2013-01-07 11:08:10 +08:00
|
|
|
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
|
2012-10-19 07:22:48 +08:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2013-01-07 11:08:10 +08:00
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
2014-03-04 19:01:28 +08:00
|
|
|
#include "llvm/IR/CallSite.h"
|
2013-01-21 09:27:39 +08:00
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/Instruction.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
2014-01-07 19:48:04 +08:00
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#include "llvm/IR/Operator.h"
|
2012-10-19 07:22:48 +08:00
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
2014-04-22 10:48:03 +08:00
|
|
|
#define DEBUG_TYPE "tti"
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
// Setup the analysis group to manage the TargetTransformInfo passes.
|
|
|
|
INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
|
2012-10-19 07:22:48 +08:00
|
|
|
char TargetTransformInfo::ID = 0;
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
TargetTransformInfo::~TargetTransformInfo() {
|
|
|
|
}
|
|
|
|
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
void TargetTransformInfo::pushTTIStack(Pass *P) {
|
|
|
|
TopTTI = this;
|
|
|
|
PrevTTI = &P->getAnalysis<TargetTransformInfo>();
|
|
|
|
|
|
|
|
// Walk up the chain and update the top TTI pointer.
|
|
|
|
for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
|
|
|
|
PTTI->TopTTI = this;
|
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.addRequired<TargetTransformInfo>();
|
|
|
|
}
|
|
|
|
|
2013-01-21 09:27:39 +08:00
|
|
|
unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
|
|
|
|
Type *OpTy) const {
|
|
|
|
return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getGEPCost(
|
|
|
|
const Value *Ptr, ArrayRef<const Value *> Operands) const {
|
|
|
|
return PrevTTI->getGEPCost(Ptr, Operands);
|
|
|
|
}
|
|
|
|
|
2013-01-22 19:26:02 +08:00
|
|
|
unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
|
|
|
|
int NumArgs) const {
|
|
|
|
return PrevTTI->getCallCost(FTy, NumArgs);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getCallCost(const Function *F,
|
|
|
|
int NumArgs) const {
|
|
|
|
return PrevTTI->getCallCost(F, NumArgs);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getCallCost(
|
|
|
|
const Function *F, ArrayRef<const Value *> Arguments) const {
|
|
|
|
return PrevTTI->getCallCost(F, Arguments);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getIntrinsicCost(
|
|
|
|
Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
|
|
|
|
return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getIntrinsicCost(
|
|
|
|
Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
|
|
|
|
return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
|
|
|
|
}
|
|
|
|
|
2013-01-21 09:27:39 +08:00
|
|
|
unsigned TargetTransformInfo::getUserCost(const User *U) const {
|
|
|
|
return PrevTTI->getUserCost(U);
|
|
|
|
}
|
|
|
|
|
2013-07-27 08:01:07 +08:00
|
|
|
bool TargetTransformInfo::hasBranchDivergence() const {
|
|
|
|
return PrevTTI->hasBranchDivergence();
|
|
|
|
}
|
|
|
|
|
2013-01-22 19:26:02 +08:00
|
|
|
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
|
|
|
|
return PrevTTI->isLoweredToCall(F);
|
|
|
|
}
|
|
|
|
|
2013-09-12 03:25:43 +08:00
|
|
|
void TargetTransformInfo::getUnrollingPreferences(Loop *L,
|
|
|
|
UnrollingPreferences &UP) const {
|
|
|
|
PrevTTI->getUnrollingPreferences(L, UP);
|
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
|
|
|
|
return PrevTTI->isLegalAddImmediate(Imm);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
|
|
|
|
return PrevTTI->isLegalICmpImmediate(Imm);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
|
|
int64_t BaseOffset,
|
|
|
|
bool HasBaseReg,
|
|
|
|
int64_t Scale) const {
|
|
|
|
return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
|
|
Scale);
|
