +08:00
|
|
|
assert(PI->getOperand(1).getReg() == StackPtr);
|
2018-04-24 18:32:08 +08:00
|
|
|
Offset = -PI->getOperand(2).getImm();
|
|
|
|
} else
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
PI = MBB.erase(PI);
|
|
|
|
if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
|
|
|
|
if (!doMergeWithPrevious)
|
|
|
|
MBBI = skipDebugInstructionsForward(PI, MBB.end());
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
return Offset;
|
|
|
|
}
|
|
|
|
|
2015-06-19 02:03:25 +08:00
|
|
|
void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
|
2016-06-12 23:39:02 +08:00
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL,
|
|
|
|
const MCCFIInstruction &CFIInst) const {
|
2015-06-16 07:45:08 +08:00
|
|
|
MachineFunction &MF = *MBB.getParent();
|
2016-12-01 07:48:42 +08:00
|
|
|
unsigned CFIIndex = MF.addFrameInst(CFIInst);
|
2015-06-16 07:45:08 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
}
|
|
|
|
|
2016-06-12 23:39:02 +08:00
|
|
|
void X86FrameLowering::emitCalleeSavedFrameMoves(
|
|
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL) const {
|
2015-02-02 00:15:07 +08:00
|
|
|
MachineFunction &MF = *MBB.getParent();
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
|
|
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
|
|
|
|
|
|
|
|
// Add callee saved registers to move list.
|
2016-07-29 02:40:00 +08:00
|
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
if (CSI.empty()) return;
|
|
|
|
|
|
|
|
// Calculate offsets.
|
|
|
|
for (std::vector<CalleeSavedInfo>::const_iterator
|
|
|
|
I = CSI.begin(), E = CSI.end(); I != E; ++I) {
|
2016-07-29 02:40:00 +08:00
|
|
|
int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned Reg = I->getReg();
|
|
|
|
|
|
|
|
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
|
2015-06-19 02:03:25 +08:00
|
|
|
BuildCFI(MBB, MBBI, DL,
|
2015-06-16 07:45:08 +08:00
|
|
|
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-10-13 23:48:48 +08:00
|
|
|
void X86FrameLowering::emitStackProbe(MachineFunction &MF,
|
|
|
|
MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL, bool InProlog) const {
|
2015-11-10 09:50:49 +08:00
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
|
|
|
if (STI.isTargetWindowsCoreCLR()) {
|
|
|
|
if (InProlog) {
|
2016-10-13 23:48:48 +08:00
|
|
|
emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
|
2015-11-10 09:50:49 +08:00
|
|
|
} else {
|
2016-10-13 23:48:48 +08:00
|
|
|
emitStackProbeInline(MF, MBB, MBBI, DL, false);
|
2015-11-10 09:50:49 +08:00
|
|
|
}
|
|
|
|
} else {
|
2016-10-13 23:48:48 +08:00
|
|
|
emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
|
2015-11-10 09:50:49 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
|
|
|
|
MachineBasicBlock &PrologMBB) const {
|
|
|
|
const StringRef ChkStkStubSymbol = "__chkstk_stub";
|
|
|
|
MachineInstr *ChkStkStub = nullptr;
|
|
|
|
|
|
|
|
for (MachineInstr &MI : PrologMBB) {
|
|
|
|
if (MI.isCall() && MI.getOperand(0).isSymbol() &&
|
|
|
|
ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
|
|
|
|
ChkStkStub = &MI;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ChkStkStub != nullptr) {
|
2016-02-22 10:32:35 +08:00
|
|
|
assert(!ChkStkStub->isBundled() &&
|
|
|
|
"Not expecting bundled instructions here");
|
2016-02-23 04:49:58 +08:00
|
|
|
MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
|
2016-08-11 23:51:29 +08:00
|
|
|
assert(std::prev(MBBI) == ChkStkStub &&
|
|
|
|
"MBBI expected after __chkstk_stub.");
|
2015-11-10 09:50:49 +08:00
|
|
|
DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
|
|
|
|
emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
|
|
|
|
ChkStkStub->eraseFromParent();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-10-13 23:48:48 +08:00
|
|
|
void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
|
|
|
|
MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL,
|
|
|
|
bool InProlog) const {
|
2015-11-10 09:50:49 +08:00
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
2019-09-09 22:59:34 +08:00
|
|
|
if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
|
|
|
|
emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
|
|
|
|
else
|
|
|
|
emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
|
|
|
|
}
|
|
|
|
|
|
|
|
void X86FrameLowering::emitStackProbeInlineGeneric(
|
|
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
|
|
|
|
MachineInstr &CallToInline = *std::prev(MBBI);
|
|
|
|
assert(CallToInline.getOperand(1).isMetadata() &&
|
|
|
|
"no metadata attached to that probe");
|
|
|
|
uint64_t Offset =
|
|
|
|
cast<ConstantInt>(
|
|
|
|
cast<ConstantAsMetadata>(
|
|
|
|
cast<MDTuple>(CallToInline.getOperand(1).getMetadata())
|
|
|
|
->getOperand(0))
|
|
|
|
->getValue())
|
|
|
|
->getZExtValue();
|
|
|
|
|
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
|
|
|
const X86TargetLowering &TLI = *STI.getTargetLowering();
|
|
|
|
assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
|
|
|
|
"different expansion expected for CoreCLR 64 bit");
|
|
|
|
|
|
|
|
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
|
|
|
|
uint64_t ProbeChunk = StackProbeSize * 8;
|
|
|
|
|
|
|
|
// Synthesize a loop or unroll it, depending on the number of iterations.
|
|
|
|
if (Offset > ProbeChunk) {
|
|
|
|
emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset);
|
|
|
|
} else {
|
|
|
|
emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void X86FrameLowering::emitStackProbeInlineGenericBlock(
|
|
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
|
|
|
|
uint64_t Offset) const {
|
|
|
|
|
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
|
|
|
const X86TargetLowering &TLI = *STI.getTargetLowering();
|
|
|
|
const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
|
|
|
|
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
|
|
|
|
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
|
|
|
|
uint64_t CurrentOffset = 0;
|
|
|
|
// 0 Thanks to return address being saved on the stack
|
|
|
|
uint64_t CurrentProbeOffset = 0;
|
|
|
|
|
|
|
|
// For the first N - 1 pages, just probe. I tried to take advantage of
|
|
|
|
// natural probes but it implies much more logic and there was very few
|
|
|
|
// interesting natural probes to interleave.
|
|
|
|
while (CurrentOffset + StackProbeSize < Offset) {
|
|
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addImm(StackProbeSize)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
|
|
|
|
|
|
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup),
|
|
|
|
StackPtr, false, 0)
|
|
|
|
.addImm(0)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
NumFrameExtraProbe++;
|
|
|
|
CurrentOffset += StackProbeSize;
|
|
|
|
CurrentProbeOffset += StackProbeSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t ChunkSize = Offset - CurrentOffset;
|
|
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addImm(ChunkSize)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
|
|
}
|
|
|
|
|
|
|
|
void X86FrameLowering::emitStackProbeInlineGenericLoop(
|
|
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
|
|
|
|
uint64_t Offset) const {
|
|
|
|
|
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
|
|
|
const X86TargetLowering &TLI = *STI.getTargetLowering();
|
|
|
|
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
|
|
|
|
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
|
|
|
|
|
|
|
|
// Synthesize a loop
|
|
|
|
NumFrameLoopProbe++;
|
|
|
|
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
|
|
|
|
|
|
|
|
MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
|
|
|
|
MachineFunction::iterator MBBIter = ++MBB.getIterator();
|
|
|
|
MF.insert(MBBIter, testMBB);
|
|
|
|
MF.insert(MBBIter, tailMBB);
|
|
|
|
|
|
|
|
unsigned FinalStackPtr = Uses64BitFramePtr ? X86::R11 : X86::R11D;
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FinalStackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
|
|
|
|
// save loop bound
|
|
|
|
{
|
|
|
|
const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc), FinalStackPtr)
|
|
|
|
.addReg(FinalStackPtr)
|
|
|
|
.addImm(Offset / StackProbeSize * StackProbeSize)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
|
|
|
|
// allocate a page
|
|
|
|
{
|
|
|
|
const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
|
|
|
|
BuildMI(testMBB, DL, TII.get(Opc), StackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addImm(StackProbeSize)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
|
|
|
|
// touch the page
|
|
|
|
addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup),
|
|
|
|
StackPtr, false, 0)
|
|
|
|
.addImm(0)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
|
|
|
|
// cmp with stack pointer bound
|
|
|
|
BuildMI(testMBB, DL, TII.get(IsLP64 ? X86::CMP64rr : X86::CMP32rr))
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addReg(FinalStackPtr)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
|
|
|
|
// jump
|
|
|
|
BuildMI(testMBB, DL, TII.get(X86::JCC_1))
|
|
|
|
.addMBB(testMBB)
|
|
|
|
.addImm(X86::COND_NE)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
testMBB->addSuccessor(testMBB);
|
|
|
|
testMBB->addSuccessor(tailMBB);
|
|
|
|
testMBB->addLiveIn(FinalStackPtr);
|
|
|
|
|
|
|
|
// allocate a block and touch it
|
|
|
|
|
|
|
|
tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
|
|
|
|
tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
|
|
|
|
MBB.addSuccessor(testMBB);
|
|
|
|
|
|
|
|
if (Offset % StackProbeSize) {
|
|
|
|
const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
|
|
|
|
BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addImm(Offset % StackProbeSize)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
|
|
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
|
|
|
|
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
|
2015-11-10 09:50:49 +08:00
|
|
|
assert(STI.is64Bit() && "different expansion needed for 32 bit");
|
|
|
|
assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
|
|
|
|
const TargetInstrInfo &TII = *STI.getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
|
|
|
|
|
|
|
|
// RAX contains the number of bytes of desired stack adjustment.
|
|
|
|
// The handling here assumes this value has already been updated so as to
|
|
|
|
// maintain stack alignment.
|
|
|
|
//
|
|
|
|
// We need to exit with RSP modified by this amount and execute suitable
|
|
|
|
// page touches to notify the OS that we're growing the stack responsibly.
|
|
|
|
// All stack probing must be done without modifying RSP.
|
|
|
|
//
|
|
|
|
// MBB:
|
|
|
|
// SizeReg = RAX;
|
|
|
|
// ZeroReg = 0
|
|
|
|
// CopyReg = RSP
|
|
|
|
// Flags, TestReg = CopyReg - SizeReg
|
|
|
|
// FinalReg = !Flags.Ovf ? TestReg : ZeroReg
|
|
|
|
// LimitReg = gs magic thread env access
|
|
|
|
// if FinalReg >= LimitReg goto ContinueMBB
|
|
|
|
// RoundBB:
|
|
|
|
// RoundReg = page address of FinalReg
|
|
|
|
// LoopMBB:
|
|
|
|
// LoopReg = PHI(LimitReg,ProbeReg)
|
|
|
|
// ProbeReg = LoopReg - PageSize
|
|
|
|
// [ProbeReg] = 0
|
|
|
|
// if (ProbeReg > RoundReg) goto LoopMBB
|
|
|
|
// ContinueMBB:
|
|
|
|
// RSP = RSP - RAX
|
|
|
|
// [rest of original MBB]
|
|
|
|
|
|
|
|
// Set up the new basic blocks
|
|
|
|
MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
|
|
|
|
MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
|
|
|
|
MF.insert(MBBIter, RoundMBB);
|
|
|
|
MF.insert(MBBIter, LoopMBB);
|
|
|
|
MF.insert(MBBIter, ContinueMBB);
|
|
|
|
|
|
|
|
// Split MBB and move the tail portion down to ContinueMBB.
|
|
|
|
MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
|
|
|
|
ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
|
|
|
|
ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
|
|
|
|
|
|
|
|
// Some useful constants
|
|
|
|
const int64_t ThreadEnvironmentStackLimit = 0x10;
|
|
|
|
const int64_t PageSize = 0x1000;
|
|
|
|
const int64_t PageMask = ~(PageSize - 1);
|
|
|
|
|
|
|
|
// Registers we need. For the normal case we use virtual
|
|
|
|
// registers. For the prolog expansion we use RAX, RCX and RDX.
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
const TargetRegisterClass *RegClass = &X86::GR64RegClass;
|
2019-06-24 23:50:29 +08:00
|
|
|
const Register SizeReg = InProlog ? X86::RAX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
ZeroReg = InProlog ? X86::RCX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
CopyReg = InProlog ? X86::RDX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
TestReg = InProlog ? X86::RDX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
FinalReg = InProlog ? X86::RDX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
RoundedReg = InProlog ? X86::RDX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
LimitReg = InProlog ? X86::RCX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
JoinReg = InProlog ? X86::RCX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass),
|
2019-06-24 23:50:29 +08:00
|
|
|
ProbeReg = InProlog ? X86::RCX
|
2015-11-11 21:44:06 +08:00
|
|
|
: MRI.createVirtualRegister(RegClass);
|
2015-11-10 09:50:49 +08:00
|
|
|
|
|
|
|
// SP-relative offsets where we can save RCX and RDX.
|
|
|
|
int64_t RCXShadowSlot = 0;
|
|
|
|
int64_t RDXShadowSlot = 0;
|
|
|
|
|
2018-07-31 03:41:25 +08:00
|
|
|
// If inlining in the prolog, save RCX and RDX.
|
2015-11-10 09:50:49 +08:00
|
|
|
if (InProlog) {
|
|
|
|
// Compute the offsets. We need to account for things already
|
|
|
|
// pushed onto the stack at this point: return address, frame
|
|
|
|
// pointer (if used), and callee saves.
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
|
|
|
|
const bool HasFP = hasFP(MF);
|
2018-08-01 00:41:12 +08:00
|
|
|
|
|
|
|
// Check if we need to spill RCX and/or RDX.
|
|
|
|
// Here we assume that no earlier prologue instruction changes RCX and/or
|
|
|
|
// RDX, so checking the block live-ins is enough.
|
|
|
|
const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
|
|
|
|
const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
|
|
|
|
int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
|
|
|
|
// Assign the initial slot to both registers, then change RDX's slot if both
|
|
|
|
// need to be spilled.
|
|
|
|
if (IsRCXLiveIn)
|
|
|
|
RCXShadowSlot = InitSlot;
|
|
|
|
if (IsRDXLiveIn)
|
|
|
|
RDXShadowSlot = InitSlot;
|
|
|
|
if (IsRDXLiveIn && IsRCXLiveIn)
|
|
|
|
RDXShadowSlot += 8;
|
|
|
|
// Emit the saves if needed.
|
|
|
|
if (IsRCXLiveIn)
|
|
|
|
addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
|
|
|
|
RCXShadowSlot)
|
|
|
|
.addReg(X86::RCX);
|
|
|
|
if (IsRDXLiveIn)
|
|
|
|
addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
|
|
|
|
RDXShadowSlot)
|
|
|
|
.addReg(X86::RDX);
|
2015-11-10 09:50:49 +08:00
|
|
|
} else {
|
|
|
|
// Not in the prolog. Copy RAX to a virtual reg.
|
|
|
|
BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add code to MBB to check for overflow and set the new target stack pointer
|
|
|
|
// to zero if so.
|
|
|
|
BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
|
|
|
|
.addReg(ZeroReg, RegState::Undef)
|
|
|
|
.addReg(ZeroReg, RegState::Undef);
|
|
|
|
BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
|
|
|
|
BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
|
|
|
|
.addReg(CopyReg)
|
|
|
|
.addReg(SizeReg);
|
[X86] Merge the different CMOV instructions for each condition code into single instructions that store the condition code as an immediate.
Summary:
Reorder the condition code enum to match their encodings. Move it to MC layer so it can be used by the scheduler models.
This avoids needing an isel pattern for each condition code. And it removes
translation switches for converting between CMOV instructions and condition
codes.
Now the printer, encoder and disassembler take care of converting the immediate.
We use InstAliases to handle the assembly matching. But we print using the
asm string in the instruction definition. The instruction itself is marked
IsCodeGenOnly=1 to hide it from the assembly parser.
This does complicate the scheduler models a little since we can't assign the
A and BE instructions to a separate class now.
I plan to make similar changes for SETcc and Jcc.
Reviewers: RKSimon, spatel, lebedev.ri, andreadb, courbet
Reviewed By: RKSimon
Subscribers: gchatelet, hiraditya, kristina, lebedev.ri, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60041
llvm-svn: 357800
2019-04-06 03:27:41 +08:00
|
|
|
BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
|
2015-11-10 09:50:49 +08:00
|
|
|
.addReg(TestReg)
|
[X86] Merge the different CMOV instructions for each condition code into single instructions that store the condition code as an immediate.
Summary:
Reorder the condition code enum to match their encodings. Move it to MC layer so it can be used by the scheduler models.
This avoids needing an isel pattern for each condition code. And it removes
translation switches for converting between CMOV instructions and condition
codes.
Now the printer, encoder and disassembler take care of converting the immediate.
We use InstAliases to handle the assembly matching. But we print using the
asm string in the instruction definition. The instruction itself is marked
IsCodeGenOnly=1 to hide it from the assembly parser.
This does complicate the scheduler models a little since we can't assign the
A and BE instructions to a separate class now.
I plan to make similar changes for SETcc and Jcc.
Reviewers: RKSimon, spatel, lebedev.ri, andreadb, courbet
Reviewed By: RKSimon
Subscribers: gchatelet, hiraditya, kristina, lebedev.ri, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60041
llvm-svn: 357800
2019-04-06 03:27:41 +08:00
|
|
|
.addReg(ZeroReg)
|
|
|
|
.addImm(X86::COND_B);
|
2015-11-10 09:50:49 +08:00
|
|
|
|
|
|
|
// FinalReg now holds final stack pointer value, or zero if
|
|
|
|
// allocation would overflow. Compare against the current stack
|
|
|
|
// limit from the thread environment block. Note this limit is the
|
|
|
|
// lowest touched page on the stack, not the point at which the OS
|
|
|
|
// will cause an overflow exception, so this is just an optimization
|
|
|
|
// to avoid unnecessarily touching pages that are below the current
|
2016-11-18 03:03:05 +08:00
|
|
|
// SP but already committed to the stack by the OS.
|
2015-11-10 09:50:49 +08:00
|
|
|
BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
|
|
|
|
.addReg(0)
|
|
|
|
.addImm(1)
|
|
|
|
.addReg(0)
|
|
|
|
.addImm(ThreadEnvironmentStackLimit)
|
|
|
|
.addReg(X86::GS);
|
|
|
|
BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
|
|
|
|
// Jump if the desired stack pointer is at or above the stack limit.
|
[X86] Merge the different Jcc instructions for each condition code into single instructions that store the condition code as an operand.
