llvm-project/llvm/lib/Analysis/VectorUtils.cpp

491 lines
16 KiB
C++
Raw Normal View History

//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines vectorizer utilities.
//
//===----------------------------------------------------------------------===//
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolution.h"
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Constants.h"
using namespace llvm;
using namespace llvm::PatternMatch;
/// \brief Identify if the intrinsic is trivially vectorizable.
/// This method returns true if the intrinsic's argument types are all
/// scalars for the scalar form of the intrinsic and all vectors for
/// the vector form of the intrinsic.
bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::sqrt:
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::log:
case Intrinsic::log10:
case Intrinsic::log2:
case Intrinsic::fabs:
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::copysign:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::nearbyint:
case Intrinsic::round:
case Intrinsic::bswap:
case Intrinsic::bitreverse:
case Intrinsic::ctpop:
case Intrinsic::pow:
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::powi:
return true;
default:
return false;
}
}
/// \brief Identifies if the intrinsic has a scalar operand. It check for
/// ctlz,cttz and powi special intrinsics whose argument is scalar.
bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
unsigned ScalarOpdIdx) {
switch (ID) {
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::powi:
return (ScalarOpdIdx == 1);
default:
return false;
}
}
/// \brief Returns intrinsic ID for call.
/// For the input call instruction it finds mapping intrinsic and returns
/// its ID, in case it does not found it return not_intrinsic.
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
const TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
if (ID == Intrinsic::not_intrinsic)
return Intrinsic::not_intrinsic;
if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
return ID;
return Intrinsic::not_intrinsic;
}
/// \brief Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
const DataLayout &DL = Gep->getModule()->getDataLayout();
unsigned LastOperand = Gep->getNumOperands() - 1;
unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
// Walk backwards and try to peel off zeros.
while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
// Find the type we're currently indexing into.
gep_type_iterator GEPTI = gep_type_begin(Gep);
std::advance(GEPTI, LastOperand - 1);
// If it's a type with the same allocation size as the result of the GEP we
// can peel off the zero index.
if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
break;
--LastOperand;
}
return LastOperand;
}
/// \brief If the argument is a GEP, then returns the operand identified by
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
/// operand, it returns that instead.
Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
if (!GEP)
return Ptr;
unsigned InductionOperand = getGEPInductionOperand(GEP);
// Check that all of the gep indices are uniform except for our induction
// operand.
for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
if (i != InductionOperand &&
!SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
return Ptr;
return GEP->getOperand(InductionOperand);
}
/// \brief If a value has only one user that is a CastInst, return it.
Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
Value *UniqueCast = nullptr;
for (User *U : Ptr->users()) {
CastInst *CI = dyn_cast<CastInst>(U);
if (CI && CI->getType() == Ty) {
if (!UniqueCast)
UniqueCast = CI;
else
return nullptr;
}
}
return UniqueCast;
}
/// \brief Get the stride of a pointer access in a loop. Looks for symbolic
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
if (!PtrTy || PtrTy->isAggregateType())
return nullptr;
// Try to remove a gep instruction to make the pointer (actually index at this
// point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
// pointer, otherwise, we are analyzing the index.
Value *OrigPtr = Ptr;
// The size of the pointer access.
int64_t PtrAccessSize = 1;
Ptr = stripGetElementPtr(Ptr, SE, Lp);
const SCEV *V = SE->getSCEV(Ptr);
if (Ptr != OrigPtr)
// Strip off casts.
while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
V = C->getOperand();
const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
if (!S)
return nullptr;
V = S->getStepRecurrence(*SE);
if (!V)
return nullptr;
// Strip off the size of access multiplication if we are still analyzing the
// pointer.
if (OrigPtr == Ptr) {
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
if (M->getOperand(0)->getSCEVType() != scConstant)
return nullptr;
const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
// Huge step value - give up.
if (APStepVal.getBitWidth() > 64)
return nullptr;
int64_t StepVal = APStepVal.getSExtValue();
if (PtrAccessSize != StepVal)
return nullptr;
V = M->getOperand(1);
}
}
// Strip off casts.
Type *StripedOffRecurrenceCast = nullptr;
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
StripedOffRecurrenceCast = C->getType();
V = C->getOperand();
}
// Look for the loop invariant symbolic value.
const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
if (!U)
return nullptr;
Value *Stride = U->getValue();
if (!Lp->isLoopInvariant(Stride))
return nullptr;
// If we have stripped off the recurrence cast we have to make sure that we
// return the value that is used in this loop so that we can replace it later.
if (StripedOffRecurrenceCast)
Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
return Stride;
}
/// \brief Given a vector and an element number, see if the scalar value is
/// already around as a register, for example if it were inserted then extracted
/// from the vector.
Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
assert(V->getType()->isVectorTy() && "Not looking at a vector?");
VectorType *VTy = cast<VectorType>(V->getType());
unsigned Width = VTy->getNumElements();
if (EltNo >= Width) // Out of range access.
return UndefValue::get(VTy->getElementType());
if (Constant *C = dyn_cast<Constant>(V))
return C->getAggregateElement(EltNo);
if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
// If this is an insert to a variable element, we don't know what it is.
if (!isa<ConstantInt>(III->getOperand(2)))
return nullptr;
unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
// If this is an insert to the element we are looking for, return the
// inserted value.
if (EltNo == IIElt)
return III->getOperand(1);
// Otherwise, the insertelement doesn't modify the value, recurse on its
// vector input.
return findScalarElement(III->getOperand(0), EltNo);
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
int InEl = SVI->getMaskValue(EltNo);
if (InEl < 0)
return UndefValue::get(VTy->getElementType());
if (InEl < (int)LHSWidth)
return findScalarElement(SVI->getOperand(0), InEl);
return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
}
// Extract a value from a vector add operation with a constant zero.
Value *Val = nullptr; Constant *Con = nullptr;
if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
if (Constant *Elt = Con->getAggregateElement(EltNo))
if (Elt->isNullValue())
return findScalarElement(Val, EltNo);
// Otherwise, we don't know.
return nullptr;
}
/// \brief Get splat value if the input is a splat vector or return nullptr.
/// This function is not fully general. It checks only 2 cases:
/// the input value is (1) a splat constants vector or (2) a sequence
/// of instructions that broadcast a single value into a vector.
///
const llvm::Value *llvm::getSplatValue(const Value *V) {
if (auto *C = dyn_cast<Constant>(V))
if (isa<VectorType>(V->getType()))
return C->getSplatValue();
auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
if (!ShuffleInst)
return nullptr;
// All-zero (or undef) shuffle mask elements.
for (int MaskElt : ShuffleInst->getShuffleMask())
if (MaskElt != 0 && MaskElt != -1)
return nullptr;
// The first shuffle source is 'insertelement' with index 0.
auto *InsertEltInst =
dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
!cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
return nullptr;
return InsertEltInst->getOperand(1);
}
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
MapVector<Instruction *, uint64_t>
llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
const TargetTransformInfo *TTI) {
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
// DemandedBits will give us every value's live-out bits. But we want
// to ensure no extra casts would need to be inserted, so every DAG
// of connected values must have the same minimum bitwidth.
EquivalenceClasses<Value *> ECs;
SmallVector<Value *, 16> Worklist;
SmallPtrSet<Value *, 4> Roots;
SmallPtrSet<Value *, 16> Visited;
DenseMap<Value *, uint64_t> DBits;
SmallPtrSet<Instruction *, 4> InstructionSet;
MapVector<Instruction *, uint64_t> MinBWs;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
// Determine the roots. We work bottom-up, from truncs or icmps.
bool SeenExtFromIllegalType = false;
for (auto *BB : Blocks)
for (auto &I : *BB) {
InstructionSet.insert(&I);
if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
!TTI->isTypeLegal(I.getOperand(0)->getType()))
SeenExtFromIllegalType = true;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
// Only deal with non-vector integers up to 64-bits wide.
if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
!I.getType()->isVectorTy() &&
I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
// Don't make work for ourselves. If we know the loaded type is legal,
// don't add it to the worklist.
if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
continue;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
Worklist.push_back(&I);
Roots.insert(&I);
}
}
// Early exit.
if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
return MinBWs;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
// Now proceed breadth-first, unioning values together.
while (!Worklist.empty()) {
Value *Val = Worklist.pop_back_val();
Value *Leader = ECs.getOrInsertLeaderValue(Val);
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
if (Visited.count(Val))
continue;
Visited.insert(Val);
// Non-instructions terminate a chain successfully.
if (!isa<Instruction>(Val))
continue;
Instruction *I = cast<Instruction>(Val);
// If we encounter a type that is larger than 64 bits, we can't represent
// it so bail out.
if (DB.getDemandedBits(I).getBitWidth() > 64)
return MapVector<Instruction *, uint64_t>();
uint64_t V = DB.getDemandedBits(I).getZExtValue();
DBits[Leader] |= V;
DBits[I] = V;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
// Casts, loads and instructions outside of our range terminate a chain
// successfully.