|
|
|
}
|
|
|
|
|
2013-06-01 05:29:03 +08:00
|
|
|
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
|
|
int64_t BaseOffset,
|
|
|
|
bool HasBaseReg,
|
|
|
|
int64_t Scale) const {
|
|
|
|
return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
|
|
Scale);
|
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
|
|
return PrevTTI->isTruncateFree(Ty1, Ty2);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
|
|
|
|
return PrevTTI->isTypeLegal(Ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getJumpBufAlignment() const {
|
|
|
|
return PrevTTI->getJumpBufAlignment();
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getJumpBufSize() const {
|
|
|
|
return PrevTTI->getJumpBufSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::shouldBuildLookupTables() const {
|
|
|
|
return PrevTTI->shouldBuildLookupTables();
|
|
|
|
}
|
|
|
|
|
2013-01-07 11:16:03 +08:00
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
|
|
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
|
|
|
|
return PrevTTI->getPopcntSupport(IntTyWidthInBit);
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2013-08-23 18:27:02 +08:00
|
|
|
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
|
|
|
|
return PrevTTI->haveFastSqrt(Ty);
|
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
|
|
return PrevTTI->getIntImmCost(Imm, Ty);
|
|
|
|
}
|
|
|
|
|
2014-03-21 14:04:45 +08:00
|
|
|
unsigned TargetTransformInfo::getIntImmCost(unsigned Opc, unsigned Idx,
|
|
|
|
const APInt &Imm, Type *Ty) const {
|
|
|
|
return PrevTTI->getIntImmCost(Opc, Idx, Imm, Ty);
|
2014-01-25 10:02:55 +08:00
|
|
|
}
|
|
|
|
|
2014-03-21 14:04:45 +08:00
|
|
|
unsigned TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
|
|
|
|
const APInt &Imm, Type *Ty) const {
|
|
|
|
return PrevTTI->getIntImmCost(IID, Idx, Imm, Ty);
|
2014-01-25 10:02:55 +08:00
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
|
|
|
|
return PrevTTI->getNumberOfRegisters(Vector);
|
|
|
|
}
|
|
|
|
|
2013-01-10 06:29:00 +08:00
|
|
|
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
|
|
|
|
return PrevTTI->getRegisterBitWidth(Vector);
|
|
|
|
}
|
|
|
|
|
2013-01-09 09:15:42 +08:00
|
|
|
unsigned TargetTransformInfo::getMaximumUnrollFactor() const {
|
|
|
|
return PrevTTI->getMaximumUnrollFactor();
|
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
unsigned TargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
|
2013-04-05 07:26:21 +08:00
|
|
|
Type *Ty,
|
|
|
|
OperandValueKind Op1Info,
|
|
|
|
OperandValueKind Op2Info) const {
|
|
|
|
return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
|
|
int Index, Type *SubTp) const {
|
|
|
|
return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
|
|
Type *Src) const {
|
|
|
|
return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
|
|
|
|
return PrevTTI->getCFInstrCost(Opcode);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
|
|
Type *CondTy) const {
|
|
|
|
return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
|
|
unsigned Index) const {
|
|
|
|
return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
|
|
unsigned Alignment,
|
|
|
|
unsigned AddressSpace) const {
|
|
|
|
return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned
|
|
|
|
TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
|
|
|
|
Type *RetTy,
|
|
|
|
ArrayRef<Type *> Tys) const {
|
|
|
|
return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
|
|
|
|
return PrevTTI->getNumberOfParts(Tp);
|
|
|
|
}
|
|
|
|
|
2013-07-13 03:16:02 +08:00
|
|
|
unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp,
|
|
|
|
bool IsComplex) const {
|
|
|
|
return PrevTTI->getAddressComputationCost(Tp, IsComplex);
|
2013-02-08 22:50:48 +08:00
|
|
|
}
|
2013-01-05 19:43:11 +08:00
|
|
|
|
Costmodel: Add support for horizontal vector reductions
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.