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
2019-04-06 03:28:09 +08:00
|
|
|
BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
|
2015-11-10 09:50:49 +08:00
|
|
|
|
|
|
|
// Add code to roundMBB to round the final stack pointer to a page boundary.
|
2018-08-01 00:41:12 +08:00
|
|
|
RoundMBB->addLiveIn(FinalReg);
|
2015-11-10 09:50:49 +08:00
|
|
|
BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
|
|
|
|
.addReg(FinalReg)
|
|
|
|
.addImm(PageMask);
|
|
|
|
BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
|
|
|
|
|
|
|
|
// LimitReg now holds the current stack limit, RoundedReg page-rounded
|
|
|
|
// final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
|
|
|
|
// and probe until we reach RoundedReg.
|
|
|
|
if (!InProlog) {
|
|
|
|
BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
|
|
|
|
.addReg(LimitReg)
|
|
|
|
.addMBB(RoundMBB)
|
|
|
|
.addReg(ProbeReg)
|
|
|
|
.addMBB(LoopMBB);
|
|
|
|
}
|
|
|
|
|
2018-08-01 00:41:12 +08:00
|
|
|
LoopMBB->addLiveIn(JoinReg);
|
2015-11-10 09:50:49 +08:00
|
|
|
addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
|
|
|
|
false, -PageSize);
|
|
|
|
|
|
|
|
// Probe by storing a byte onto the stack.
|
|
|
|
BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
|
|
|
|
.addReg(ProbeReg)
|
|
|
|
.addImm(1)
|
|
|
|
.addReg(0)
|
|
|
|
.addImm(0)
|
|
|
|
.addReg(0)
|
|
|
|
.addImm(0);
|
2018-08-01 00:41:12 +08:00
|
|
|
|
|
|
|
LoopMBB->addLiveIn(RoundedReg);
|
2015-11-10 09:50:49 +08:00
|
|
|
BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
|
|
|
|
.addReg(RoundedReg)
|
|
|
|
.addReg(ProbeReg);
|
[X86] Merge the different Jcc instructions for each condition code into single instructions that store the condition code as an operand.
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
2019-04-06 03:28:09 +08:00
|
|
|
BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
|
2015-11-10 09:50:49 +08:00
|
|
|
|
|
|
|
MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
|
|
|
|
|
|
|
|
// If in prolog, restore RDX and RCX.
|
|
|
|
if (InProlog) {
|
2018-08-01 00:41:12 +08:00
|
|
|
if (RCXShadowSlot) // It means we spilled RCX in the prologue.
|
|
|
|
addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
|
|
|
|
TII.get(X86::MOV64rm), X86::RCX),
|
|
|
|
X86::RSP, false, RCXShadowSlot);
|
|
|
|
if (RDXShadowSlot) // It means we spilled RDX in the prologue.
|
|
|
|
addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
|
|
|
|
TII.get(X86::MOV64rm), X86::RDX),
|
|
|
|
X86::RSP, false, RDXShadowSlot);
|
2015-11-10 09:50:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Now that the probing is done, add code to continueMBB to update
|
|
|
|
// the stack pointer for real.
|
2018-08-01 00:41:12 +08:00
|
|
|
ContinueMBB->addLiveIn(SizeReg);
|
2015-11-10 09:50:49 +08:00
|
|
|
BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
|
|
|
|
.addReg(X86::RSP)
|
|
|
|
.addReg(SizeReg);
|
|
|
|
|
|
|
|
// Add the control flow edges we need.
|
|
|
|
MBB.addSuccessor(ContinueMBB);
|
|
|
|
MBB.addSuccessor(RoundMBB);
|
|
|
|
RoundMBB->addSuccessor(LoopMBB);
|
|
|
|
LoopMBB->addSuccessor(ContinueMBB);
|
|
|
|
LoopMBB->addSuccessor(LoopMBB);
|
|
|
|
|
|
|
|
// Mark all the instructions added to the prolog as frame setup.
|
|
|
|
if (InProlog) {
|
|
|
|
for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
|
|
|
|
BeforeMBBI->setFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
for (MachineInstr &MI : *RoundMBB) {
|
|
|
|
MI.setFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
for (MachineInstr &MI : *LoopMBB) {
|
|
|
|
MI.setFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
|
|
|
|
CMBBI != ContinueMBBI; ++CMBBI) {
|
|
|
|
CMBBI->setFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-10-13 23:48:48 +08:00
|
|
|
void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
|
|
|
|
MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL,
|
|
|
|
bool InProlog) const {
|
2015-02-02 00:15:07 +08:00
|
|
|
bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
|
|
|
|
|
Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
2018-01-23 06:05:25 +08:00
|
|
|
// FIXME: Add retpoline support and remove this.
|
2018-08-23 14:06:38 +08:00
|
|
|
if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
|
Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
2018-01-23 06:05:25 +08:00
|
|
|
report_fatal_error("Emitting stack probe calls on 64-bit with the large "
|
|
|
|
"code model and retpoline not yet implemented.");
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned CallOp;
|
|
|
|
if (Is64Bit)
|
|
|
|
CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
|
|
|
|
else
|
|
|
|
CallOp = X86::CALLpcrel32;
|
|
|
|
|
2017-06-22 23:42:53 +08:00
|
|
|
StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
MachineInstrBuilder CI;
|
2015-11-10 09:50:49 +08:00
|
|
|
MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// All current stack probes take AX and SP as input, clobber flags, and
|
|
|
|
// preserve all registers. x86_64 probes leave RSP unmodified.
|
|
|
|
if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
|
|
|
|
// For the large code model, we have to call through a register. Use R11,
|
|
|
|
// as it is scratch in all supported calling conventions.
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
|
2017-06-22 23:42:53 +08:00
|
|
|
.addExternalSymbol(MF.createExternalSymbolName(Symbol));
|
2015-02-02 00:15:07 +08:00
|
|
|
CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
|
|
|
|
} else {
|
2017-06-22 23:42:53 +08:00
|
|
|
CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
|
|
|
|
.addExternalSymbol(MF.createExternalSymbolName(Symbol));
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2019-04-20 15:25:46 +08:00
|
|
|
unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
|
|
|
|
unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
|
2015-02-02 00:15:07 +08:00
|
|
|
CI.addReg(AX, RegState::Implicit)
|
|
|
|
.addReg(SP, RegState::Implicit)
|
|
|
|
.addReg(AX, RegState::Define | RegState::Implicit)
|
|
|
|
.addReg(SP, RegState::Define | RegState::Implicit)
|
|
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
|
|
|
|
|
2017-06-24 02:58:10 +08:00
|
|
|
if (STI.isTargetWin64() || !STI.isOSWindows()) {
|
|
|
|
// MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
|
2015-02-02 00:15:07 +08:00
|
|
|
// MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
|
2017-06-24 02:58:10 +08:00
|
|
|
// themselves. They also does not clobber %rax so we can reuse it when
|
2015-02-02 00:15:07 +08:00
|
|
|
// adjusting %rsp.
|
2017-06-24 02:58:10 +08:00
|
|
|
// All other platforms do not specify a particular ABI for the stack probe
|
|
|
|
// function, so we arbitrarily define it to not adjust %esp/%rsp itself.
|
2019-04-20 15:25:46 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
|
2017-06-22 23:42:53 +08:00
|
|
|
.addReg(SP)
|
|
|
|
.addReg(AX);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2015-11-10 09:50:49 +08:00
|
|
|
|
|
|
|
if (InProlog) {
|
|
|
|
// Apply the frame setup flag to all inserted instrs.
|
|
|
|
for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
|
|
|
|
ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-09-09 22:59:34 +08:00
|
|
|
MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
|
2015-11-10 09:50:49 +08:00
|
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
2016-06-12 23:39:02 +08:00
|
|
|
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
|
2015-11-10 09:50:49 +08:00
|
|
|
|
|
|
|
assert(InProlog && "ChkStkStub called outside prolog!");
|
|
|
|
|
2019-09-09 22:59:34 +08:00
|
|
|
return BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
|
2015-11-10 11:16:28 +08:00
|
|
|
.addExternalSymbol("__chkstk_stub");
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2015-02-10 08:57:42 +08:00
|
|
|
static unsigned calculateSetFPREG(uint64_t SPAdjust) {
|
|
|
|
// Win64 ABI has a less restrictive limitation of 240; 128 works equally well
|
|
|
|
// and might require smaller successive adjustments.
|
|
|
|
const uint64_t Win64MaxSEHOffset = 128;
|
|
|
|
uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
|
|
|
|
// Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
|
2015-02-21 09:04:47 +08:00
|
|
|
return SEHFrameOffset & -16;
|
2015-02-10 08:57:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If we're forcing a stack realignment we can't rely on just the frame
|
|
|
|
// info, we need to know the ABI stack alignment as well in case we
|
|
|
|
// have a call out. Otherwise just make sure we have some alignment - we'll
|
|
|
|
// go with the minimum SlotSize.
|
2015-06-18 05:50:02 +08:00
|
|
|
uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
|
2015-06-18 05:50:02 +08:00
|
|
|
unsigned StackAlign = getStackAlignment();
|
2017-12-16 06:22:58 +08:00
|
|
|
if (MF.getFunction().hasFnAttribute("stackrealign")) {
|
2016-07-29 02:40:00 +08:00
|
|
|
if (MFI.hasCalls())
|
2015-02-10 08:57:42 +08:00
|
|
|
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
|
|
|
|
else if (MaxAlign < SlotSize)
|
|
|
|
MaxAlign = SlotSize;
|
|
|
|
}
|
|
|
|
return MaxAlign;
|
|
|
|
}
|
|
|
|
|
2015-06-19 02:03:25 +08:00
|
|
|
void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
2016-06-12 23:39:02 +08:00
|
|
|
const DebugLoc &DL, unsigned Reg,
|
2015-06-19 02:03:25 +08:00
|
|
|
uint64_t MaxAlign) const {
|
|
|
|
uint64_t Val = -MaxAlign;
|
2015-11-06 05:09:49 +08:00
|
|
|
unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
|
|
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
|
|
|
|
.addReg(Reg)
|
|
|
|
.addImm(Val)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-06-19 02:03:25 +08:00
|
|
|
|
|
|
|
// The EFLAGS implicit def is dead.
|
|
|
|
MI->getOperand(3).setIsDead();
|
|
|
|
}
|
|
|
|
|
2019-05-11 06:55:42 +08:00
|
|
|
bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
|
|
|
|
// x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
|
2019-06-24 23:50:29 +08:00
|
|
|
// clobbered by any interrupt handler.
|
2019-05-11 06:55:42 +08:00
|
|
|
assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
|
|
|
|
"MF used frame lowering for wrong subtarget");
|
|
|
|
const Function &Fn = MF.getFunction();
|
|
|
|
const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
|
|
|
|
return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
/// emitPrologue - Push callee-saved registers onto the stack, which
|
|
|
|
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
|
|
|
|
/// space for local variables. Also emit labels used by the exception handler to
|
|
|
|
/// generate the exception handling frames.
|
|
|
|
|
|
|
|
/*
|
|
|
|
Here's a gist of what gets emitted:
|
|
|
|
|
|
|
|
; Establish frame pointer, if needed
|
|
|
|
[if needs FP]
|
|
|
|
push %rbp
|
|
|
|
.cfi_def_cfa_offset 16
|
|
|
|
.cfi_offset %rbp, -16
|
|
|
|
.seh_pushreg %rpb
|
|
|
|
mov %rsp, %rbp
|
|
|
|
.cfi_def_cfa_register %rbp
|
|
|
|
|
|
|
|
; Spill general-purpose registers
|
|
|
|
[for all callee-saved GPRs]
|
|
|
|
pushq %<reg>
|
|
|
|
[if not needs FP]
|
|
|
|
.cfi_def_cfa_offset (offset from RETADDR)
|
|
|
|
.seh_pushreg %<reg>
|
|
|
|
|
|
|
|
; If the required stack alignment > default stack alignment
|
|
|
|
; rsp needs to be re-aligned. This creates a "re-alignment gap"
|
|
|
|
; of unknown size in the stack frame.
|
|
|
|
[if stack needs re-alignment]
|
|
|
|
and $MASK, %rsp
|
|
|
|
|
|
|
|
; Allocate space for locals
|
|
|
|
[if target is Windows and allocated space > 4096 bytes]
|
|
|
|
; Windows needs special care for allocations larger
|
|
|
|
; than one page.
|
|
|
|
mov $NNN, %rax
|
|
|
|
call ___chkstk_ms/___chkstk
|
|
|
|
sub %rax, %rsp
|
|
|
|
[else]
|
|
|
|
sub $NNN, %rsp
|
|
|
|
|
|
|
|
[if needs FP]
|
|
|
|
.seh_stackalloc (size of XMM spill slots)
|
|
|
|
.seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
|
|
|
|
[else]
|
|
|
|
.seh_stackalloc NNN
|
|
|
|
|
|
|
|
; Spill XMMs
|
|
|
|
; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
|
|
|
|
; they may get spilled on any platform, if the current function
|
|
|
|
; calls @llvm.eh.unwind.init
|
|
|
|
[if needs FP]
|
|
|
|
[for all callee-saved XMM registers]
|
2019-08-21 06:08:57 +08:00
|
|
|
movaps %<xmm reg>, -MMM(%rbp)
|
2015-02-02 00:15:07 +08:00
|
|
|
[for all callee-saved XMM registers]
|
|
|
|
.seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
|
|
|
|
; i.e. the offset relative to (%rbp - SEHFrameOffset)
|
|
|
|
[else]
|
|
|
|
[for all callee-saved XMM registers]
|
|
|
|
movaps %<xmm reg>, KKK(%rsp)
|
|
|
|
[for all callee-saved XMM registers]
|
|
|
|
.seh_savexmm %<xmm reg>, KKK
|
|
|
|
|
|
|
|
.seh_endprologue
|
|
|
|
|
|
|
|
[if needs base pointer]
|
|
|
|
mov %rsp, %rbx
|
|
|
|
[if needs to restore base pointer]
|
|
|
|
mov %rsp, -MMM(%rbp)
|
|
|
|
|
|
|
|
; Emit CFI info
|
|
|
|
[if needs FP]
|
|
|
|
[for all callee-saved registers]
|
2019-08-21 06:08:57 +08:00
|
|
|
.cfi_offset %<reg>, (offset from %rbp)
|
2015-02-02 00:15:07 +08:00
|
|
|
[else]
|
|
|
|
.cfi_def_cfa_offset (offset from RETADDR)
|
|
|
|
[for all callee-saved registers]
|
|
|
|
.cfi_offset %<reg>, (offset from %rsp)
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
- .seh directives are emitted only for Windows 64 ABI
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
- .cv_fpo directives are emitted on win32 when emitting CodeView
|
2015-02-02 00:15:07 +08:00
|
|
|
- .cfi directives are emitted for all other ABIs
|
|
|
|
- for 32-bit code, substitute %e?? registers for %r??
|
|
|
|
*/
|
|
|
|
|
[ShrinkWrap] Add (a simplified version) of shrink-wrapping.
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
2015-05-06 01:38:16 +08:00
|
|
|
void X86FrameLowering::emitPrologue(MachineFunction &MF,
|
|
|
|
MachineBasicBlock &MBB) const {
|
2015-06-18 05:50:02 +08:00
|
|
|
assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
|
|
|
|
"MF used frame lowering for wrong subtarget");
|
2015-02-02 00:15:07 +08:00
|
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2017-12-16 06:22:58 +08:00
|
|
|
const Function &Fn = MF.getFunction();
|
2015-02-02 00:15:07 +08:00
|
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
2015-02-10 08:57:42 +08:00
|
|
|
uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
|
2016-07-29 02:40:00 +08:00
|
|
|
uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
|
2015-09-30 07:32:01 +08:00
|
|
|
bool IsFunclet = MBB.isEHFuncletEntry();
|
2015-12-16 07:40:58 +08:00
|
|
|
EHPersonality Personality = EHPersonality::Unknown;
|
2017-12-16 06:22:58 +08:00
|
|
|
if (Fn.hasPersonalityFn())
|
|
|
|
Personality = classifyEHPersonality(Fn.getPersonalityFn());
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
bool FnHasClrFunclet =
|
2016-12-02 03:32:15 +08:00
|
|
|
MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
|
2015-02-02 00:15:07 +08:00
|
|
|
bool HasFP = hasFP(MF);
|
2015-06-17 02:08:57 +08:00
|
|
|
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
|
2017-12-16 06:22:58 +08:00
|
|
|
bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
|
2017-10-13 02:20:35 +08:00
|
|
|
// FIXME: Emit FPO data for EH funclets.
|
|
|
|
bool NeedsWinFPO =
|
|
|
|
!IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
|
2019-10-31 16:55:57 +08:00
|
|
|
bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
|
2019-08-17 04:50:23 +08:00
|
|
|
Register FramePtr = TRI->getFrameRegister(MF);
|
|
|
|
const Register MachineFramePtr =
|
2015-02-03 01:38:43 +08:00
|
|
|
STI.isTarget64BitILP32()
|
2019-08-17 04:50:23 +08:00
|
|
|
? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register BasePtr = TRI->getBaseRegister();
|
2016-09-23 03:50:05 +08:00
|
|
|
bool HasWinCFI = false;
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
|
2015-11-06 05:54:58 +08:00
|
|
|
// Debug location must be unknown since the first debug location is used
|
|
|
|
// to determine the end of the prologue.
|
|
|
|
DebugLoc DL;
|
|
|
|
|
|
|
|
// Add RETADDR move area to callee saved frame size.
|
2015-02-02 00:15:07 +08:00
|
|
|
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
2015-06-17 02:08:57 +08:00
|
|
|
if (TailCallReturnAddrDelta && IsWin64Prologue)
|
2015-02-10 08:57:42 +08:00
|
|
|
report_fatal_error("Can't handle guaranteed tail call under win64 yet");
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
if (TailCallReturnAddrDelta < 0)
|
|
|
|
X86FI->setCalleeSavedFrameSize(
|
|
|
|
X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
|
|
|
|
|
2019-09-09 22:59:34 +08:00
|
|
|
const bool EmitStackProbeCall =
|
|
|
|
STI.getTargetLowering()->hasStackProbeSymbol(MF);
|
2019-08-10 10:49:02 +08:00
|
|
|
unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2017-04-04 04:28:45 +08:00
|
|
|
// Re-align the stack on 64-bit if the x86-interrupt calling convention is
|
|
|
|
// used and an error code was pushed, since the x86-64 ABI requires a 16-byte
|
|
|
|
// stack alignment.
|
2017-12-16 06:22:58 +08:00
|
|
|
if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
|
|
|
|
Fn.arg_size() == 2) {
|
2017-04-04 04:28:45 +08:00
|
|
|
StackSize += 8;
|
|
|
|
MFI.setStackSize(StackSize);
|
2018-02-15 01:35:52 +08:00
|
|
|
emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
|
2017-04-04 04:28:45 +08:00
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
|
|
|
|
// function, and use up to 128 bytes of stack space, don't have a frame
|
|
|
|
// pointer, calls, or dynamic alloca then we do not need to adjust the
|
|
|
|
// stack pointer (we fit in the Red Zone). We also check that we don't
|
|
|
|
// push and pop from the stack.
|
2019-09-09 22:59:34 +08:00
|
|
|
if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) &&
|
2016-07-29 02:40:00 +08:00
|
|
|
!MFI.hasVarSizedObjects() && // No dynamic alloca.
|
|
|
|
!MFI.adjustsStack() && // No calls.
|
2019-09-09 22:59:34 +08:00
|
|
|
!EmitStackProbeCall && // No stack probes.
|
2016-07-29 02:40:00 +08:00
|
|
|
!MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
|
|
|
|
!MF.shouldSplitStack()) { // Regular stack
|
2015-02-02 00:15:07 +08:00
|
|
|
uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
|
|
|
|
if (HasFP) MinSize += SlotSize;
|
2016-03-25 09:10:56 +08:00
|
|
|
X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
|
2015-02-02 00:15:07 +08:00
|
|
|
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
|
2016-07-29 02:40:00 +08:00
|
|
|
MFI.setStackSize(StackSize);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Insert stack pointer adjustment for later moving of return addr. Only
|
|
|
|
// applies to tail call optimized functions where the callee argument stack
|
|
|
|
// size is bigger than the callers.