if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
!InstructionSet.count(I))
continue;
// Unsafe casts terminate a chain unsuccessfully. We can't do anything
// useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
// transform anything that relies on them.
if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
!I->getType()->isIntegerTy()) {
DBits[Leader] |= ~0ULL;
continue;
}
// We don't modify the types of PHIs. Reductions will already have been
// truncated if possible, and inductions' sizes will have been chosen by
// indvars.
if (isa<PHINode>(I))
continue;
if (DBits[Leader] == ~0ULL)
// All bits demanded, no point continuing.
continue;
for (Value *O : cast<User>(I)->operands()) {
ECs.unionSets(Leader, O);
Worklist.push_back(O);
}
}
// Now we've discovered all values, walk them to see if there are
// any users we didn't see. If there are, we can't optimize that
// chain.
for (auto &I : DBits)
for (auto *U : I.first->users())
if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
uint64_t LeaderDemandedBits = 0;
for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
LeaderDemandedBits |= DBits[*MI];
uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
llvm::countLeadingZeros(LeaderDemandedBits);
// Round up to a power of 2
if (!isPowerOf2_64((uint64_t)MinBW))
MinBW = NextPowerOf2(MinBW);
// We don't modify the types of PHIs. Reductions will already have been
// truncated if possible, and inductions' sizes will have been chosen by
// indvars.
// If we are required to shrink a PHI, abandon this entire equivalence class.
bool Abort = false;
for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
Abort = true;
break;
}
if (Abort)
continue;
[LoopVectorize] Shrink integer operations into the smallest type possible C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int type (e.g. i32) whenever arithmetic is performed on them. For targets with native i8 or i16 operations, usually InstCombine can shrink the arithmetic type down again. However InstCombine refuses to create illegal types, so for targets without i8 or i16 registers, the lengthening and shrinking remains. Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when their scalar equivalents do not, so during vectorization it is important to remove these lengthens and truncates when deciding the profitability of vectorization. The algorithm this uses starts at truncs and icmps, trawling their use-def chains until they terminate or instructions outside the loop are found (or unsafe instructions like inttoptr casts are found). If the use-def chains starting from different root instructions (truncs/icmps) meet, they are unioned. The demanded bits of each node in the graph are ORed together to form an overall mask of the demanded bits in the entire graph. The minimum bitwidth that graph can be truncated to is the bitwidth minus the number of leading zeroes in the overall mask. The intention is that this algorithm should "first do no harm", so it will never insert extra cast instructions. This is why the use-def graphs are unioned, so that subgraphs with different minimum bitwidths do not need casts inserted between them. This algorithm works hard to reduce compile time impact. DemandedBits are only queried if there are extends of illegal types and if a truncate to an illegal type is seen. In the general case, this results in a simple linear scan of the instructions in the loop. No non-noise compile time impact was seen on a clang bootstrap build. llvm-svn: 250032
2015-10-12 20:34:45 +08:00
for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
if (!isa<Instruction>(*MI))
continue;
Type *Ty = (*MI)->getType();
if (Roots.count(*MI))
Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
if (MinBW < Ty->getScalarSizeInBits())
MinBWs[cast<Instruction>(*MI)] = MinBW;
}
}
return MinBWs;
}
/// \returns \p I after propagating metadata from \p VL.
Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
Instruction *I0 = cast<Instruction>(VL[0]);
SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
I0->getAllMetadataOtherThanDebugLoc(Metadata);
for (auto Kind : { LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
LLVMContext::MD_nontemporal }) {
MDNode *MD = I0->getMetadata(Kind);
for (int J = 1, E = VL.size(); MD && J != E; ++J) {
const Instruction *IJ = cast<Instruction>(VL[J]);
MDNode *IMD = IJ->getMetadata(Kind);
switch (Kind) {
case LLVMContext::MD_tbaa:
MD = MDNode::getMostGenericTBAA(MD, IMD);
break;
case LLVMContext::MD_alias_scope:
MD = MDNode::getMostGenericAliasScope(MD, IMD);
break;
case LLVMContext::MD_noalias:
MD = MDNode::intersect(MD, IMD);
break;
case LLVMContext::MD_fpmath:
MD = MDNode::getMostGenericFPMath(MD, IMD);
break;
case LLVMContext::MD_nontemporal:
MD = MDNode::intersect(MD, IMD);
break;
default:
llvm_unreachable("unhandled metadata");
}
}
Inst->setMetadata(Kind, MD);
}
return Inst;
}