We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:
(v0, v1, v2, v3)
\ \ / /
\ \ /
+ +
(v0+v2, v1+v3, undef, undef)
\ /
((v0+v2) + (v1+v3), undef, undef)
%rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
%rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
%r = extractelement <4 x float> %bin.rdx8, i32 0
This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.
We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).
(v0, v1, v2, v3)
\ / \ /
(v0+v1, v2+v3, undef, undef)
\ /
((v0+v1)+(v2+v3), undef, undef, undef)
%rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
%rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
%bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
%rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
%rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
%r = extractelement <4 x float> %bin.rdx.1, i32 0
llvm-svn: 190876
2013-09-18 02:06:50 +08:00
|
|
|
unsigned TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty,
|
|
|
|
bool IsPairwise) const {
|
|
|
|
return PrevTTI->getReductionCost(Opcode, Ty, IsPairwise);
|
|
|
|
}
|
|
|
|
|
2013-01-05 19:43:11 +08:00
|
|
|
namespace {
|
|
|
|
|
2014-03-02 16:08:51 +08:00
|
|
|
struct NoTTI final : ImmutablePass, TargetTransformInfo {
|
2013-01-21 09:27:39 +08:00
|
|
|
const DataLayout *DL;
|
|
|
|
|
2014-04-15 12:59:12 +08:00
|
|
|
NoTTI() : ImmutablePass(ID), DL(nullptr) {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
initializeNoTTIPass(*PassRegistry::getPassRegistry());
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
virtual void initializePass() override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
// Note that this subclass is special, and must *not* call initializeTTI as
|
|
|
|
// it does not chain.
|
2013-01-22 19:26:02 +08:00
|
|
|
TopTTI = this;
|
2014-04-15 12:59:12 +08:00
|
|
|
PrevTTI = nullptr;
|
2014-02-26 01:30:31 +08:00
|
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
2014-04-15 12:59:12 +08:00
|
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
|
2013-01-05 19:43:11 +08:00
|
|
|
// Note that this subclass is special, and must *not* call
|
|
|
|
// TTI::getAnalysisUsage as it breaks the recursion.
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Pass identification.
|
|
|
|
static char ID;
|
|
|
|
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
2014-03-02 17:09:27 +08:00
|
|
|
virtual void *getAdjustedAnalysisPointer(const void *ID) override {
|
2013-01-05 19:43:11 +08:00
|
|
|
if (ID == &TargetTransformInfo::ID)
|
|
|
|
return (TargetTransformInfo*)this;
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
2014-01-25 02:22:59 +08:00
|
|
|
unsigned getOperationCost(unsigned Opcode, Type *Ty,
|
2014-03-02 17:09:27 +08:00
|
|
|
Type *OpTy) const override {
|
2013-01-21 09:27:39 +08:00
|
|
|
switch (Opcode) {
|
|
|
|
default:
|
|
|
|
// By default, just classify everything as 'basic'.
|
|
|
|
return TCC_Basic;
|
|
|
|
|
|
|
|
case Instruction::GetElementPtr:
|
|
|
|
llvm_unreachable("Use getGEPCost for GEP operations!");
|
|
|
|
|
|
|
|
case Instruction::BitCast:
|
|
|
|
assert(OpTy && "Cast instructions must provide the operand type");
|
|
|
|
if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
|
|
|
|
// Identity and pointer-to-pointer casts are free.
|
|
|
|
return TCC_Free;
|
|
|
|
|
|
|
|
// Otherwise, the default basic cost is used.
|
|
|
|
return TCC_Basic;
|
|
|
|
|
2013-08-29 06:41:57 +08:00
|
|
|
case Instruction::IntToPtr: {
|
|
|
|
if (!DL)
|
|
|
|
return TCC_Basic;
|
|
|
|
|
2013-01-21 09:27:39 +08:00
|
|
|
// An inttoptr cast is free so long as the input is a legal integer type
|
|
|
|
// which doesn't contain values outside the range of a pointer.