|
|
|
|
if (TailCallReturnAddrDelta < 0) {
|
2015-06-19 04:22:12 +08:00
|
|
|
BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
|
|
|
|
/*InEpilogue=*/false)
|
2015-02-02 00:15:07 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mapping for machine moves:
|
|
|
|
//
|
|
|
|
// DST: VirtualFP AND
|
|
|
|
// SRC: VirtualFP => DW_CFA_def_cfa_offset
|
|
|
|
// ELSE => DW_CFA_def_cfa
|
|
|
|
//
|
|
|
|
// SRC: VirtualFP AND
|
|
|
|
// DST: Register => DW_CFA_def_cfa_register
|
|
|
|
//
|
|
|
|
// ELSE
|
|
|
|
// OFFSET < 0 => DW_CFA_offset_extended_sf
|
|
|
|
// REG < 64 => DW_CFA_offset + Reg
|
|
|
|
// ELSE => DW_CFA_offset_extended
|
|
|
|
|
|
|
|
uint64_t NumBytes = 0;
|
|
|
|
int stackGrowth = -SlotSize;
|
|
|
|
|
2015-11-05 10:20:07 +08:00
|
|
|
// Find the funclet establisher parameter
|
2019-08-17 04:50:23 +08:00
|
|
|
Register Establisher = X86::NoRegister;
|
2015-11-05 10:20:07 +08:00
|
|
|
if (IsClrFunclet)
|
|
|
|
Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
|
|
|
|
else if (IsFunclet)
|
|
|
|
Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
|
|
|
|
|
2015-12-10 14:09:41 +08:00
|
|
|
if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
|
2015-11-05 10:20:07 +08:00
|
|
|
// Immediately spill establisher into the home slot.
|
|
|
|
// The runtime cares about this.
|
2015-09-30 07:32:01 +08:00
|
|
|
// MOV64mr %rdx, 16(%rsp)
|
|
|
|
unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
|
2015-11-05 10:20:07 +08:00
|
|
|
.addReg(Establisher)
|
2015-09-09 06:44:41 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-11-10 05:04:00 +08:00
|
|
|
MBB.addLiveIn(Establisher);
|
2015-09-30 07:32:01 +08:00
|
|
|
}
|
2015-09-09 06:44:41 +08:00
|
|
|
|
2015-09-30 07:32:01 +08:00
|
|
|
if (HasFP) {
|
2017-05-31 10:11:10 +08:00
|
|
|
assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// Calculate required stack adjustment.
|
|
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
|
|
|
// If required, include space for extra hidden slot for stashing base pointer.
|
|
|
|
if (X86FI->getRestoreBasePointer())
|
|
|
|
FrameSize += SlotSize;
|
2015-02-21 09:04:47 +08:00
|
|
|
|
|
|
|
NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
|
|
|
|
|
|
|
|
// Callee-saved registers are pushed on stack before the stack is realigned.
|
2015-06-19 04:32:02 +08:00
|
|
|
if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
|
2016-01-15 05:06:47 +08:00
|
|
|
NumBytes = alignTo(NumBytes, MaxAlign);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Save EBP/RBP into the appropriate stack slot.
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
|
|
|
|
.addReg(MachineFramePtr, RegState::Kill)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
|
|
|
|
if (NeedsDwarfCFI) {
|
|
|
|
// Mark the place where EBP/RBP was saved.
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
|
|
assert(StackSize);
|
2015-06-19 02:03:25 +08:00
|
|
|
BuildCFI(MBB, MBBI, DL,
|
2015-06-16 07:45:08 +08:00
|
|
|
MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Change the rule for the FramePtr to be an "offset" rule.
|
2015-06-19 04:32:02 +08:00
|
|
|
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
|
2015-06-19 02:03:25 +08:00
|
|
|
BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
|
|
|
|
nullptr, DwarfFramePtr, 2 * stackGrowth));
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2015-06-17 02:08:57 +08:00
|
|
|
if (NeedsWinCFI) {
|
2016-09-23 03:50:05 +08:00
|
|
|
HasWinCFI = true;
|
2015-02-02 00:15:07 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
|
|
|
|
.addImm(FramePtr)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
|
2015-09-30 07:32:01 +08:00
|
|
|
if (!IsWin64Prologue && !IsFunclet) {
|
2015-02-10 08:57:42 +08:00
|
|
|
// Update EBP with the new base value.
|
|
|
|
BuildMI(MBB, MBBI, DL,
|
2016-08-09 05:20:15 +08:00
|
|
|
TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
|
2015-02-10 08:57:42 +08:00
|
|
|
FramePtr)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2015-09-30 07:32:01 +08:00
|
|
|
if (NeedsDwarfCFI) {
|
|
|
|
// Mark effective beginning of when frame pointer becomes valid.
|
|
|
|
// Define the current CFA to use the EBP/RBP register.
|
|
|
|
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
|
|
|
|
BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
|
|
|
|
nullptr, DwarfFramePtr));
|
|
|
|
}
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
|
|
|
|
if (NeedsWinFPO) {
|
|
|
|
// .cv_fpo_setframe $FramePtr
|
|
|
|
HasWinCFI = true;
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
|
|
|
|
.addImm(FramePtr)
|
|
|
|
.addImm(0)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
} else {
|
2015-09-30 07:32:01 +08:00
|
|
|
assert(!IsFunclet && "funclets without FPs not yet implemented");
|
2015-02-02 00:15:07 +08:00
|
|
|
NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
|
|
|
|
}
|
|
|
|
|
2018-11-03 08:41:52 +08:00
|
|
|
// Update the offset adjustment, which is mainly used by codeview to translate
|
|
|
|
// from ESP to VFRAME relative local variable offsets.
|
|
|
|
if (!IsFunclet) {
|
|
|
|
if (HasFP && TRI->needsStackRealignment(MF))
|
|
|
|
MFI.setOffsetAdjustment(-NumBytes);
|
|
|
|
else
|
|
|
|
MFI.setOffsetAdjustment(-StackSize);
|
|
|
|
}
|
|
|
|
|
2019-08-21 06:08:57 +08:00
|
|
|
// For EH funclets, only allocate enough space for outgoing calls. Save the
|
|
|
|
// NumBytes value that we would've used for the parent frame.
|
2015-09-30 07:32:01 +08:00
|
|
|
unsigned ParentFrameNumBytes = NumBytes;
|
2019-08-21 06:08:57 +08:00
|
|
|
if (IsFunclet)
|
2015-10-17 07:43:27 +08:00
|
|
|
NumBytes = getWinEHFuncletFrameSize(MF);
|
2015-09-30 07:32:01 +08:00
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// Skip the callee-saved push instructions.
|
|
|
|
bool PushedRegs = false;
|
|
|
|
int StackOffset = 2 * stackGrowth;
|
|
|
|
|
|
|
|
while (MBBI != MBB.end() &&
|
2015-07-16 20:27:59 +08:00
|
|
|
MBBI->getFlag(MachineInstr::FrameSetup) &&
|
2015-02-02 00:15:07 +08:00
|
|
|
(MBBI->getOpcode() == X86::PUSH32r ||
|
|
|
|
MBBI->getOpcode() == X86::PUSH64r)) {
|
|
|
|
PushedRegs = true;
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register Reg = MBBI->getOperand(0).getReg();
|
2015-02-02 00:15:07 +08:00
|
|
|
++MBBI;
|
|
|
|
|
|
|
|
if (!HasFP && NeedsDwarfCFI) {
|
|
|
|
// Mark callee-saved push instruction.
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
|
|
assert(StackSize);
|
2015-06-19 02:03:25 +08:00
|
|
|
BuildCFI(MBB, MBBI, DL,
|
2015-06-16 07:45:08 +08:00
|
|
|
MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
|
2015-02-02 00:15:07 +08:00
|
|
|
StackOffset += stackGrowth;
|
|
|
|
}
|
|
|
|
|
2015-06-17 02:08:57 +08:00
|
|
|
if (NeedsWinCFI) {
|
2016-09-23 03:50:05 +08:00
|
|
|
HasWinCFI = true;
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
|
|
|
|
.addImm(Reg)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Realign stack after we pushed callee-saved registers (so that we'll be
|
|
|
|
// able to calculate their offsets from the frame pointer).
|
2015-02-10 08:57:42 +08:00
|
|
|
// Don't do this for Win64, it needs to realign the stack after the prologue.
|
2015-09-30 07:32:01 +08:00
|
|
|
if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
|
2015-02-02 00:15:07 +08:00
|
|
|
assert(HasFP && "There should be a frame pointer if stack is realigned.");
|
2015-11-06 05:09:49 +08:00
|
|
|
BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
|
2018-10-03 00:43:52 +08:00
|
|
|
|
|
|
|
if (NeedsWinCFI) {
|
|
|
|
HasWinCFI = true;
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
|
|
|
|
.addImm(MaxAlign)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// If there is an SUB32ri of ESP immediately before this instruction, merge
|
|
|
|
// the two. This can be the case when tail call elimination is enabled and
|
|
|
|
// the callee has more arguments then the caller.
|
2015-06-19 02:03:25 +08:00
|
|
|
NumBytes -= mergeSPUpdates(MBB, MBBI, true);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Adjust stack pointer: ESP -= numbytes.
|
|
|
|
|
|
|
|
// Windows and cygwin/mingw require a prologue helper routine when allocating
|
|
|
|
// more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
|
|
|
|
// uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
|
|
|
|
// stack and adjust the stack pointer in one go. The 64-bit version of
|
|
|
|
// __chkstk is only responsible for probing the stack. The 64-bit prologue is
|
|
|
|
// responsible for adjusting the stack pointer. Touching the stack at 4K
|
|
|
|
// increments is necessary to ensure that the guard pages used by the OS
|
|
|
|
// virtual memory manager are allocated in correct sequence.
|
2015-02-21 09:04:47 +08:00
|
|
|
uint64_t AlignedNumBytes = NumBytes;
|
2015-09-30 07:32:01 +08:00
|
|
|
if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
|
2016-01-15 05:06:47 +08:00
|
|
|
AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
|
2019-09-09 22:59:34 +08:00
|
|
|
if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
|
2017-07-08 09:03:29 +08:00
|
|
|
assert(!X86FI->getUsesRedZone() &&
|
|
|
|
"The Red Zone is not accounted for in stack probes");
|
2017-06-22 23:42:53 +08:00
|
|
|
|
2016-02-17 08:17:33 +08:00
|
|
|
// Check whether EAX is livein for this block.
|
|
|
|
bool isEAXAlive = isEAXLiveIn(MBB);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
if (isEAXAlive) {
|
2018-03-06 14:00:13 +08:00
|
|
|
if (Is64Bit) {
|
|
|
|
// Save RAX
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
|
|
|
|
.addReg(X86::RAX, RegState::Kill)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
} else {
|
|
|
|
// Save EAX
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
|
|
|
|
.addReg(X86::EAX, RegState::Kill)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (Is64Bit) {
|
|
|
|
// Handle the 64-bit Windows ABI case where we need to call __chkstk.
|
|
|
|
// Function prologue is responsible for adjusting the stack pointer.
|
2019-11-27 04:41:40 +08:00
|
|
|
int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
|
2018-03-06 14:00:13 +08:00
|
|
|
if (isUInt<32>(Alloc)) {
|
2015-02-24 05:50:30 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
|
2018-03-06 14:00:13 +08:00
|
|
|
.addImm(Alloc)
|
2015-02-24 05:50:30 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2018-03-06 14:00:13 +08:00
|
|
|
} else if (isInt<32>(Alloc)) {
|
2015-02-24 05:50:30 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
|
2018-03-06 14:00:13 +08:00
|
|
|
.addImm(Alloc)
|
2015-02-24 05:50:30 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
} else {
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
|
2018-03-06 14:00:13 +08:00
|
|
|
.addImm(Alloc)
|
2015-02-24 05:50:30 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
} else {
|
|
|
|
// Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
|
|
|
|
// We'll also use 4 already allocated bytes for EAX.
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
|
2015-11-10 09:50:49 +08:00
|
|
|
.addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Call __chkstk, __chkstk_ms, or __alloca.
|
2015-11-10 09:50:49 +08:00
|
|
|
emitStackProbe(MF, MBB, MBBI, DL, true);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
if (isEAXAlive) {
|
2018-03-06 14:00:13 +08:00
|
|
|
// Restore RAX/EAX
|
|
|
|
MachineInstr *MI;
|
|
|
|
if (Is64Bit)
|
|
|
|
MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
|
|
|
|
StackPtr, false, NumBytes - 8);
|
|
|
|
else
|
|
|
|
MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
|
|
|
|
StackPtr, false, NumBytes - 4);
|
2015-02-02 00:15:07 +08:00
|
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
|
|
MBB.insert(MBBI, MI);
|
|
|
|
}
|
|
|
|
} else if (NumBytes) {
|
2018-02-15 01:35:52 +08:00
|
|
|
emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2016-09-23 03:50:05 +08:00
|
|
|
if (NeedsWinCFI && NumBytes) {
|
|
|
|
HasWinCFI = true;
|
2015-02-10 08:57:42 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
|
|
|
|
.addImm(NumBytes)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2016-09-23 03:50:05 +08:00
|
|
|
}
|
2015-02-10 08:57:42 +08:00
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
int SEHFrameOffset = 0;
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
unsigned SPOrEstablisher;
|
|
|
|
if (IsFunclet) {
|
|
|
|
if (IsClrFunclet) {
|
|
|
|
// The establisher parameter passed to a CLR funclet is actually a pointer
|
|
|
|
// to the (mostly empty) frame of its nearest enclosing funclet; we have
|
|
|
|
// to find the root function establisher frame by loading the PSPSym from
|
|
|
|
// the intermediate frame.
|
|
|
|
unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
|
|
|
|
MachinePointerInfo NoInfo;
|
|
|
|
MBB.addLiveIn(Establisher);
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
|
|
|
|
Establisher, false, PSPSlotOffset)
|
|
|
|
.addMemOperand(MF.getMachineMemOperand(
|
|
|
|
NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
|
|
|
|
;
|
|
|
|
// Save the root establisher back into the current funclet's (mostly
|
|
|
|
// empty) frame, in case a sub-funclet or the GC needs it.
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
|
|
|
|
false, PSPSlotOffset)
|
|
|
|
.addReg(Establisher)
|
|
|
|
.addMemOperand(
|
|
|
|
MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
|
|
|
|
MachineMemOperand::MOVolatile,
|
|
|
|
SlotSize, SlotSize));
|
|
|
|
}
|
|
|
|
SPOrEstablisher = Establisher;
|
|
|
|
} else {
|
|
|
|
SPOrEstablisher = StackPtr;
|
|
|
|
}
|
|
|
|
|
2015-06-17 02:08:57 +08:00
|
|
|
if (IsWin64Prologue && HasFP) {
|
2015-09-30 07:32:01 +08:00
|
|
|
// Set RBP to a small fixed offset from RSP. In the funclet case, we base
|
2015-11-05 10:20:07 +08:00
|
|
|
// this calculation on the incoming establisher, which holds the value of
|
|
|
|
// RSP from the parent frame at the end of the prologue.
|
2015-09-30 07:32:01 +08:00
|
|
|
SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
|
2015-02-24 05:50:27 +08:00
|
|
|
if (SEHFrameOffset)
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
|
2015-11-05 10:20:07 +08:00
|
|
|
SPOrEstablisher, false, SEHFrameOffset);
|
2015-02-24 05:50:27 +08:00
|
|
|
else
|
2015-09-30 07:32:01 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
|
2015-11-05 10:20:07 +08:00
|
|
|
.addReg(SPOrEstablisher);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2015-09-30 07:32:01 +08:00
|
|
|
// If this is not a funclet, emit the CFI describing our frame pointer.
|
2015-12-16 07:40:58 +08:00
|
|
|
if (NeedsWinCFI && !IsFunclet) {
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
|
2016-09-23 03:50:05 +08:00
|
|
|
HasWinCFI = true;
|
2015-02-02 00:15:07 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
|
|
|
|
.addImm(FramePtr)
|
|
|
|
.addImm(SEHFrameOffset)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-12-16 07:40:58 +08:00
|
|
|
if (isAsynchronousEHPersonality(Personality))
|
|
|
|
MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
|
|
|
|
}
|
2015-09-30 07:32:01 +08:00
|
|
|
} else if (IsFunclet && STI.is32Bit()) {
|
|
|
|
// Reset EBP / ESI to something good for funclets.
|
|
|
|
MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
|
2015-11-14 05:27:00 +08:00
|
|
|
// If we're a catch funclet, we can be returned to via catchret. Save ESP
|
|
|
|
// into the registration node so that the runtime will restore it for us.
|
|
|
|
if (!MBB.isCleanupFuncletEntry()) {
|
2015-12-16 07:40:58 +08:00
|
|
|
assert(Personality == EHPersonality::MSVC_CXX);
|
2015-11-14 05:27:00 +08:00
|
|
|
unsigned FrameReg;
|
2015-11-18 05:10:25 +08:00
|
|
|
int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
|
2015-11-14 05:27:00 +08:00
|
|
|
int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
|
|
|
|
// ESP is the first field, so no extra displacement is needed.
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
|
|
|
|
false, EHRegOffset)
|
|
|
|
.addReg(X86::ESP);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2015-02-11 03:01:47 +08:00
|
|
|
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
|
2019-08-21 06:08:57 +08:00
|
|
|
const MachineInstr &FrameInstr = *MBBI;
|
2015-02-02 00:15:07 +08:00
|
|
|
++MBBI;
|
|
|
|
|
2015-06-17 02:08:57 +08:00
|
|
|
if (NeedsWinCFI) {
|
2015-02-11 03:01:47 +08:00
|
|
|
int FI;
|
2019-08-21 06:08:57 +08:00
|
|
|
if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
|
2015-02-11 03:01:47 +08:00
|
|
|
if (X86::FR64RegClass.contains(Reg)) {
|
2019-08-27 09:53:24 +08:00
|
|
|
int Offset;
|
2019-08-21 06:08:57 +08:00
|
|
|
unsigned IgnoredFrameReg;
|
2019-08-27 09:53:24 +08:00
|
|
|
if (IsWin64Prologue && IsFunclet)
|
|
|
|
Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
|
|
|
|
else
|
|
|
|
Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
|
|
|
|
SEHFrameOffset;
|
2019-08-21 06:08:57 +08:00
|
|
|
|
2016-09-23 03:50:05 +08:00
|
|
|
HasWinCFI = true;
|
2019-08-21 06:08:57 +08:00
|
|
|
assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
|
2015-02-11 03:01:47 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
|
|
|
|
.addImm(Reg)
|
|
|
|
.addImm(Offset)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2015-02-11 03:01:47 +08:00
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2016-09-23 03:50:05 +08:00
|
|
|
if (NeedsWinCFI && HasWinCFI)
|
2015-02-02 00:15:07 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
if (FnHasClrFunclet && !IsFunclet) {
|
|
|
|
// Save the so-called Initial-SP (i.e. the value of the stack pointer
|
|
|
|
// immediately after the prolog) into the PSPSlot so that funclets
|
|
|
|
// and the GC can recover it.
|
|
|
|
unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
|
|
|
|
auto PSPInfo = MachinePointerInfo::getFixedStack(
|
2015-11-18 05:10:25 +08:00
|
|
|
MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
|
|
|
|
PSPSlotOffset)
|
|
|
|
.addReg(StackPtr)
|
|
|
|
.addMemOperand(MF.getMachineMemOperand(
|
|
|
|
PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
|
|
|
|
SlotSize, SlotSize));
|
|
|
|
}
|
|
|
|
|
2015-02-10 08:57:42 +08:00
|
|
|
// Realign stack after we spilled callee-saved registers (so that we'll be
|
|
|
|
// able to calculate their offsets from the frame pointer).
|
|
|
|
// Win64 requires aligning the stack after the prologue.
|
2015-06-19 04:32:02 +08:00
|
|
|
if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
|
2015-02-10 08:57:42 +08:00
|
|
|
assert(HasFP && "There should be a frame pointer if stack is realigned.");
|
2015-11-06 05:09:49 +08:00
|
|
|
BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
|
2015-02-10 08:57:42 +08:00
|
|
|
}
|
|
|
|
|
2015-11-06 05:09:49 +08:00
|
|
|
// We already dealt with stack realignment and funclets above.
|
|
|
|
if (IsFunclet && STI.is32Bit())
|
|
|
|
return;
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// If we need a base pointer, set it up here. It's whatever the value
|
|
|
|
// of the stack pointer is at this point. Any variable size objects
|
|
|
|
// will be allocated after this, so we can still use the base pointer
|
|
|
|
// to reference locals.
|
2015-06-19 04:32:02 +08:00
|
|
|
if (TRI->hasBasePointer(MF)) {
|
2015-02-02 00:15:07 +08:00
|
|
|
// Update the base pointer with the current stack pointer.
|
|
|
|
unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
|
2015-11-06 05:09:49 +08:00
|
|
|
.addReg(SPOrEstablisher)
|
2015-02-02 00:15:07 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (X86FI->getRestoreBasePointer()) {
|
2015-07-08 07:45:58 +08:00
|
|
|
// Stash value of base pointer. Saving RSP instead of EBP shortens
|
|
|
|
// dependence chain. Used by SjLj EH.
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
|
|
|
|
FramePtr, true, X86FI->getRestoreBasePointerOffset())
|
2015-11-06 05:09:49 +08:00
|
|
|
.addReg(SPOrEstablisher)
|
2015-02-02 00:15:07 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
2015-07-08 07:45:58 +08:00
|
|
|
|
2015-11-06 05:09:49 +08:00
|
|
|
if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
|
2015-07-08 07:45:58 +08:00
|
|
|
// Stash the value of the frame pointer relative to the base pointer for
|
|
|
|
// Win32 EH. This supports Win32 EH, which does the inverse of the above:
|
|
|
|
// it recovers the frame pointer from the base pointer rather than the
|
|
|
|
// other way around.
|
|
|
|
unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
|
2015-09-09 06:44:41 +08:00
|
|
|
unsigned UsedReg;
|
|
|
|
int Offset =
|
|
|
|
getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
|
|
|
|
assert(UsedReg == BasePtr);
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
|
2015-07-08 07:45:58 +08:00
|
|
|
.addReg(FramePtr)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
|
|
|
|
// Mark end of stack pointer adjustment.
|
|
|
|
if (!HasFP && NumBytes) {
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
|
|
assert(StackSize);
|
2015-06-19 02:03:25 +08:00
|
|
|
BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
|
|
|
|
nullptr, -StackSize + stackGrowth));
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Emit DWARF info specifying the offsets of the callee-saved registers.
|
2017-11-18 14:23:48 +08:00
|
|
|
emitCalleeSavedFrameMoves(MBB, MBBI, DL);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2016-05-13 20:46:57 +08:00
|
|
|
|
|
|
|
// X86 Interrupt handling function cannot assume anything about the direction
|
|
|
|
// flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
|
|
|
|
// in each prologue of interrupt handler function.
|
|
|
|
//
|
|
|
|
// FIXME: Create "cld" instruction only in these cases:
|
|
|
|
// 1. The interrupt handling function uses any of the "rep" instructions.
|
|
|
|
// 2. Interrupt handling function calls another function.
|
|
|
|
//
|
2017-12-16 06:22:58 +08:00
|
|
|
if (Fn.getCallingConv() == CallingConv::X86_INTR)
|
2016-05-13 20:46:57 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2016-09-23 03:50:05 +08:00
|
|
|
|
|
|
|
// At this point we know if the function has WinCFI or not.
|
|
|
|
MF.setHasWinCFI(HasWinCFI);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2015-05-27 14:28:41 +08:00
|
|
|
bool X86FrameLowering::canUseLEAForSPInEpilogue(
|
|
|
|
const MachineFunction &MF) const {
|
2016-09-09 09:07:01 +08:00
|
|
|
// We can't use LEA instructions for adjusting the stack pointer if we don't
|
|
|
|
// have a frame pointer in the Win64 ABI. Only ADD instructions may be used
|
|
|
|
// to deallocate the stack.
|
2015-05-23 02:10:47 +08:00
|
|
|
// This means that we can use LEA for SP in two situations:
|
|
|
|
// 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
|
|
|
|
// 2. We *have* a frame pointer which means we are permitted to use LEA.
|
2015-05-27 14:28:41 +08:00
|
|
|
return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
|
|
|
|
}
|
|
|
|
|
2016-07-12 11:18:50 +08:00
|
|
|
static bool isFuncletReturnInstr(MachineInstr &MI) {
|
|
|
|
switch (MI.getOpcode()) {
|
2015-09-09 06:44:41 +08:00
|
|
|
case X86::CATCHRET:
|
2015-09-10 08:25:23 +08:00
|
|
|
case X86::CLEANUPRET:
|
2015-09-09 06:44:41 +08:00
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
llvm_unreachable("impossible");
|
|
|
|
}
|
|
|
|
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
|
|
|
|
// stack. It holds a pointer to the bottom of the root function frame. The
|
|
|
|
// establisher frame pointer passed to a nested funclet may point to the
|
|
|
|
// (mostly empty) frame of its parent funclet, but it will need to find
|
|
|
|
// the frame of the root function to access locals. To facilitate this,
|
|
|
|
// every funclet copies the pointer to the bottom of the root function
|
|
|
|
// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
|
|
|
|
// same offset for the PSPSym in the root function frame that's used in the
|
|
|
|
// funclets' frames allows each funclet to dynamically accept any ancestor
|
|
|
|
// frame as its establisher argument (the runtime doesn't guarantee the
|
|
|
|
// immediate parent for some reason lost to history), and also allows the GC,
|
|
|
|
// which uses the PSPSym for some bookkeeping, to find it in any funclet's
|
|
|
|
// frame with only a single offset reported for the entire method.
|
|
|
|
unsigned
|
|
|
|
X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
|
2015-11-18 05:10:25 +08:00
|
|
|
const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
unsigned SPReg;
|
2016-06-17 02:54:06 +08:00
|
|
|
int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
|
|
|
|
/*IgnoreSPUpdates*/ true);
|
|
|
|
assert(Offset >= 0 && SPReg == TRI->getStackRegister());
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
return static_cast<unsigned>(Offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned
|
|
|
|
X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
|
2019-08-27 09:53:24 +08:00
|
|
|
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
2015-10-17 07:43:27 +08:00
|
|
|
// This is the size of the pushed CSRs.
|
2019-08-27 09:53:24 +08:00
|
|
|
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
|
|
|
|
// This is the size of callee saved XMMs.
|
|
|
|
const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
|
|
|
|
unsigned XMMSize = WinEHXMMSlotInfo.size() *
|
|
|
|
TRI->getSpillSize(X86::VR128RegClass);
|
2015-10-17 07:43:27 +08:00
|
|
|
// This is the amount of stack a funclet needs to allocate.
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
unsigned UsedSize;
|
|
|
|
EHPersonality Personality =
|
2017-12-16 06:22:58 +08:00
|
|
|
classifyEHPersonality(MF.getFunction().getPersonalityFn());
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
if (Personality == EHPersonality::CoreCLR) {
|
|
|
|
// CLR funclets need to hold enough space to include the PSPSym, at the
|
|
|
|
// same offset from the stack pointer (immediately after the prolog) as it
|
|
|
|
// resides at in the main function.
|
|
|
|
UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
|
|
|
|
} else {
|
|
|
|
// Other funclets just need enough stack for outgoing call arguments.
|
2016-07-29 02:40:00 +08:00
|
|
|
UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
|
[WinEH] Find root frame correctly in CLR funclets
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
2015-11-13 08:39:23 +08:00
|
|
|
}
|
2015-10-17 07:43:27 +08:00
|
|
|
// RBP is not included in the callee saved register block. After pushing RBP,
|
|
|
|
// everything is 16 byte aligned. Everything we allocate before an outgoing
|
|
|
|
// call must also be 16 byte aligned.
|
2016-01-15 05:06:47 +08:00
|
|
|
unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
|
2015-10-17 07:43:27 +08:00
|
|
|
// Subtract out the size of the callee saved registers. This is how much stack
|
|
|
|
// each funclet will allocate.
|
2019-08-27 09:53:24 +08:00
|
|
|
return FrameSizeMinusRBP + XMMSize - CSSize;
|
2015-10-17 07:43:27 +08:00
|
|
|
}
|
|
|
|
|
2016-07-12 05:03:03 +08:00
|
|
|
static bool isTailCallOpcode(unsigned Opc) {
|
|
|
|
return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
|
|
|
|
Opc == X86::TCRETURNmi ||
|
|
|
|
Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
|
|
|
|
Opc == X86::TCRETURNmi64;
|
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
void X86FrameLowering::emitEpilogue(MachineFunction &MF,
|
|
|
|
MachineBasicBlock &MBB) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
2017-10-06 05:37:39 +08:00
|
|
|
MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
|
|
|
|
MachineBasicBlock::iterator MBBI = Terminator;
|
2015-05-27 14:28:41 +08:00
|
|
|
DebugLoc DL;
|
|
|
|
if (MBBI != MBB.end())
|
|
|
|
DL = MBBI->getDebugLoc();
|
2015-02-02 00:15:07 +08:00
|
|
|
// standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
|
|
|
|
const bool Is64BitILP32 = STI.isTarget64BitILP32();
|
2019-08-17 04:50:23 +08:00
|
|
|
Register FramePtr = TRI->getFrameRegister(MF);
|
2015-02-03 01:38:43 +08:00
|
|
|
unsigned MachineFramePtr =
|
2019-08-17 04:50:23 +08:00
|
|
|
Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2015-06-17 02:08:57 +08:00
|
|
|
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
bool NeedsWin64CFI =
|
2017-12-16 06:22:58 +08:00
|
|
|
IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
|
2016-08-13 06:43:33 +08:00
|
|
|
bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
2016-07-29 02:40:00 +08:00
|
|
|
uint64_t StackSize = MFI.getStackSize();
|
2015-02-10 08:57:42 +08:00
|
|
|
uint64_t MaxAlign = calculateMaxStackAlign(MF);
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
|
2017-10-06 02:27:08 +08:00
|
|
|
bool HasFP = hasFP(MF);
|
2015-02-02 00:15:07 +08:00
|
|
|
uint64_t NumBytes = 0;
|
|
|
|
|
2019-10-31 16:55:57 +08:00
|
|
|
bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
|
|
|
|
!MF.getTarget().getTargetTriple().isOSWindows()) &&
|
|
|
|
MF.needsFrameMoves();
|
2018-04-24 18:32:08 +08:00
|
|
|
|
2017-10-06 02:27:08 +08:00
|
|
|
if (IsFunclet) {
|
|
|
|
assert(HasFP && "EH funclets without FP not yet implemented");
|
2015-10-17 07:43:27 +08:00
|
|
|
NumBytes = getWinEHFuncletFrameSize(MF);
|
2017-10-06 02:27:08 +08:00
|
|
|
} else if (HasFP) {
|
2015-02-02 00:15:07 +08:00
|
|
|
// Calculate required stack adjustment.
|
|
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
2015-02-21 09:04:47 +08:00
|
|
|
NumBytes = FrameSize - CSSize;
|
|
|
|
|
|
|
|
// Callee-saved registers were pushed on stack before the stack was
|
|
|
|
// realigned.
|
2015-06-19 04:32:02 +08:00
|
|
|
if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
|
2016-01-15 05:06:47 +08:00
|
|
|
NumBytes = alignTo(FrameSize, MaxAlign);
|
2015-02-02 00:15:07 +08:00
|
|
|
} else {
|
|
|
|
NumBytes = StackSize - CSSize;
|
|
|
|
}
|
2015-02-10 08:57:42 +08:00
|
|
|
uint64_t SEHStackAllocAmt = NumBytes;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2017-10-06 02:27:08 +08:00
|
|
|
if (HasFP) {
|
|
|
|
// Pop EBP.
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
|
|
|
|
MachineFramePtr)
|
|
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
2018-04-24 18:32:08 +08:00
|
|
|
if (NeedsDwarfCFI) {
|
|
|
|
unsigned DwarfStackPtr =
|
|
|
|
TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
|
|
|
|
BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
|
|
|
|
nullptr, DwarfStackPtr, -SlotSize));
|
|
|
|
--MBBI;
|
|
|
|
}
|
2017-10-06 02:27:08 +08:00
|
|
|
}
|
|
|
|
|
2016-12-06 18:24:55 +08:00
|
|
|
MachineBasicBlock::iterator FirstCSPop = MBBI;
|
2015-02-02 00:15:07 +08:00
|
|
|
// Skip the callee-saved pop instructions.
|
|
|
|
while (MBBI != MBB.begin()) {
|
|
|
|
MachineBasicBlock::iterator PI = std::prev(MBBI);
|
|
|
|
unsigned Opc = PI->getOpcode();
|
|
|
|
|
2016-12-06 18:24:55 +08:00
|
|
|
if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
|
|
|
|
if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
|
|
|
|
(Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
|
|
|
|
break;
|
|
|
|
FirstCSPop = PI;
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
--MBBI;
|
|
|
|
}
|
2016-12-06 18:24:55 +08:00
|
|
|
MBBI = FirstCSPop;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2017-10-06 05:37:39 +08:00
|
|
|
if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
|
|
|
|
emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
|
2015-10-10 06:18:45 +08:00
|
|
|
|
2015-05-27 14:28:41 +08:00
|
|
|
if (MBBI != MBB.end())
|
|
|
|
DL = MBBI->getDebugLoc();
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// If there is an ADD32ri or SUB32ri of ESP immediately before this
|
|
|
|
// instruction, merge the two instructions.
|
2016-07-29 02:40:00 +08:00
|
|
|
if (NumBytes || MFI.hasVarSizedObjects())
|
2015-07-28 16:56:13 +08:00
|
|
|
NumBytes += mergeSPUpdates(MBB, MBBI, true);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// If dynamic alloca is used, then reset esp to point to the last callee-saved
|
|
|
|
// slot before popping them off! Same applies for the case, when stack was
|
2015-10-08 07:55:01 +08:00
|
|
|
// realigned. Don't do this if this was a funclet epilogue, since the funclets
|
|
|
|
// will not do realignment or dynamic stack allocation.
|
2016-07-29 02:40:00 +08:00
|
|
|
if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
|
2015-10-08 07:55:01 +08:00
|
|
|
!IsFunclet) {
|
2015-06-19 04:32:02 +08:00
|
|
|
if (TRI->needsStackRealignment(MF))
|
2015-02-02 00:15:07 +08:00
|
|
|
MBBI = FirstCSPop;
|
2015-02-26 05:13:37 +08:00
|
|
|
unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
|
2015-06-17 02:08:57 +08:00
|
|
|
uint64_t LEAAmount =
|
|
|
|
IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
|
2015-02-26 05:13:37 +08:00
|
|
|
|
|
|
|
// There are only two legal forms of epilogue:
|
|
|
|
// - add SEHAllocationSize, %rsp
|
|
|
|
// - lea SEHAllocationSize(%FramePtr), %rsp
|
|
|
|
//
|
|
|
|
// 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
|
|
|
|
// However, we may use this sequence if we have a frame pointer because the
|
|
|
|
// effects of the prologue can safely be undone.
|
|
|
|
if (LEAAmount != 0) {
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
|
2015-02-26 05:13:37 +08:00
|
|
|
FramePtr, false, LEAAmount);
|
2015-02-02 00:15:07 +08:00
|
|
|
--MBBI;
|
|
|
|
} else {
|
|
|
|
unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
|
|
.addReg(FramePtr);
|
|
|
|
--MBBI;
|
|
|
|
}
|
|
|
|
} else if (NumBytes) {
|
|
|
|
// Adjust stack pointer back: ESP += numbytes.
|
2018-02-15 01:35:52 +08:00
|
|
|
emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
|
2018-04-24 18:32:08 +08:00
|
|
|
if (!hasFP(MF) && NeedsDwarfCFI) {
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
|
|
BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
|
|
|
|
nullptr, -CSSize - SlotSize));
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
--MBBI;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Windows unwinder will not invoke function's exception handler if IP is
|
|
|
|
// either in prologue or in epilogue. This behavior causes a problem when a
|
|
|
|
// call immediately precedes an epilogue, because the return address points
|
|
|
|
// into the epilogue. To cope with that, we insert an epilogue marker here,
|
|
|
|
// then replace it with a 'nop' if it ends up immediately after a CALL in the
|
|
|
|
// final emitted code.
|
[codeview] Implement FPO data assembler directives
Summary:
This adds a set of new directives that describe 32-bit x86 prologues.
The directives are limited and do not expose the full complexity of
codeview FPO data. They are merely a convenience for the compiler to
generate more readable assembly so we don't need to generate tons of
labels in CodeGen. If our prologue emission changes in the future, we
can change the set of available directives to suit our needs. These are
modelled after the .seh_ directives, which use a different format that
interacts with exception handling.
The directives are:
.cv_fpo_proc _foo
.cv_fpo_pushreg ebp/ebx/etc
.cv_fpo_setframe ebp/esi/etc
.cv_fpo_stackalloc 200
.cv_fpo_endprologue
.cv_fpo_endproc
.cv_fpo_data _foo
I tried to follow the implementation of ARM EHABI CFI directives by
sinking most directives out of MCStreamer and into X86TargetStreamer.
This helps avoid polluting non-X86 code with WinCOFF specific logic.
I used cdb to confirm that this can show locals in parent CSRs in a few
cases, most importantly the one where we use ESI as a frame pointer,
i.e. the one in http://crbug.com/756153#c28
Once we have cdb integration in debuginfo-tests, we can add integration
tests there.
Reviewers: majnemer, hans
Subscribers: aemerson, mgorny, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D38776
llvm-svn: 315513
2017-10-12 05:24:33 +08:00
|
|
|
if (NeedsWin64CFI && MF.hasWinCFI())
|
2015-02-02 00:15:07 +08:00
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
|
|
|
|
|
2018-04-24 18:32:08 +08:00
|
|
|
if (!hasFP(MF) && NeedsDwarfCFI) {
|
|
|
|
MBBI = FirstCSPop;
|
|
|
|
int64_t Offset = -CSSize - SlotSize;
|
|
|
|
// Mark callee-saved pop instruction.