|
2013-08-29 06:41:57 +08:00
|
|
|
unsigned OpSize = OpTy->getScalarSizeInBits();
|
|
|
|
if (DL->isLegalInteger(OpSize) &&
|
|
|
|
OpSize <= DL->getPointerTypeSizeInBits(Ty))
|
2013-01-21 09:27:39 +08:00
|
|
|
return TCC_Free;
|
|
|
|
|
|
|
|
// Otherwise it's not a no-op.
|
|
|
|
return TCC_Basic;
|
2013-08-29 06:41:57 +08:00
|
|
|
}
|
|
|
|
case Instruction::PtrToInt: {
|
|
|
|
if (!DL)
|
|
|
|
return TCC_Basic;
|
2013-01-21 09:27:39 +08:00
|
|
|
|
|
|
|
// A ptrtoint cast is free so long as the result is large enough to store
|
|
|
|
// the pointer, and a legal integer type.
|
2013-08-29 06:41:57 +08:00
|
|
|
unsigned DestSize = Ty->getScalarSizeInBits();
|
|
|
|
if (DL->isLegalInteger(DestSize) &&
|
|
|
|
DestSize >= DL->getPointerTypeSizeInBits(OpTy))
|
2013-01-21 09:27:39 +08:00
|
|
|
return TCC_Free;
|
|
|
|
|
|
|
|
// Otherwise it's not a no-op.
|
|
|
|
return TCC_Basic;
|
2013-08-29 06:41:57 +08:00
|
|
|
}
|
2013-01-21 09:27:39 +08:00
|
|
|
case Instruction::Trunc:
|
|
|
|
// trunc to a native type is free (assuming the target has compare and
|
|
|
|
// shift-right of the same width).
|
|
|
|
if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
|
|
|
|
return TCC_Free;
|
|
|
|
|
|
|
|
return TCC_Basic;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getGEPCost(const Value *Ptr,
|
2014-03-02 17:09:27 +08:00
|
|
|
ArrayRef<const Value *> Operands) const override {
|
2013-01-21 09:27:39 +08:00
|
|
|
// In the basic model, we just assume that all-constant GEPs will be folded
|
|
|
|
// into their uses via addressing modes.
|
|
|
|
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
|
|
|
|
if (!isa<Constant>(Operands[Idx]))
|
|
|
|
return TCC_Basic;
|
|
|
|
|
|
|
|
return TCC_Free;
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const override
|
2014-01-25 02:22:59 +08:00
|
|
|
{
|
2013-01-22 19:26:02 +08:00
|
|
|
assert(FTy && "FunctionType must be provided to this routine.");
|
|
|
|
|
|
|
|
// The target-independent implementation just measures the size of the
|
|
|
|
// function by approximating that each argument will take on average one
|
|
|
|
// instruction to prepare.
|
|
|
|
|
|
|
|
if (NumArgs < 0)
|
|
|
|
// Set the argument number to the number of explicit arguments in the
|
|
|
|
// function.
|
|
|
|
NumArgs = FTy->getNumParams();
|
|
|
|
|
|
|
|
return TCC_Basic * (NumArgs + 1);
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getCallCost(const Function *F, int NumArgs = -1) const override
|
2014-01-25 02:22:59 +08:00
|
|
|
{
|
2013-01-22 19:26:02 +08:00
|
|
|
assert(F && "A concrete function must be provided to this routine.");
|
|
|
|
|
|
|
|
if (NumArgs < 0)
|
|
|
|
// Set the argument number to the number of explicit arguments in the
|
|
|
|
// function.
|
|
|
|
NumArgs = F->arg_size();
|
|
|
|
|
|
|
|
if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
|
|
FunctionType *FTy = F->getFunctionType();
|
|
|
|
SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
|
|
|
|
return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TopTTI->isLoweredToCall(F))
|
|
|
|
return TCC_Basic; // Give a basic cost if it will be lowered directly.