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
|
|
while (MBBI != MBB.end()) {
|
|
|
|
MachineBasicBlock::iterator PI = MBBI;
|
|
|
|
unsigned Opc = PI->getOpcode();
|
|
|
|
++MBBI;
|
|
|
|
if (Opc == X86::POP32r || Opc == X86::POP64r) {
|
|
|
|
Offset += SlotSize;
|
|
|
|
BuildCFI(MBB, MBBI, DL,
|
|
|
|
MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-10-06 05:37:39 +08:00
|
|
|
if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
|
2016-07-12 05:03:03 +08:00
|
|
|
// Add the return addr area delta back since we are not tail calling.
|
|
|
|
int Offset = -1 * X86FI->getTCReturnAddrDelta();
|
|
|
|
assert(Offset >= 0 && "TCDelta should never be positive");
|
|
|
|
if (Offset) {
|
|
|
|
// Check for possible merge with preceding ADD instruction.
|
2017-10-06 05:37:39 +08:00
|
|
|
Offset += mergeSPUpdates(MBB, Terminator, true);
|
2018-02-15 01:35:52 +08:00
|
|
|
emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
|
2016-07-12 05:03:03 +08:00
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-08-15 10:32:35 +08:00
|
|
|
int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
|
|
|
|
unsigned &FrameReg) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-08-15 10:32:35 +08:00
|
|
|
|
2017-04-20 07:10:43 +08:00
|
|
|
bool IsFixed = MFI.isFixedObjectIndex(FI);
|
2015-08-15 10:32:35 +08:00
|
|
|
// We can't calculate offset from frame pointer if the stack is realigned,
|
|
|
|
// so enforce usage of stack/base pointer. The base pointer is used when we
|
|
|
|
// have dynamic allocas in addition to dynamic realignment.
|
|
|
|
if (TRI->hasBasePointer(MF))
|
2017-04-20 07:10:43 +08:00
|
|
|
FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
|
2015-08-15 10:32:35 +08:00
|
|
|
else if (TRI->needsStackRealignment(MF))
|
2017-04-20 07:10:43 +08:00
|
|
|
FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
|
2015-08-15 10:32:35 +08:00
|
|
|
else
|
|
|
|
FrameReg = TRI->getFrameRegister(MF);
|
|
|
|
|
2015-02-10 08:57:42 +08:00
|
|
|
// Offset will hold the offset from the stack pointer at function entry to the
|
|
|
|
// object.
|
|
|
|
// We need to factor in additional offsets applied during the prologue to the
|
|
|
|
// frame, base, and stack pointer depending on which is used.
|
2016-07-29 02:40:00 +08:00
|
|
|
int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
|
2015-02-10 08:57:42 +08:00
|
|
|
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
|
2016-07-29 02:40:00 +08:00
|
|
|
uint64_t StackSize = MFI.getStackSize();
|
2015-02-10 08:57:42 +08:00
|
|
|
bool HasFP = hasFP(MF);
|
2015-06-17 02:08:57 +08:00
|
|
|
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
|
2015-02-10 08:57:42 +08:00
|
|
|
int64_t FPDelta = 0;
|
|
|
|
|
2019-02-26 10:11:25 +08:00
|
|
|
// In an x86 interrupt, remove the offset we added to account for the return
|
|
|
|
// address from any stack object allocated in the caller's frame. Interrupts
|
|
|
|
// do not have a standard return address. Fixed objects in the current frame,
|
|
|
|
// such as SSE register spills, should not get this treatment.
|
|
|
|
if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
|
|
|
|
Offset >= 0) {
|
|
|
|
Offset += getOffsetOfLocalArea();
|
|
|
|
}
|
|
|
|
|
2015-06-17 02:08:57 +08:00
|
|
|
if (IsWin64Prologue) {
|
2016-07-29 02:40:00 +08:00
|
|
|
assert(!MFI.hasCalls() || (StackSize % 16) == 8);
|
2015-02-21 09:04:47 +08:00
|
|
|
|
2015-02-10 08:57:42 +08:00
|
|
|
// Calculate required stack adjustment.
|
|
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
|
|
|
// If required, include space for extra hidden slot for stashing base pointer.
|
|
|
|
if (X86FI->getRestoreBasePointer())
|
|
|
|
FrameSize += SlotSize;
|
2015-02-21 09:04:47 +08:00
|
|
|
uint64_t NumBytes = FrameSize - CSSize;
|
|
|
|
|
2015-02-10 08:57:42 +08:00
|
|
|
uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
|
2015-02-11 05:22:05 +08:00
|
|
|
if (FI && FI == X86FI->getFAIndex())
|
|
|
|
return -SEHFrameOffset;
|
|
|
|
|
2015-02-10 08:57:42 +08:00
|
|
|
// FPDelta is the offset from the "traditional" FP location of the old base
|
|
|
|
// pointer followed by return address and the location required by the
|
|
|
|
// restricted Win64 prologue.
|
|
|
|
// Add FPDelta to all offsets below that go through the frame pointer.
|
2015-02-21 09:04:47 +08:00
|
|
|
FPDelta = FrameSize - SEHFrameOffset;
|
2016-07-29 02:40:00 +08:00
|
|
|
assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
|
2015-02-21 09:04:47 +08:00
|
|
|
"FPDelta isn't aligned per the Win64 ABI!");
|
2015-02-10 08:57:42 +08:00
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2015-06-19 04:32:02 +08:00
|
|
|
if (TRI->hasBasePointer(MF)) {
|
2015-02-10 08:57:42 +08:00
|
|
|
assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
|
2015-02-02 00:15:07 +08:00
|
|
|
if (FI < 0) {
|
|
|
|
// Skip the saved EBP.
|
2015-02-10 08:57:42 +08:00
|
|
|
return Offset + SlotSize + FPDelta;
|
2015-02-02 00:15:07 +08:00
|
|
|
} else {
|
2016-07-29 02:40:00 +08:00
|
|
|
assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
|
2015-02-02 00:15:07 +08:00
|
|
|
return Offset + StackSize;
|
|
|
|
}
|
2015-06-19 04:32:02 +08:00
|
|
|
} else if (TRI->needsStackRealignment(MF)) {
|
2015-02-02 00:15:07 +08:00
|
|
|
if (FI < 0) {
|
|
|
|
// Skip the saved EBP.
|
2015-02-10 08:57:42 +08:00
|
|
|
return Offset + SlotSize + FPDelta;
|
2015-02-02 00:15:07 +08:00
|
|
|
} else {
|
2016-07-29 02:40:00 +08:00
|
|
|
assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
|
2015-02-02 00:15:07 +08:00
|
|
|
return Offset + StackSize;
|
|
|
|
}
|
|
|
|
// FIXME: Support tail calls
|
|
|
|
} else {
|
2015-02-10 08:57:42 +08:00
|
|
|
if (!HasFP)
|
2015-02-02 00:15:07 +08:00
|
|
|
return Offset + StackSize;
|
|
|
|
|
|
|
|
// Skip the saved EBP.
|
2015-02-10 08:57:42 +08:00
|
|
|
Offset += SlotSize;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Skip the RETADDR move area
|
|
|
|
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
|
|
if (TailCallReturnAddrDelta < 0)
|
|
|
|
Offset -= TailCallReturnAddrDelta;
|
|
|
|
}
|
|
|
|
|
2015-02-21 09:04:47 +08:00
|
|
|
return Offset + FPDelta;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2019-08-27 09:53:24 +08:00
|
|
|
int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF,
|
|
|
|
int FI, unsigned &FrameReg) const {
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
|
|
|
|
const auto it = WinEHXMMSlotInfo.find(FI);
|
|
|
|
|
|
|
|
if (it == WinEHXMMSlotInfo.end())
|
|
|
|
return getFrameIndexReference(MF, FI, FrameReg);
|
|
|
|
|
|
|
|
FrameReg = TRI->getStackRegister();
|
2019-11-14 15:12:07 +08:00
|
|
|
return alignDown(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second;
|
2019-08-27 09:53:24 +08:00
|
|
|
}
|
|
|
|
|
2017-04-25 02:15:00 +08:00
|
|
|
int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
|
|
|
|
int FI, unsigned &FrameReg,
|
|
|
|
int Adjustment) const {
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
FrameReg = TRI->getStackRegister();
|
|
|
|
return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
|
|
|
|
}
|
|
|
|
|
2016-06-17 02:54:06 +08:00
|
|
|
int
|
|
|
|
X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
|
|
|
|
int FI, unsigned &FrameReg,
|
|
|
|
bool IgnoreSPUpdates) const {
|
|
|
|
|
2016-07-29 02:40:00 +08:00
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
// Does not include any dynamic realign.
|
2016-07-29 02:40:00 +08:00
|
|
|
const uint64_t StackSize = MFI.getStackSize();
|
2016-06-15 13:35:14 +08:00
|
|
|
// LLVM arranges the stack as follows:
|
|
|
|
// ...
|
|
|
|
// ARG2
|
|
|
|
// ARG1
|
|
|
|
// RETADDR
|
|
|
|
// PUSH RBP <-- RBP points here
|
|
|
|
// PUSH CSRs
|
|
|
|
// ~~~~~~~ <-- possible stack realignment (non-win64)
|
|
|
|
// ...
|
|
|
|
// STACK OBJECTS
|
|
|
|
// ... <-- RSP after prologue points here
|
|
|
|
// ~~~~~~~ <-- possible stack realignment (win64)
|
|
|
|
//
|
|
|
|
// if (hasVarSizedObjects()):
|
|
|
|
// ... <-- "base pointer" (ESI/RBX) points here
|
|
|
|
// DYNAMIC ALLOCAS
|
|
|
|
// ... <-- RSP points here
|
|
|
|
//
|
|
|
|
// Case 1: In the simple case of no stack realignment and no dynamic
|
|
|
|
// allocas, both "fixed" stack objects (arguments and CSRs) are addressable
|
|
|
|
// with fixed offsets from RSP.
|
|
|
|
//
|
|
|
|
// Case 2: In the case of stack realignment with no dynamic allocas, fixed
|
|
|
|
// stack objects are addressed with RBP and regular stack objects with RSP.
|
|
|
|
//
|
|
|
|
// Case 3: In the case of dynamic allocas and stack realignment, RSP is used
|
|
|
|
// to address stack arguments for outgoing calls and nothing else. The "base
|
|
|
|
// pointer" points to local variables, and RBP points to fixed objects.
|
|
|
|
//
|
|
|
|
// In cases 2 and 3, we can only answer for non-fixed stack objects, and the
|
|
|
|
// answer we give is relative to the SP after the prologue, and not the
|
|
|
|
// SP in the middle of the function.
|
|
|
|
|
2016-07-29 02:40:00 +08:00
|
|
|
if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
|
2016-06-15 13:35:14 +08:00
|
|
|
!STI.isTargetWin64())
|
2016-06-17 02:54:06 +08:00
|
|
|
return getFrameIndexReference(MF, FI, FrameReg);
|
2016-06-15 13:35:14 +08:00
|
|
|
|
|
|
|
// If !hasReservedCallFrame the function might have SP adjustement in the
|
|
|
|
// body. So, even though the offset is statically known, it depends on where
|
|
|
|
// we are in the function.
|
2019-06-26 04:53:35 +08:00
|
|
|
if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
|
2016-06-17 02:54:06 +08:00
|
|
|
return getFrameIndexReference(MF, FI, FrameReg);
|
2016-06-15 15:27:04 +08:00
|
|
|
|
2016-06-15 13:35:14 +08:00
|
|
|
// We don't handle tail calls, and shouldn't be seeing them either.
|
2016-06-15 15:27:04 +08:00
|
|
|
assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
|
|
|
|
"we don't handle this case!");
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// This is how the math works out:
|
|
|
|
//
|
|
|
|
// %rsp grows (i.e. gets lower) left to right. Each box below is
|
|
|
|
// one word (eight bytes). Obj0 is the stack slot we're trying to
|
|
|
|
// get to.
|
|
|
|
//
|
|
|
|
// ----------------------------------
|
|
|
|
// | BP | Obj0 | Obj1 | ... | ObjN |
|
|
|
|
// ----------------------------------
|
|
|
|
// ^ ^ ^ ^
|
|
|
|
// A B C E
|
|
|
|
//
|
|
|
|
// A is the incoming stack pointer.
|
|
|
|
// (B - A) is the local area offset (-8 for x86-64) [1]
|
2016-07-29 02:40:00 +08:00
|
|
|
// (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
|
2015-02-02 00:15:07 +08:00
|
|
|
//
|
|
|
|
// |(E - B)| is the StackSize (absolute value, positive). For a
|
|
|
|
// stack that grown down, this works out to be (B - E). [3]
|
|
|
|
//
|
|
|
|
// E is also the value of %rsp after stack has been set up, and we
|
|
|
|
// want (C - E) -- the value we can add to %rsp to get to Obj0. Now
|
|
|
|
// (C - E) == (C - A) - (B - A) + (B - E)
|
|
|
|
// { Using [1], [2] and [3] above }
|
|
|
|
// == getObjectOffset - LocalAreaOffset + StackSize
|
|
|
|
|
2017-04-25 02:15:00 +08:00
|
|
|
return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool X86FrameLowering::assignCalleeSavedSpillSlots(
|
|
|
|
MachineFunction &MF, const TargetRegisterInfo *TRI,
|
|
|
|
std::vector<CalleeSavedInfo> &CSI) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
|
|
|
|
unsigned CalleeSavedFrameSize = 0;
|
2019-08-27 09:53:24 +08:00
|
|
|
unsigned XMMCalleeSavedFrameSize = 0;
|
|
|
|
auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
|
|
|
|
|
2018-01-08 18:46:05 +08:00
|
|
|
int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
|
|
|
|
|
|
if (TailCallReturnAddrDelta < 0) {
|
|
|
|
// create RETURNADDR area
|
|
|
|
// arg
|
|
|
|
// arg
|
|
|
|
// RETADDR
|
|
|
|
// { ...
|
|
|
|
// RETADDR area
|
|
|
|
// ...
|
|
|
|
// }
|
|
|
|
// [EBP]
|
|
|
|
MFI.CreateFixedObject(-TailCallReturnAddrDelta,
|
|
|
|
TailCallReturnAddrDelta - SlotSize, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Spill the BasePtr if it's used.
|
|
|
|
if (this->TRI->hasBasePointer(MF)) {
|
|
|
|
// Allocate a spill slot for EBP if we have a base pointer and EH funclets.
|
|
|
|
if (MF.hasEHFunclets()) {
|
|
|
|
int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
|
|
|
|
X86FI->setHasSEHFramePtrSave(true);
|
|
|
|
X86FI->setSEHFramePtrSaveIndex(FI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
if (hasFP(MF)) {
|
|
|
|
// emitPrologue always spills frame register the first thing.
|
|
|
|
SpillSlotOffset -= SlotSize;
|
2016-07-29 02:40:00 +08:00
|
|
|
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Since emitPrologue and emitEpilogue will handle spilling and restoring of
|
|
|
|
// the frame register, we can delete it from CSI list and not have to worry
|
|
|
|
// about avoiding it later.
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register FPReg = TRI->getFrameRegister(MF);
|
2015-02-02 00:15:07 +08:00
|
|
|
for (unsigned i = 0; i < CSI.size(); ++i) {
|
|
|
|
if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
|
|
|
|
CSI.erase(CSI.begin() + i);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assign slots for GPRs. It increases frame size.
|
|
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
|
|
unsigned Reg = CSI[i - 1].getReg();
|
|
|
|
|
|
|
|
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
SpillSlotOffset -= SlotSize;
|
|
|
|
CalleeSavedFrameSize += SlotSize;
|
|
|
|
|
2016-07-29 02:40:00 +08:00
|
|
|
int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
|
2015-02-02 00:15:07 +08:00
|
|
|
CSI[i - 1].setFrameIdx(SlotIndex);
|
|
|
|
}
|
|
|
|
|
|
|
|
X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
|
[codeview] Emit S_FRAMEPROC and use S_DEFRANGE_FRAMEPOINTER_REL
Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.
On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.
To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit. Offsets
to local variables are instead relative to this value.
This is part of PR38857.
Reviewers: hans, zturner, javed.absar
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D52217
llvm-svn: 343543
2018-10-02 05:59:45 +08:00
|
|
|
MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Assign slots for XMMs.
|
|
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
|
|
unsigned Reg = CSI[i - 1].getReg();
|
2019-08-21 06:08:57 +08:00
|
|
|
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
|
2015-02-02 00:15:07 +08:00
|
|
|
continue;
|
|
|
|
|
2018-02-08 05:41:50 +08:00
|
|
|
// If this is k-register make sure we lookup via the largest legal type.
|
|
|
|
MVT VT = MVT::Other;
|
|
|
|
if (X86::VK16RegClass.contains(Reg))
|
|
|
|
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
|
|
|
|
|
|
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
|
2017-04-25 02:55:33 +08:00
|
|
|
unsigned Size = TRI->getSpillSize(*RC);
|
|
|
|
unsigned Align = TRI->getSpillAlignment(*RC);
|
2015-02-02 00:15:07 +08:00
|
|
|
// ensure alignment
|
2019-08-27 09:53:24 +08:00
|
|
|
assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
|
|
|
|
SpillSlotOffset = -alignTo(-SpillSlotOffset, Align);
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// spill into slot
|
2017-04-25 02:55:33 +08:00
|
|
|
SpillSlotOffset -= Size;
|
|
|
|
int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
|
2015-02-02 00:15:07 +08:00
|
|
|
CSI[i - 1].setFrameIdx(SlotIndex);
|
2017-04-25 02:55:33 +08:00
|
|
|
MFI.ensureMaxAlignment(Align);
|
2019-08-27 09:53:24 +08:00
|
|
|
|
|
|
|
// Save the start offset and size of XMM in stack frame for funclets.
|
|
|
|
if (X86::VR128RegClass.contains(Reg)) {
|
|
|
|
WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
|
|
|
|
XMMCalleeSavedFrameSize += Size;
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool X86FrameLowering::spillCalleeSavedRegisters(
|
|
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
2020-02-08 19:14:37 +08:00
|
|
|
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
|
2015-02-02 00:15:07 +08:00
|
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
|
2015-09-09 06:44:41 +08:00
|
|
|
// Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
|
|
|
|
// for us, and there are no XMM CSRs on Win32.
|
|
|
|
if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
|
|
|
|
return true;
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// Push GPRs. It increases frame size.
|
2016-04-14 05:43:21 +08:00
|
|
|
const MachineFunction &MF = *MBB.getParent();
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
|
|
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
|
|
unsigned Reg = CSI[i - 1].getReg();
|
|
|
|
|
|
|
|
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
|
|
|
|
continue;
|
|
|
|
|
2016-06-29 04:31:56 +08:00
|
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
bool isLiveIn = MRI.isLiveIn(Reg);
|
2016-04-14 05:43:21 +08:00
|
|
|
if (!isLiveIn)
|
|
|
|
MBB.addLiveIn(Reg);
|
|
|
|
|
2016-06-29 04:31:56 +08:00
|
|
|
// Decide whether we can add a kill flag to the use.
|
|
|
|
bool CanKill = !isLiveIn;
|
|
|
|
// Check if any subregister is live-in
|
|
|
|
if (CanKill) {
|
|
|
|
for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
|
|
|
|
if (MRI.isLiveIn(*AReg)) {
|
|
|
|
CanKill = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-04-14 05:43:21 +08:00
|
|
|
// Do not set a kill flag on values that are also marked as live-in. This
|
|
|
|
// happens with the @llvm-returnaddress intrinsic and with arguments
|
|
|
|
// passed in callee saved registers.
|
|
|
|
// Omitting the kill flags is conservatively correct even if the live-in
|
|
|
|
// is not used after all.
|
2016-06-29 04:31:56 +08:00
|
|
|
BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
|
2015-02-02 00:15:07 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make XMM regs spilled. X86 does not have ability of push/pop XMM.
|
|
|
|
// It can be done by spilling XMMs to stack frame.
|
|
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
|
|
unsigned Reg = CSI[i-1].getReg();
|
2015-02-11 03:01:47 +08:00
|
|
|
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
|
2015-02-02 00:15:07 +08:00
|
|
|
continue;
|
2018-02-08 05:41:50 +08:00
|
|
|
|
|
|
|
// If this is k-register make sure we lookup via the largest legal type.
|
|
|
|
MVT VT = MVT::Other;
|
|
|
|
if (X86::VK16RegClass.contains(Reg))
|
|
|
|
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// Add the callee-saved register as live-in. It's killed at the spill.
|
|
|
|
MBB.addLiveIn(Reg);
|
2018-02-08 05:41:50 +08:00
|
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
|
|
|
|
TRI);
|
|
|
|
--MI;
|
|
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
|
|
++MI;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-10-06 05:37:39 +08:00
|
|
|
void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
MachineInstr *CatchRet) const {
|
|
|
|
// SEH shouldn't use catchret.
|
|
|
|
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
|
2017-12-16 06:22:58 +08:00
|
|
|
MBB.getParent()->getFunction().getPersonalityFn())) &&
|
2017-10-06 05:37:39 +08:00
|
|
|
"SEH should not use CATCHRET");
|
|
|
|
DebugLoc DL = CatchRet->getDebugLoc();
|
|
|
|
MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
|
|
|
|
|
|
|
|
// Fill EAX/RAX with the address of the target block.
|
|
|
|
if (STI.is64Bit()) {
|
|
|
|
// LEA64r CatchRetTarget(%rip), %rax
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
|
|
|
|
.addReg(X86::RIP)
|
|
|
|
.addImm(0)
|
|
|
|
.addReg(0)
|
|
|
|
.addMBB(CatchRetTarget)
|
|
|
|
.addReg(0);
|
|
|
|
} else {
|
|
|
|
// MOV32ri $CatchRetTarget, %eax
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
|
|
|
|
.addMBB(CatchRetTarget);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Record that we've taken the address of CatchRetTarget and no longer just
|
|
|
|
// reference it in a terminator.
|
|
|
|
CatchRetTarget->setHasAddressTaken();
|
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MI,
|
2017-08-11 00:17:32 +08:00
|
|
|
std::vector<CalleeSavedInfo> &CSI,
|
2015-02-02 00:15:07 +08:00
|
|
|
const TargetRegisterInfo *TRI) const {
|
|
|
|
if (CSI.empty())
|
|
|
|
return false;
|
|
|
|
|
2016-08-13 07:35:59 +08:00
|
|
|
if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
|
2015-10-02 05:38:24 +08:00
|
|
|
// Don't restore CSRs in 32-bit EH funclets. Matches
|
|
|
|
// spillCalleeSavedRegisters.
|
|
|
|
if (STI.is32Bit())
|
|
|
|
return true;
|
|
|
|
// Don't restore CSRs before an SEH catchret. SEH except blocks do not form
|
|
|
|
// funclets. emitEpilogue transforms these to normal jumps.
|
|
|
|
if (MI->getOpcode() == X86::CATCHRET) {
|
2017-12-16 06:22:58 +08:00
|
|
|
const Function &F = MBB.getParent()->getFunction();
|
2015-10-02 05:38:24 +08:00
|
|
|
bool IsSEH = isAsynchronousEHPersonality(
|
2017-12-16 06:22:58 +08:00
|
|
|
classifyEHPersonality(F.getPersonalityFn()));
|
2015-10-02 05:38:24 +08:00
|
|
|
if (IsSEH)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
2015-09-09 06:44:41 +08:00
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
|
|
|
|
// Reload XMMs from stack frame.
|
|
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
|
|
unsigned Reg = CSI[i].getReg();
|
2019-08-21 06:08:57 +08:00
|
|
|
if (X86::GR64RegClass.contains(Reg) ||
|
|
|
|
X86::GR32RegClass.contains(Reg))
|
|
|
|
continue;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2019-08-21 06:08:57 +08:00
|
|
|
// If this is k-register make sure we lookup via the largest legal type.
|
|
|
|
MVT VT = MVT::Other;
|
|
|
|
if (X86::VK16RegClass.contains(Reg))
|
|
|
|
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
|
2018-02-08 05:41:50 +08:00
|
|
|
|
2019-08-21 06:08:57 +08:00
|
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
|
|
|
|
TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// POP GPRs.
|
|
|
|
unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
|
|
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
|
|
unsigned Reg = CSI[i].getReg();
|
|
|
|
if (!X86::GR64RegClass.contains(Reg) &&
|
|
|
|
!X86::GR32RegClass.contains(Reg))
|
|
|
|
continue;
|
|
|
|
|
2015-09-16 19:18:25 +08:00
|
|
|
BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
|
|
|
|
.setMIFlag(MachineInstr::FrameDestroy);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-07-15 01:17:13 +08:00
|
|
|
void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
|
|
BitVector &SavedRegs,
|
|
|
|
RegScavenger *RS) const {
|
|
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// Spill the BasePtr if it's used.
|
2018-03-03 01:46:39 +08:00
|
|
|
if (TRI->hasBasePointer(MF)){
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register BasePtr = TRI->getBaseRegister();
|
2018-03-03 01:46:39 +08:00
|
|
|
if (STI.isTarget64BitILP32())
|
|
|
|
BasePtr = getX86SubSuperRegister(BasePtr, 64);
|
|
|
|
SavedRegs.set(BasePtr);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
HasNestArgument(const MachineFunction *MF) {
|
2017-12-16 06:22:58 +08:00
|
|
|
const Function &F = MF->getFunction();
|
|
|
|
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
|
2015-02-02 00:15:07 +08:00
|
|
|
I != E; I++) {
|
2019-07-19 20:54:44 +08:00
|
|
|
if (I->hasNestAttr() && !I->use_empty())
|
2015-02-02 00:15:07 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// GetScratchRegister - Get a temp register for performing work in the
|
|
|
|
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
|
|
|
|
/// and the properties of the function either one or two registers will be
|
|
|
|
/// needed. Set primary to true for the first register, false for the second.
|
|
|
|
static unsigned
|
|
|
|
GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
|
2017-12-16 06:22:58 +08:00
|
|
|
CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Erlang stuff.
|
|
|
|
if (CallingConvention == CallingConv::HiPE) {
|
|
|
|
if (Is64Bit)
|
|
|
|
return Primary ? X86::R14 : X86::R13;
|
|
|
|
else
|
|
|
|
return Primary ? X86::EBX : X86::EDI;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Is64Bit) {
|
|
|
|
if (IsLP64)
|
|
|
|
return Primary ? X86::R11 : X86::R12;
|
|
|
|
else
|
|
|
|
return Primary ? X86::R11D : X86::R12D;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsNested = HasNestArgument(&MF);
|
|
|
|
|
|
|
|
if (CallingConvention == CallingConv::X86_FastCall ||
|
2019-10-08 06:28:58 +08:00
|
|
|
CallingConvention == CallingConv::Fast ||
|
|
|
|
CallingConvention == CallingConv::Tail) {
|
2015-02-02 00:15:07 +08:00
|
|
|
if (IsNested)
|
|
|
|
report_fatal_error("Segmented stacks does not support fastcall with "
|
|
|
|
"nested function.");
|
|
|
|
return Primary ? X86::EAX : X86::ECX;
|
|
|
|
}
|
|
|
|
if (IsNested)
|
|
|
|
return Primary ? X86::EDX : X86::EAX;
|
|
|
|
return Primary ? X86::ECX : X86::EAX;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The stack limit in the TCB is set to this many bytes above the actual stack
|
|
|
|
// limit.
|
|
|
|
static const uint64_t kSplitStackAvailable = 256;
|
|
|
|
|
[ShrinkWrap] Add (a simplified version) of shrink-wrapping.
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
2015-05-06 01:38:16 +08:00
|
|
|
void X86FrameLowering::adjustForSegmentedStacks(
|
|
|
|
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
uint64_t StackSize;
|
|
|
|
unsigned TlsReg, TlsOffset;
|
|
|
|
DebugLoc DL;
|
|
|
|
|
2016-01-20 07:29:03 +08:00
|
|
|
// To support shrink-wrapping we would need to insert the new blocks
|
|
|
|
// at the right place and update the branches to PrologueMBB.
|
|
|
|
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
|
|
|
|
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
|
|
|
|
"Scratch register is live-in");
|
|
|
|
|
2017-12-16 06:22:58 +08:00
|
|
|
if (MF.getFunction().isVarArg())
|
2015-02-02 00:15:07 +08:00
|
|
|
report_fatal_error("Segmented stacks do not support vararg functions.");
|
|
|
|
if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
|
|
|
|
!STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
|
|
|
|
!STI.isTargetDragonFly())
|
|
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
|
|
|
|
|
|
// Eventually StackSize will be calculated by a link-time pass; which will
|
|
|
|
// also decide whether checking code needs to be injected into this particular
|
|
|
|
// prologue.
|
2016-07-29 02:40:00 +08:00
|
|
|
StackSize = MFI.getStackSize();
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2018-06-26 22:11:30 +08:00
|
|
|
// Do not generate a prologue for leaf functions with a stack of size zero.
|
|
|
|
// For non-leaf functions we have to allow for the possibility that the
|
2018-11-27 07:26:31 +08:00
|
|
|
// callis to a non-split function, as in PR37807. This function could also
|
|
|
|
// take the address of a non-split function. When the linker tries to adjust
|
|
|
|
// its non-existent prologue, it would fail with an error. Mark the object
|
|
|
|
// file so that such failures are not errors. See this Go language bug-report
|
|
|
|
// https://go-review.googlesource.com/c/go/+/148819/
|
|
|
|
if (StackSize == 0 && !MFI.hasTailCall()) {
|
|
|
|
MF.getMMI().setHasNosplitStack(true);
|
2015-02-02 00:15:07 +08:00
|
|
|
return;
|
2018-11-27 07:26:31 +08:00
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
|
|
|
|
MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
bool IsNested = false;
|
|
|
|
|
|
|
|
// We need to know if the function has a nest argument only in 64 bit mode.
|
|
|
|
if (Is64Bit)
|
|
|
|
IsNested = HasNestArgument(&MF);
|
|
|
|
|
|
|
|
// The MOV R10, RAX needs to be in a different block, since the RET we emit in
|
|
|
|
// allocMBB needs to be last (terminating) instruction.
|
|
|
|
|
2015-09-10 02:08:03 +08:00
|
|
|
for (const auto &LI : PrologueMBB.liveins()) {
|
2015-08-25 06:59:52 +08:00
|
|
|
allocMBB->addLiveIn(LI);
|
|
|
|
checkMBB->addLiveIn(LI);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (IsNested)
|
|
|
|
allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
|
|
|
|
|
|
|
|
MF.push_front(allocMBB);
|
|
|
|
MF.push_front(checkMBB);
|
|
|
|
|
|
|
|
// When the frame size is less than 256 we just compare the stack
|
|
|
|
// boundary directly to the value of the stack pointer, per gcc.
|
|
|
|
bool CompareStackPointer = StackSize < kSplitStackAvailable;
|
|
|
|
|
|
|
|
// Read the limit off the current stacklet off the stack_guard location.
|
|
|
|
if (Is64Bit) {
|
|
|
|
if (STI.isTargetLinux()) {
|
|
|
|
TlsReg = X86::FS;
|
|
|
|
TlsOffset = IsLP64 ? 0x70 : 0x40;
|
|
|
|
} else if (STI.isTargetDarwin()) {
|
|
|
|
TlsReg = X86::GS;
|
|
|
|
TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
|
|
|
|
} else if (STI.isTargetWin64()) {
|
|
|
|
TlsReg = X86::GS;
|
|
|
|
TlsOffset = 0x28; // pvArbitrary, reserved for application use
|
|
|
|
} else if (STI.isTargetFreeBSD()) {
|
|
|
|
TlsReg = X86::FS;
|
|
|
|
TlsOffset = 0x18;
|
|
|
|
} else if (STI.isTargetDragonFly()) {
|
|
|
|
TlsReg = X86::FS;
|
|
|
|
TlsOffset = 0x20; // use tls_tcb.tcb_segstack
|
|
|
|
} else {
|
|
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CompareStackPointer)
|
|
|
|
ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
|
|
|
|
else
|
|
|
|
BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
|
|
|
|
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
|
|
|
|
|
|
|
|
BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
|
|
|
|
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
|
|
|
|
} else {
|
|
|
|
if (STI.isTargetLinux()) {
|
|
|
|
TlsReg = X86::GS;
|
|
|
|
TlsOffset = 0x30;
|
|
|
|
} else if (STI.isTargetDarwin()) {
|
|
|
|
TlsReg = X86::GS;
|
|
|
|
TlsOffset = 0x48 + 90*4;
|
|
|
|
} else if (STI.isTargetWin32()) {
|
|
|
|
TlsReg = X86::FS;
|
|
|
|
TlsOffset = 0x14; // pvArbitrary, reserved for application use
|
|
|
|
} else if (STI.isTargetDragonFly()) {
|
|
|
|
TlsReg = X86::FS;
|
|
|
|
TlsOffset = 0x10; // use tls_tcb.tcb_segstack
|
|
|
|
} else if (STI.isTargetFreeBSD()) {
|
|
|
|
report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
|
|
|
|
} else {
|
|
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CompareStackPointer)
|
|
|
|
ScratchReg = X86::ESP;
|
|
|
|
else
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
|
|
|
|
.addImm(1).addReg(0).addImm(-StackSize).addReg(0);
|
|
|
|
|
|
|
|
if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
|
|
|
|
STI.isTargetDragonFly()) {
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
|
|
|
|
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
|
|
|
|
} else if (STI.isTargetDarwin()) {
|
|
|
|
|
|
|
|
// TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
|
|
|
|
unsigned ScratchReg2;
|
|
|
|
bool SaveScratch2;
|
|
|
|
if (CompareStackPointer) {
|
|
|
|
// The primary scratch register is available for holding the TLS offset.
|
|
|
|
ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
|
|
|
|
SaveScratch2 = false;
|
|
|
|
} else {
|
|
|
|
// Need to use a second register to hold the TLS offset
|
|
|
|
ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
|
|
|
|
|
|
|
|
// Unfortunately, with fastcc the second scratch register may hold an
|
|
|
|
// argument.
|
|
|
|
SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If Scratch2 is live-in then it needs to be saved.
|
|
|
|
assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
|
|
|
|
"Scratch register is live-in and not saved");
|
|
|
|
|
|
|
|
if (SaveScratch2)
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
|
|
|
|
.addReg(ScratchReg2, RegState::Kill);
|
|
|
|
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
|
|
|
|
.addImm(TlsOffset);
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
|
|
|
|
.addReg(ScratchReg)
|
|
|
|
.addReg(ScratchReg2).addImm(1).addReg(0)
|
|
|
|
.addImm(0)
|
|
|
|
.addReg(TlsReg);
|
|
|
|
|
|
|
|
if (SaveScratch2)
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This jump is taken if SP >= (Stacklet Limit + Stack Space required).
|
|
|
|
// It jumps to normal execution of the function body.
|
[X86] Merge the different Jcc instructions for each condition code into single instructions that store the condition code as an operand.
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
2019-04-06 03:28:09 +08:00
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// On 32 bit we first push the arguments size and then the frame size. On 64
|
|
|
|
// bit, we pass the stack frame size in r10 and the argument size in r11.
|
|
|
|
if (Is64Bit) {
|
|
|
|
// Functions with nested arguments use R10, so it needs to be saved across
|
|
|
|
// the call to _morestack
|
|
|
|
|
|
|
|
const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
|
|
|
|
const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
|
|
|
|
const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
|
|
|
|
const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
|
|
|
|
const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
|
|
|
|
|
|
|
|
if (IsNested)
|
|
|
|
BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
|
|
|
|
|
|
|
|
BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
|
|
|
|
.addImm(StackSize);
|
|
|
|
BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
|
|
|
|
.addImm(X86FI->getArgumentStackSize());
|
|
|
|
} else {
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
|
|
|
|
.addImm(X86FI->getArgumentStackSize());
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
|
|
|
|
.addImm(StackSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
// __morestack is in libgcc
|
|
|
|
if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
|
|
|
|
// Under the large code model, we cannot assume that __morestack lives
|
|
|
|
// within 2^31 bytes of the call site, so we cannot use pc-relative
|
|
|
|
// addressing. We cannot perform the call via a temporary register,
|
|
|
|
// as the rax register may be used to store the static chain, and all
|
|
|
|
// other suitable registers may be either callee-save or used for
|
|
|
|
// parameter passing. We cannot use the stack at this point either
|
|
|
|
// because __morestack manipulates the stack directly.
|
|
|
|
//
|
|
|
|
// To avoid these issues, perform an indirect call via a read-only memory
|
|
|
|
// location containing the address.
|
|
|
|
//
|
|
|
|
// This solution is not perfect, as it assumes that the .rodata section
|
|
|
|
// is laid out within 2^31 bytes of each function body, but this seems
|
|
|
|
// to be sufficient for JIT.
|
Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
2018-01-23 06:05:25 +08:00
|
|
|
// FIXME: Add retpoline support and remove the error here..
|
2018-08-23 14:06:38 +08:00
|
|
|
if (STI.useRetpolineIndirectCalls())
|
Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
2018-01-23 06:05:25 +08:00
|
|
|
report_fatal_error("Emitting morestack calls on 64-bit with the large "
|
|
|
|
"code model and retpoline not yet implemented.");
|
2015-02-02 00:15:07 +08:00
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
|
|
|
|
.addReg(X86::RIP)
|
|
|
|
.addImm(0)
|
|
|
|
.addReg(0)
|
|
|
|
.addExternalSymbol("__morestack_addr")
|
|
|
|
.addReg(0);
|
|
|
|
MF.getMMI().setUsesMorestackAddr(true);
|
|
|
|
} else {
|
|
|
|
if (Is64Bit)
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
|
|
|
|
.addExternalSymbol("__morestack");
|
|
|
|
else
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
|
|
|
|
.addExternalSymbol("__morestack");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (IsNested)
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
|
|
|
|
else
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
|
|
|
|
|
[ShrinkWrap] Add (a simplified version) of shrink-wrapping.
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
2015-05-06 01:38:16 +08:00
|
|
|
allocMBB->addSuccessor(&PrologueMBB);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2018-11-08 01:41:57 +08:00
|
|
|
checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
|
|
|
|
checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2016-04-29 23:22:48 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
2015-02-02 00:15:07 +08:00
|
|
|
MF.verify();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2016-06-24 02:17:25 +08:00
|
|
|
/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
|
|
|
|
/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
|
|
|
|
/// to fields it needs, through a named metadata node "hipe.literals" containing
|
|
|
|
/// name-value pairs.
|
|
|
|
static unsigned getHiPELiteral(
|
|
|
|
NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
|
|
|
|
for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
|
|
|
|
MDNode *Node = HiPELiteralsMD->getOperand(i);
|
|
|
|
if (Node->getNumOperands() != 2) continue;
|
|
|
|
MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
|
|
|
|
ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
|
|
|
|
if (!NodeName || !NodeVal) continue;
|
|
|
|
ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
|
|
|
|
if (ValConst && NodeName->getString() == LiteralName) {
|
|
|
|
return ValConst->getZExtValue();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
report_fatal_error("HiPE literal " + LiteralName
|
|
|
|
+ " required but not provided");
|
|
|
|
}
|
|
|
|
|
2019-08-30 05:24:41 +08:00
|
|
|
// Return true if there are no non-ehpad successors to MBB and there are no
|
|
|
|
// non-meta instructions between MBBI and MBB.end().
|
2019-09-17 20:56:29 +08:00
|
|
|
static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::const_iterator MBBI) {
|
2019-08-30 05:24:41 +08:00
|
|
|
return std::all_of(
|
|
|
|
MBB.succ_begin(), MBB.succ_end(),
|
|
|
|
[](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
|
|
|
|
std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
|
2019-09-04 06:27:27 +08:00
|
|
|
return MI.isMetaInstruction();
|
2019-08-30 05:24:41 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
/// Erlang programs may need a special prologue to handle the stack size they
|
|
|
|
/// might need at runtime. That is because Erlang/OTP does not implement a C
|
|
|
|
/// stack but uses a custom implementation of hybrid stack/heap architecture.
|
|
|
|
/// (for more information see Eric Stenman's Ph.D. thesis:
|
|
|
|
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
|
|
|
|
///
|
|
|
|
/// CheckStack:
|
|
|
|
/// temp0 = sp - MaxStack
|
|
|
|
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
|
|
|
|
/// OldStart:
|
|
|
|
/// ...
|
|
|
|
/// IncStack:
|
|
|
|
/// call inc_stack # doubles the stack space
|
|
|
|
/// temp0 = sp - MaxStack
|
|
|
|
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
|
[ShrinkWrap] Add (a simplified version) of shrink-wrapping.
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
2015-05-06 01:38:16 +08:00
|
|
|
void X86FrameLowering::adjustForHiPEPrologue(
|
|
|
|
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-02-02 00:15:07 +08:00
|
|
|
DebugLoc DL;
|
2016-01-20 07:29:03 +08:00
|
|
|
|
|
|
|
// To support shrink-wrapping we would need to insert the new blocks
|
|
|
|
// at the right place and update the branches to PrologueMBB.
|
|
|
|
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
|
|
|
|
|
2015-02-02 00:15:07 +08:00
|
|
|
// HiPE-specific values
|
2016-06-24 02:17:25 +08:00
|
|
|
NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
|
|
|
|
->getNamedMetadata("hipe.literals");
|
|
|
|
if (!HiPELiteralsMD)
|
|
|
|
report_fatal_error(
|
|
|
|
"Can't generate HiPE prologue without runtime parameters");
|
|
|
|
const unsigned HipeLeafWords
|
|
|
|
= getHiPELiteral(HiPELiteralsMD,
|
|
|
|
Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
|
2015-02-02 00:15:07 +08:00
|
|
|
const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
|
|
|
|
const unsigned Guaranteed = HipeLeafWords * SlotSize;
|
2017-12-16 06:22:58 +08:00
|
|
|
unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
|
|
|
|
MF.getFunction().arg_size() - CCRegisteredArgs : 0;
|
2016-07-29 02:40:00 +08:00
|
|
|
unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
assert(STI.isTargetLinux() &&
|
|
|
|
"HiPE prologue is only supported on Linux operating systems.");
|
|
|
|
|
|
|
|
// Compute the largest caller's frame that is needed to fit the callees'
|
|
|
|
// frames. This 'MaxStack' is computed from:
|
|
|
|
//
|
|
|
|
// a) the fixed frame size, which is the space needed for all spilled temps,
|
|
|
|
// b) outgoing on-stack parameter areas, and
|
|
|
|
// c) the minimum stack space this function needs to make available for the
|
|
|
|
// functions it calls (a tunable ABI property).
|
2016-07-29 02:40:00 +08:00
|
|
|
if (MFI.hasCalls()) {
|
2015-02-02 00:15:07 +08:00
|
|
|
unsigned MoreStackForCalls = 0;
|
|
|
|
|
2016-04-01 11:45:08 +08:00
|
|
|
for (auto &MBB : MF) {
|
|
|
|
for (auto &MI : MBB) {
|
|
|
|
if (!MI.isCall())
|
2015-02-02 00:15:07 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// Get callee operand.
|
2016-04-01 11:45:08 +08:00
|
|
|
const MachineOperand &MO = MI.getOperand(0);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Only take account of global function calls (no closures etc.).
|
|
|
|
if (!MO.isGlobal())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const Function *F = dyn_cast<Function>(MO.getGlobal());
|
|
|
|
if (!F)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Do not update 'MaxStack' for primitive and built-in functions
|
|
|
|
// (encoded with names either starting with "erlang."/"bif_" or not
|
|
|
|
// having a ".", such as a simple <Module>.<Function>.<Arity>, or an
|
|
|
|
// "_", such as the BIF "suspend_0") as they are executed on another
|
|
|
|
// stack.
|
|
|
|
if (F->getName().find("erlang.") != StringRef::npos ||
|
|
|
|
F->getName().find("bif_") != StringRef::npos ||
|
|
|
|
F->getName().find_first_of("._") == StringRef::npos)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
unsigned CalleeStkArity =
|
|
|
|
F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
|
|
|
|
if (HipeLeafWords - 1 > CalleeStkArity)
|
|
|
|
MoreStackForCalls = std::max(MoreStackForCalls,
|
|
|
|
(HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
|
|
|
|
}
|
2016-04-01 11:45:08 +08:00
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
MaxStack += MoreStackForCalls;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the stack frame needed is larger than the guaranteed then runtime checks
|
|
|
|
// and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
|
|
|
|
if (MaxStack > Guaranteed) {
|
|
|
|
MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
|
|
|
|
MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
|
|
|
|
|
2015-09-10 02:08:03 +08:00
|
|
|
for (const auto &LI : PrologueMBB.liveins()) {
|
2015-08-25 06:59:52 +08:00
|
|
|
stackCheckMBB->addLiveIn(LI);
|
|
|
|
incStackMBB->addLiveIn(LI);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
MF.push_front(incStackMBB);
|
|
|
|
MF.push_front(stackCheckMBB);
|
|
|
|
|
|
|
|
unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
|
|
|
|
unsigned LEAop, CMPop, CALLop;
|
2016-06-24 02:17:25 +08:00
|
|
|
SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
|
2015-02-02 00:15:07 +08:00
|
|
|
if (Is64Bit) {
|
|
|
|
SPReg = X86::RSP;
|
|
|
|
PReg = X86::RBP;
|
|
|
|
LEAop = X86::LEA64r;
|
|
|
|
CMPop = X86::CMP64rm;
|
|
|
|
CALLop = X86::CALL64pcrel32;
|
|
|
|
} else {
|
|
|
|
SPReg = X86::ESP;
|
|
|
|
PReg = X86::EBP;
|
|
|
|
LEAop = X86::LEA32r;
|
|
|
|
CMPop = X86::CMP32rm;
|
|
|
|
CALLop = X86::CALLpcrel32;
|
|
|
|
}
|
|
|
|
|
|
|
|
ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
|
|
|
|
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
|
|
|
|
"HiPE prologue scratch register is live-in");
|
|
|
|
|
|
|
|
// Create new MBB for StackCheck:
|
|
|
|
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
|
|
|
|
SPReg, false, -MaxStack);
|
|
|
|
// SPLimitOffset is in a fixed heap location (pointed by BP).
|
|
|
|
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
|
|
|
|
.addReg(ScratchReg), PReg, false, SPLimitOffset);
|
[X86] Merge the different Jcc instructions for each condition code into single instructions that store the condition code as an operand.
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
2019-04-06 03:28:09 +08:00
|
|
|
BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
// Create new MBB for IncStack:
|
|
|
|
BuildMI(incStackMBB, DL, TII.get(CALLop)).
|
|
|
|
addExternalSymbol("inc_stack_0");
|
|
|
|
addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
|
|
|
|
SPReg, false, -MaxStack);
|
|
|
|
addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
|
|
|
|
.addReg(ScratchReg), PReg, false, SPLimitOffset);
|
[X86] Merge the different Jcc instructions for each condition code into single instructions that store the condition code as an operand.
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
2019-04-06 03:28:09 +08:00
|
|
|
BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2015-11-24 16:51:23 +08:00
|
|
|
stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
|
|
|
|
stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
|
|
|
|
incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
|
|
|
|
incStackMBB->addSuccessor(incStackMBB, {1, 100});
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2016-04-29 23:22:48 +08:00
|
|
|
#ifdef EXPENSIVE_CHECKS
|
2015-02-02 00:15:07 +08:00
|
|
|
MF.verify();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2015-08-11 16:48:48 +08:00
|
|
|
bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
|
2016-06-12 23:39:02 +08:00
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
const DebugLoc &DL,
|
|
|
|
int Offset) const {
|
2015-08-11 16:48:48 +08:00
|
|
|
|
2015-09-16 19:27:20 +08:00
|
|
|
if (Offset <= 0)
|
|
|
|
return false;
|
|
|
|
|
2015-08-11 16:48:48 +08:00
|
|
|
if (Offset % SlotSize)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int NumPops = Offset / SlotSize;
|
|
|
|
// This is only worth it if we have at most 2 pops.
|
|
|
|
if (NumPops != 1 && NumPops != 2)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Handle only the trivial case where the adjustment directly follows
|
|
|
|
// a call. This is the most common one, anyway.
|
|
|
|
if (MBBI == MBB.begin())
|
|
|
|
return false;
|
|
|
|
MachineBasicBlock::iterator Prev = std::prev(MBBI);
|
|
|
|
if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
unsigned Regs[2];
|
|
|
|
unsigned FoundRegs = 0;
|
|
|
|
|
2017-11-07 16:50:21 +08:00
|
|
|
auto &MRI = MBB.getParent()->getRegInfo();
|
2015-08-11 16:48:48 +08:00
|
|
|
auto RegMask = Prev->getOperand(1);
|
2015-09-16 19:27:20 +08:00
|
|
|
|
|
|
|
auto &RegClass =
|
|
|
|
Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
|
|
|
|
// Try to find up to NumPops free registers.
|
|
|
|
for (auto Candidate : RegClass) {
|
2015-08-11 16:48:48 +08:00
|
|
|
|
|
|
|
// Poor man's liveness:
|
|
|
|
// Since we're immediately after a call, any register that is clobbered
|
|
|
|
// by the call and not defined by it can be considered dead.
|
|
|
|
if (!RegMask.clobbersPhysReg(Candidate))
|
|
|
|
continue;
|
|
|
|
|
2017-11-07 16:50:21 +08:00
|
|
|
// Don't clobber reserved registers
|
|
|
|
if (MRI.isReserved(Candidate))
|
|
|
|
continue;
|
|
|
|
|
2015-08-11 16:48:48 +08:00
|
|
|
bool IsDef = false;
|
|
|
|
for (const MachineOperand &MO : Prev->implicit_operands()) {
|
2016-03-11 02:43:21 +08:00
|
|
|
if (MO.isReg() && MO.isDef() &&
|
|
|
|
TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
|
2015-08-11 16:48:48 +08:00
|
|
|
IsDef = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (IsDef)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
Regs[FoundRegs++] = Candidate;
|
|
|
|
if (FoundRegs == (unsigned)NumPops)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FoundRegs == 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If we found only one free register, but need two, reuse the same one twice.
|
|
|
|
while (FoundRegs < (unsigned)NumPops)
|
|
|
|
Regs[FoundRegs++] = Regs[0];
|
|
|
|
|
|
|
|
for (int i = 0; i < NumPops; ++i)
|
2018-07-31 03:41:25 +08:00
|
|
|
BuildMI(MBB, MBBI, DL,
|
2015-08-11 16:48:48 +08:00
|
|
|
TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-04-01 02:33:38 +08:00
|
|
|
MachineBasicBlock::iterator X86FrameLowering::
|
2015-02-02 00:15:07 +08:00
|
|
|
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator I) const {
|
|
|
|
bool reserveCallFrame = hasReservedCallFrame(MF);
|
2015-05-19 04:27:55 +08:00
|
|
|
unsigned Opcode = I->getOpcode();
|
2015-02-02 00:15:07 +08:00
|
|
|
bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
|
|
|
|
DebugLoc DL = I->getDebugLoc();
|
2019-08-30 05:24:41 +08:00
|
|
|
uint64_t Amount = TII.getFrameSize(*I);
|
2017-04-13 22:10:52 +08:00
|
|
|
uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
|
2015-02-02 00:15:07 +08:00
|
|
|
I = MBB.erase(I);
|
2017-01-04 20:08:35 +08:00
|
|
|
auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
|
2015-02-02 00:15:07 +08:00
|
|
|
|
|
|
|
if (!reserveCallFrame) {
|
|
|
|
// If the stack pointer can be changed after prologue, turn the
|
|
|
|
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
|
|
|
|
// adjcallstackdown instruction into 'add ESP, <amt>'
|
|
|
|
|
|
|
|
// We need to keep the stack aligned properly. To do this, we round the
|
|
|
|
// amount of space needed for the outgoing arguments up to the next
|
|
|
|
// alignment boundary.
|
2015-02-10 08:57:42 +08:00
|
|
|
unsigned StackAlign = getStackAlignment();
|
2016-01-15 05:06:47 +08:00
|
|
|
Amount = alignTo(Amount, StackAlign);
|
2015-02-02 00:15:07 +08:00
|
|
|
|
2017-12-16 06:22:58 +08:00
|
|
|
const Function &F = MF.getFunction();
|
2015-11-03 16:17:25 +08:00
|
|
|
bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
|
2019-10-31 16:55:57 +08:00
|
|
|
bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
|
2015-11-03 16:17:25 +08:00
|
|
|
|
2015-10-07 15:01:31 +08:00
|
|
|
// If we have any exception handlers in this function, and we adjust
|
2015-11-03 16:17:25 +08:00
|
|
|
// the SP before calls, we may need to indicate this to the unwinder
|
|
|
|
// using GNU_ARGS_SIZE. Note that this may be necessary even when
|
|
|
|
// Amount == 0, because the preceding function may have set a non-0
|
|
|
|
// GNU_ARGS_SIZE.
|
2015-10-07 15:01:31 +08:00
|
|
|
// TODO: We don't need to reset this between subsequent functions,
|
|
|
|
// if it didn't change.
|
2016-12-02 03:32:15 +08:00
|
|
|
bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
|
2015-10-07 15:01:31 +08:00
|
|
|
|
2015-11-03 16:17:25 +08:00
|
|
|
if (HasDwarfEHHandlers && !isDestroy &&
|
2015-10-07 15:01:31 +08:00
|
|
|
MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
|
2017-01-04 20:08:35 +08:00
|
|
|
BuildCFI(MBB, InsertPos, DL,
|
2015-10-13 14:22:30 +08:00
|
|
|
MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
|
2015-10-07 15:01:31 +08:00
|
|
|
|
|
|
|
if (Amount == 0)
|
2016-04-01 02:33:38 +08:00
|
|
|
return I;
|
2015-10-07 15:01:31 +08:00
|
|
|
|
2015-02-02 00:56:04 +08:00
|
|
|
// Factor out the amount that gets handled inside the sequence
|
|
|
|
// (Pushes of argument for frame setup, callee pops for frame destroy)
|
|
|
|
Amount -= InternalAmt;
|
|
|
|
|
2015-12-06 21:06:20 +08:00
|
|
|
// TODO: This is needed only if we require precise CFA.
|
|
|
|
// If this is a callee-pop calling convention, emit a CFA adjust for
|
|
|
|
// the amount the callee popped.
|
2017-06-29 21:58:24 +08:00
|
|
|
if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
|
2017-01-04 20:08:35 +08:00
|
|
|
BuildCFI(MBB, InsertPos, DL,
|
2015-11-03 16:17:25 +08:00
|
|
|
MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
|
2017-06-29 21:58:24 +08:00
|
|
|
|
2016-04-07 08:05:49 +08:00
|
|
|
// Add Amount to SP to destroy a frame, or subtract to setup.
|
|
|
|
int64_t StackAdjustment = isDestroy ? Amount : -Amount;
|
|
|
|
|
|
|
|
if (StackAdjustment) {
|
|
|
|
// Merge with any previous or following adjustment instruction. Note: the
|
|
|
|
// instructions merged with here do not have CFI, so their stack
|
|
|
|
// adjustments do not feed into CfaAdjustment.
|
2017-01-04 20:08:35 +08:00
|
|
|
StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
|
|
|
|
StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
|
2016-04-07 08:05:49 +08:00
|
|
|
|
|
|
|
if (StackAdjustment) {
|
2019-04-05 06:40:06 +08:00
|
|
|
if (!(F.hasMinSize() &&
|
2017-01-04 20:08:35 +08:00
|
|
|
adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
|
|
|
|
BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
|
2016-04-07 08:05:49 +08:00
|
|
|
/*InEpilogue=*/false);
|
|
|
|
}
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2015-08-11 16:48:48 +08:00
|
|
|
|
2015-11-03 16:17:25 +08:00
|
|
|
if (DwarfCFI && !hasFP(MF)) {
|
|
|
|
// If we don't have FP, but need to generate unwind information,
|
|
|
|
// we need to set the correct CFA offset after the stack adjustment.
|
|
|
|
// How much we adjust the CFA offset depends on whether we're emitting
|
|
|
|
// CFI only for EH purposes or for debugging. EH only requires the CFA
|
|
|
|
// offset to be correct at each call site, while for debugging we want
|
|
|
|
// it to be more precise.
|
2016-04-07 08:05:49 +08:00
|
|
|
|
2018-04-24 18:32:08 +08:00
|
|
|
int64_t CfaAdjustment = -StackAdjustment;
|
2015-12-06 21:06:20 +08:00
|
|
|
// TODO: When not using precise CFA, we also need to adjust for the
|
|
|
|
// InternalAmt here.
|
2016-04-07 08:05:49 +08:00
|
|
|
if (CfaAdjustment) {
|
2017-01-04 20:08:35 +08:00
|
|
|
BuildCFI(MBB, InsertPos, DL,
|
|
|
|
MCCFIInstruction::createAdjustCfaOffset(nullptr,
|
|
|
|
CfaAdjustment));
|
2015-12-06 21:06:20 +08:00
|
|
|
}
|
2015-11-03 16:17:25 +08:00
|
|
|
}
|
|
|
|
|
2016-04-01 02:33:38 +08:00
|
|
|
return I;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2019-08-30 05:24:41 +08:00
|
|
|
if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) {
|
2015-02-02 00:15:07 +08:00
|
|
|
// If we are performing frame pointer elimination and if the callee pops
|
|
|
|
// something off the stack pointer, add it back. We do this until we have
|
|
|
|
// more advanced stack pointer tracking ability.
|
|
|
|
// We are not tracking the stack pointer adjustment by the callee, so make
|
|
|
|
// sure we restore the stack pointer immediately after the call, there may
|
|
|
|
// be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
|
2016-04-01 02:33:38 +08:00
|
|
|
MachineBasicBlock::iterator CI = I;
|
2015-02-02 00:15:07 +08:00
|
|
|
MachineBasicBlock::iterator B = MBB.begin();
|
2016-04-01 07:55:16 +08:00
|
|
|
while (CI != B && !std::prev(CI)->isCall())
|
|
|
|
--CI;
|
2016-04-01 02:33:38 +08:00
|
|
|
BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
2016-04-01 02:33:38 +08:00
|
|
|
|
|
|
|
return I;
|
2015-02-02 00:15:07 +08:00
|
|
|
}
|
|
|
|
|
2016-04-27 07:44:14 +08:00
|
|
|
bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
|
|
|
|
assert(MBB.getParent() && "Block is not attached to a function!");
|
|
|
|
const MachineFunction &MF = *MBB.getParent();
|
|
|
|
return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
|
|
|
|
}
|
|
|
|
|
2015-05-27 14:28:41 +08:00
|
|
|
bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
|
|
|
|
assert(MBB.getParent() && "Block is not attached to a function!");
|
|
|
|
|
2015-11-05 06:37:28 +08:00
|
|
|
// Win64 has strict requirements in terms of epilogue and we are
|
|
|
|
// not taking a chance at messing with them.
|
|
|
|
// I.e., unless this block is already an exit block, we can't use
|
|
|
|
// it as an epilogue.
|
2015-11-17 02:47:12 +08:00
|
|
|
if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
|
2015-11-05 06:37:28 +08:00
|
|
|
return false;
|
|
|
|
|
2015-05-27 14:28:41 +08:00
|
|
|
if (canUseLEAForSPInEpilogue(*MBB.getParent()))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// If we cannot use LEA to adjust SP, we may need to use ADD, which
|
2015-12-02 09:22:54 +08:00
|
|
|
// clobbers the EFLAGS. Check that we do not need to preserve it,
|
|
|
|
// otherwise, conservatively assume this is not
|
2015-05-27 14:28:41 +08:00
|
|
|
// safe to insert the epilogue here.
|
2015-12-02 09:22:54 +08:00
|
|
|
return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
|
2015-05-27 14:28:41 +08:00
|
|
|
}
|
2015-09-09 06:44:41 +08:00
|
|
|
|
2015-12-10 07:08:18 +08:00
|
|
|
bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
|
|
|
|
// If we may need to emit frameless compact unwind information, give
|
|
|
|
// up as this is currently broken: PR25614.
|
2017-12-16 06:22:58 +08:00
|
|
|
return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
|
2016-01-20 07:29:03 +08:00
|
|
|
// The lowering of segmented stack and HiPE only support entry blocks
|
|
|
|
// as prologue blocks: PR26107.
|
|
|
|
// This limitation may be lifted if we fix:
|
|
|
|
// - adjustForSegmentedStacks
|
|
|
|
// - adjustForHiPEPrologue
|
2017-12-16 06:22:58 +08:00
|
|
|
MF.getFunction().getCallingConv() != CallingConv::HiPE &&
|
2016-01-20 07:29:03 +08:00
|
|
|
!MF.shouldSplitStack();
|
2015-12-10 07:08:18 +08:00
|
|
|
}
|
|
|
|
|
2015-09-18 04:43:47 +08:00
|
|
|
MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
|
2015-09-09 06:44:41 +08:00
|
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
2016-06-12 23:39:02 +08:00
|
|
|
const DebugLoc &DL, bool RestoreSP) const {
|
2015-09-09 06:44:41 +08:00
|
|
|
assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
|
|
|
|
assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
|
|
|
|
assert(STI.is32Bit() && !Uses64BitFramePtr &&
|
|
|
|
"restoring EBP/ESI on non-32-bit target");
|
|
|
|
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-16 03:22:08 +08:00
|
|
|
Register FramePtr = TRI->getFrameRegister(MF);
|
|
|
|
Register BasePtr = TRI->getBaseRegister();
|
2015-11-18 05:10:25 +08:00
|
|
|
WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
|
2015-09-09 06:44:41 +08:00
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2015-09-09 06:44:41 +08:00
|
|
|
|
|
|
|
// FIXME: Don't set FrameSetup flag in catchret case.
|
|
|
|
|
|
|
|
int FI = FuncInfo.EHRegNodeFrameIndex;
|
2016-07-29 02:40:00 +08:00
|
|
|
int EHRegSize = MFI.getObjectSize(FI);
|
2015-09-18 04:43:47 +08:00
|
|
|
|
|
|
|
if (RestoreSP) {
|
|
|
|
// MOV32rm -EHRegSize(%ebp), %esp
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
|
|
|
|
X86::EBP, true, -EHRegSize)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
}
|
|
|
|
|
2015-09-09 06:44:41 +08:00
|
|
|
unsigned UsedReg;
|
|
|
|
int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
|
|
|
|
int EndOffset = -EHRegOffset - EHRegSize;
|
2015-09-17 04:16:27 +08:00
|
|
|
FuncInfo.EHRegNodeEndOffset = EndOffset;
|
2015-09-18 04:43:47 +08:00
|
|
|
|
2015-09-09 06:44:41 +08:00
|
|
|
if (UsedReg == FramePtr) {
|
|
|
|
// ADD $offset, %ebp
|
|
|
|
unsigned ADDri = getADDriOpcode(false, EndOffset);
|
|
|
|
BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
|
|
|
|
.addReg(FramePtr)
|
|
|
|
.addImm(EndOffset)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup)
|
|
|
|
->getOperand(3)
|
|
|
|
.setIsDead();
|
2015-10-09 02:41:52 +08:00
|
|
|
assert(EndOffset >= 0 &&
|
|
|
|
"end of registration object above normal EBP position!");
|
|
|
|
} else if (UsedReg == BasePtr) {
|
2015-09-09 06:44:41 +08:00
|
|
|
// LEA offset(%ebp), %esi
|
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
|
|
|
|
FramePtr, false, EndOffset)
|
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-09-18 04:43:47 +08:00
|
|
|
// MOV32rm SavedEBPOffset(%esi), %ebp
|
2015-09-09 06:44:41 +08:00
|
|
|
assert(X86FI->getHasSEHFramePtrSave());
|
|
|
|
int Offset =
|
|
|
|
getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
|
|
|
|
assert(UsedReg == BasePtr);
|
2015-09-18 04:43:47 +08:00
|
|
|
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
|
|
|
|
UsedReg, true, Offset)
|
2015-09-09 06:44:41 +08:00
|
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
2015-10-09 02:41:52 +08:00
|
|
|
} else {
|
|
|
|
llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
|
2015-09-09 06:44:41 +08:00
|
|
|
}
|
|
|
|
return MBBI;
|
|
|
|
}
|
2015-10-17 07:43:27 +08:00
|
|
|
|
2018-04-24 18:32:08 +08:00
|
|
|
int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
|
|
|
|
return TRI->getSlotSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
|
|
|
|
const {
|
|
|
|
return TRI->getDwarfRegNum(StackPtr, true);
|
|
|
|
}
|
|
|
|
|
2016-02-16 07:44:13 +08:00
|
|
|
namespace {
|
|
|
|
// Struct used by orderFrameObjects to help sort the stack objects.
|
|
|
|
struct X86FrameSortingObject {
|
|
|
|
bool IsValid = false; // true if we care about this Object.
|
|
|
|
unsigned ObjectIndex = 0; // Index of Object into MFI list.
|
|
|
|
unsigned ObjectSize = 0; // Size of Object in bytes.
|
|
|
|
unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
|
|
|
|
unsigned ObjectNumUses = 0; // Object static number of uses.
|
|
|
|
};
|
|
|
|
|
|
|
|
// The comparison function we use for std::sort to order our local
|
|
|
|
// stack symbols. The current algorithm is to use an estimated
|
|
|
|
// "density". This takes into consideration the size and number of
|
|
|
|
// uses each object has in order to roughly minimize code size.
|
|
|
|
// So, for example, an object of size 16B that is referenced 5 times
|
|
|
|
// will get higher priority than 4 4B objects referenced 1 time each.
|
|
|
|
// It's not perfect and we may be able to squeeze a few more bytes out of
|
|
|
|
// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
|
|
|
|
// fringe end can have special consideration, given their size is less
|
|
|
|
// important, etc.), but the algorithmic complexity grows too much to be
|
|
|
|
// worth the extra gains we get. This gets us pretty close.
|
|
|
|
// The final order leaves us with objects with highest priority going
|
|
|
|
// at the end of our list.
|
|
|
|
struct X86FrameSortingComparator {
|
|
|
|
inline bool operator()(const X86FrameSortingObject &A,
|
|
|
|
const X86FrameSortingObject &B) {
|
|
|
|
uint64_t DensityAScaled, DensityBScaled;
|
|
|
|
|
|
|
|
// For consistency in our comparison, all invalid objects are placed
|
|
|
|
// at the end. This also allows us to stop walking when we hit the
|
|
|
|
// first invalid item after it's all sorted.
|
|
|
|
if (!A.IsValid)
|
|
|
|
return false;
|
|
|
|
if (!B.IsValid)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// The density is calculated by doing :
|
|
|
|
// (double)DensityA = A.ObjectNumUses / A.ObjectSize
|
|
|
|
// (double)DensityB = B.ObjectNumUses / B.ObjectSize
|
|
|
|
// Since this approach may cause inconsistencies in
|
|
|
|
// the floating point <, >, == comparisons, depending on the floating
|
|
|
|
// point model with which the compiler was built, we're going
|
|
|
|
// to scale both sides by multiplying with
|
|
|
|
// A.ObjectSize * B.ObjectSize. This ends up factoring away
|
|
|
|
// the division and, with it, the need for any floating point
|
|
|
|
// arithmetic.
|
|
|
|
DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
|
|
|
|
static_cast<uint64_t>(B.ObjectSize);
|
|
|
|
DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
|
|
|
|
static_cast<uint64_t>(A.ObjectSize);
|
|
|
|
|
|
|
|
// If the two densities are equal, prioritize highest alignment
|
|
|
|
// objects. This allows for similar alignment objects
|
|
|
|
// to be packed together (given the same density).
|
|
|
|
// There's room for improvement here, also, since we can pack
|
|
|
|
// similar alignment (different density) objects next to each
|
|
|
|
// other to save padding. This will also require further
|
|
|
|
// complexity/iterations, and the overall gain isn't worth it,
|
|
|
|
// in general. Something to keep in mind, though.
|
|
|
|
if (DensityAScaled == DensityBScaled)
|
|
|
|
return A.ObjectAlignment < B.ObjectAlignment;
|
2018-07-31 03:41:25 +08:00
|
|
|
|
2016-02-16 07:44:13 +08:00
|
|
|
return DensityAScaled < DensityBScaled;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
// Order the symbols in the local stack.
|
|
|
|
// We want to place the local stack objects in some sort of sensible order.
|
|
|
|
// The heuristic we use is to try and pack them according to static number
|
|
|
|
// of uses and size of object in order to minimize code size.
|
|
|
|
void X86FrameLowering::orderFrameObjects(
|
|
|
|
const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
|
2016-07-29 02:40:00 +08:00
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
2016-02-16 07:44:13 +08:00
|
|
|
|
|
|
|
// Don't waste time if there's nothing to do.
|
|
|
|
if (ObjectsToAllocate.empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Create an array of all MFI objects. We won't need all of these
|
|
|
|
// objects, but we're going to create a full array of them to make
|
|
|
|
// it easier to index into when we're counting "uses" down below.
|
|
|
|
// We want to be able to easily/cheaply access an object by simply
|
|
|
|
// indexing into it, instead of having to search for it every time.
|
2016-07-29 02:40:00 +08:00
|
|
|
std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
|
2016-02-16 07:44:13 +08:00
|
|
|
|
|
|
|
// Walk the objects we care about and mark them as such in our working
|
|
|
|
// struct.
|
|
|
|
for (auto &Obj : ObjectsToAllocate) {
|
|
|
|
SortingObjects[Obj].IsValid = true;
|
|
|
|
SortingObjects[Obj].ObjectIndex = Obj;
|
2016-07-29 02:40:00 +08:00
|
|
|
SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
|
2016-02-16 07:44:13 +08:00
|
|
|
// Set the size.
|
2016-07-29 02:40:00 +08:00
|
|
|
int ObjectSize = MFI.getObjectSize(Obj);
|
2016-02-16 07:44:13 +08:00
|
|
|
if (ObjectSize == 0)
|
|
|
|
// Variable size. Just use 4.
|
|
|
|
SortingObjects[Obj].ObjectSize = 4;
|
2018-07-31 03:41:25 +08:00
|
|
|
else
|
2016-02-16 07:44:13 +08:00
|
|
|
SortingObjects[Obj].ObjectSize = ObjectSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Count the number of uses for each object.
|
|
|
|
for (auto &MBB : MF) {
|
|
|
|
for (auto &MI : MBB) {
|
2018-05-09 10:42:00 +08:00
|
|
|
if (MI.isDebugInstr())
|
2016-07-01 23:40:25 +08:00
|
|
|
continue;
|
2016-02-16 07:44:13 +08:00
|
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
|
|
// Check to see if it's a local stack symbol.
|
|
|
|
if (!MO.isFI())
|
|
|
|
continue;
|
|
|
|
int Index = MO.getIndex();
|
|
|
|
// Check to see if it falls within our range, and is tagged
|
|
|
|
// to require ordering.
|
2016-07-29 02:40:00 +08:00
|
|
|
if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
|
2016-02-16 07:44:13 +08:00
|
|
|
SortingObjects[Index].IsValid)
|
|
|
|
SortingObjects[Index].ObjectNumUses++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sort the objects using X86FrameSortingAlgorithm (see its comment for
|
|
|
|
// info).
|
2019-04-23 22:51:27 +08:00
|
|
|
llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
|
2016-02-16 07:44:13 +08:00
|
|
|
|
|
|
|
// Now modify the original list to represent the final order that
|
|
|
|
// we want. The order will depend on whether we're going to access them
|
|
|
|
// from the stack pointer or the frame pointer. For SP, the list should
|
|
|
|
// end up with the END containing objects that we want with smaller offsets.
|
|
|
|
// For FP, it should be flipped.
|
|
|
|
int i = 0;
|
|
|
|
for (auto &Obj : SortingObjects) {
|
|
|
|
// All invalid items are sorted at the end, so it's safe to stop.
|
|
|
|
if (!Obj.IsValid)
|
|
|
|
break;
|
|
|
|
ObjectsToAllocate[i++] = Obj.ObjectIndex;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Flip it if we're accessing off of the FP.
|
|
|
|
if (!TRI->needsStackRealignment(MF) && hasFP(MF))
|
|
|
|
std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
|
|
|
|
}
|
|
|
|
|
2019-08-21 06:08:57 +08:00
|
|
|
|
|
|
|
unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
|
2015-10-17 07:43:27 +08:00
|
|
|
// RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
|
|
|
|
unsigned Offset = 16;
|
|
|
|
// RBP is immediately pushed.
|
|
|
|
Offset += SlotSize;
|
|
|
|
// All callee-saved registers are then pushed.
|
2019-08-21 06:08:57 +08:00
|
|
|
Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
|
2015-10-17 07:43:27 +08:00
|
|
|
// Every funclet allocates enough stack space for the largest outgoing call.
|
|
|
|
Offset += getWinEHFuncletFrameSize(MF);
|
|
|
|
return Offset;
|
|
|
|
}
|
2015-11-14 03:06:01 +08:00
|
|
|
|
|
|
|
void X86FrameLowering::processFunctionBeforeFrameFinalized(
|
|
|
|
MachineFunction &MF, RegScavenger *RS) const {
|
2017-05-04 07:13:42 +08:00
|
|
|
// Mark the function as not having WinCFI. We will set it back to true in
|
|
|
|
// emitPrologue if it gets called and emits CFI.
|
|
|
|
MF.setHasWinCFI(false);
|
|
|
|
|
2015-11-14 03:06:01 +08:00
|
|
|
// If this function isn't doing Win64-style C++ EH, we don't need to do
|
|
|
|
// anything.
|
2017-12-16 06:22:58 +08:00
|
|
|
const Function &F = MF.getFunction();
|
2016-12-02 03:32:15 +08:00
|
|
|
if (!STI.is64Bit() || !MF.hasEHFunclets() ||
|
2017-12-16 06:22:58 +08:00
|
|
|
classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
|
2015-11-14 03:06:01 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
// Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
|
|
|
|
// relative to RSP after the prologue. Find the offset of the last fixed
|
2015-11-17 02:47:25 +08:00
|
|
|
// object, so that we can allocate a slot immediately following it. If there
|
|
|
|
// were no fixed objects, use offset -SlotSize, which is immediately after the
|
|
|
|
// return address. Fixed objects have negative frame indices.
|
2016-07-29 02:40:00 +08:00
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
2016-03-03 08:01:25 +08:00
|
|
|
WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
|
2015-11-17 02:47:25 +08:00
|
|
|
int64_t MinFixedObjOffset = -SlotSize;
|
2016-07-29 02:40:00 +08:00
|
|
|
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
|
|
|
|
MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
|
2015-11-14 03:06:01 +08:00
|
|
|
|
2016-03-03 08:01:25 +08:00
|
|
|
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
|
|
|
|
for (WinEHHandlerType &H : TBME.HandlerArray) {
|
|
|
|
int FrameIndex = H.CatchObj.FrameIndex;
|
|
|
|
if (FrameIndex != INT_MAX) {
|
|
|
|
// Ensure alignment.
|
2016-07-29 02:40:00 +08:00
|
|
|
unsigned Align = MFI.getObjectAlignment(FrameIndex);
|
2016-03-03 08:01:25 +08:00
|
|
|
MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
|
2016-07-29 02:40:00 +08:00
|
|
|
MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
|
|
|
|
MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
|
2016-03-03 08:01:25 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure alignment.
|
|
|
|
MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
|
2015-11-14 03:06:01 +08:00
|
|
|
int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
|
|
|
|
int UnwindHelpFI =
|
2019-07-16 12:46:31 +08:00
|
|
|
MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
|
2016-03-03 08:01:25 +08:00
|
|
|
EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
|
2015-11-14 03:06:01 +08:00
|
|
|
|
|
|
|
// Store -2 into UnwindHelp on function entry. We have to scan forwards past
|
|
|
|
// other frame setup instructions.
|
|
|
|
MachineBasicBlock &MBB = MF.front();
|
|
|
|
auto MBBI = MBB.begin();
|
|
|
|
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
|
|
|
|
++MBBI;
|
|
|
|
|
|
|
|
DebugLoc DL = MBB.findDebugLoc(MBBI);
|
|
|
|
addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
|
|
|
|
UnwindHelpFI)
|
|
|
|
.addImm(-2);
|
|
|
|
}
|
2020-01-31 07:15:57 +08:00
|
|
|
|
|
|
|
void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
|
|
|
|
MachineFunction &MF, RegScavenger *RS) const {
|
|
|
|
if (STI.is32Bit() && MF.hasEHFunclets())
|
|
|
|
restoreWinEHStackPointersInParent(MF);
|
|
|
|
}
|
|
|
|
|
|
|
|
void X86FrameLowering::restoreWinEHStackPointersInParent(
|
|
|
|
MachineFunction &MF) const {
|
|
|
|
// 32-bit functions have to restore stack pointers when control is transferred
|
|
|
|
// back to the parent function. These blocks are identified as eh pads that
|
|
|
|
// are not funclet entries.
|
|
|
|
bool IsSEH = isAsynchronousEHPersonality(
|
|
|
|
classifyEHPersonality(MF.getFunction().getPersonalityFn()));
|
|
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
|
|
bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
|
|
|
|
if (NeedsRestore)
|
|
|
|
restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
|
|
|
|
/*RestoreSP=*/IsSEH);
|
|
|
|
}
|
|
|
|
}
|