|
|
|
|
|
|
|
|
return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getCallCost(const Function *F,
|
2014-03-02 17:09:27 +08:00
|
|
|
ArrayRef<const Value *> Arguments) const override {
|
2013-01-22 19:26:02 +08:00
|
|
|
// Simply delegate to generic handling of the call.
|
|
|
|
// FIXME: We should use instsimplify or something else to catch calls which
|
|
|
|
// will constant fold with these arguments.
|
|
|
|
return TopTTI->getCallCost(F, Arguments.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
2014-03-02 17:09:27 +08:00
|
|
|
ArrayRef<Type *> ParamTys) const override {
|
2013-01-22 19:26:02 +08:00
|
|
|
switch (IID) {
|
|
|
|
default:
|
|
|
|
// Intrinsics rarely (if ever) have normal argument setup constraints.
|
|
|
|
// Model them as having a basic instruction cost.
|
|
|
|
// FIXME: This is wrong for libc intrinsics.
|
|
|
|
return TCC_Basic;
|
|
|
|
|
|
|
|
case Intrinsic::dbg_declare:
|
|
|
|
case Intrinsic::dbg_value:
|
|
|
|
case Intrinsic::invariant_start:
|
|
|
|
case Intrinsic::invariant_end:
|
|
|
|
case Intrinsic::lifetime_start:
|
|
|
|
case Intrinsic::lifetime_end:
|
|
|
|
case Intrinsic::objectsize:
|
|
|
|
case Intrinsic::ptr_annotation:
|
|
|
|
case Intrinsic::var_annotation:
|
|
|
|
// These intrinsics don't actually represent code after lowering.
|
|
|
|
return TCC_Free;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-25 02:22:59 +08:00
|
|
|
unsigned
|
|
|
|
getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
|
2014-03-02 17:09:27 +08:00
|
|
|
ArrayRef<const Value *> Arguments) const override {
|
2013-01-22 19:26:02 +08:00
|
|
|
// Delegate to the generic intrinsic handling code. This mostly provides an
|
|
|
|
// opportunity for targets to (for example) special case the cost of
|
|
|
|
// certain intrinsics based on constants used as arguments.
|
|
|
|
SmallVector<Type *, 8> ParamTys;
|
|
|
|
ParamTys.reserve(Arguments.size());
|
|
|
|
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
|
|
|
|
ParamTys.push_back(Arguments[Idx]->getType());
|
|
|
|
return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getUserCost(const User *U) const override {
|
2013-01-21 21:04:33 +08:00
|
|
|
if (isa<PHINode>(U))
|
|
|
|
return TCC_Free; // Model all PHI nodes as free.
|
|
|
|
|
2014-04-02 02:50:06 +08:00
|
|
|
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
|
|
|
|
SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
|
|
|
|
return TopTTI->getGEPCost(GEP->getPointerOperand(), Indices);
|
|
|
|
}
|
2013-01-21 09:27:39 +08:00
|
|
|
|
2013-01-22 19:26:02 +08:00
|
|
|
if (ImmutableCallSite CS = U) {
|
|
|
|
const Function *F = CS.getCalledFunction();
|
|
|
|
if (!F) {
|
|
|
|
// Just use the called value type.
|
|
|
|
Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
|
|
|
|
return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
|
2013-01-21 09:27:39 +08:00
|
|
|
}
|
2013-01-22 19:26:02 +08:00
|
|
|
|
2014-02-10 22:17:42 +08:00
|
|
|
SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
|
2013-01-22 19:26:02 +08:00
|
|
|
return TopTTI->getCallCost(F, Arguments);
|
2013-01-21 09:27:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (const CastInst *CI = dyn_cast<CastInst>(U)) {
|
|
|
|
// Result of a cmp instruction is often extended (to be used by other
|
|
|
|
// cmp instructions, logical or return instructions). These are usually
|
|
|
|
// nop on most sane targets.
|
|
|
|
if (isa<CmpInst>(CI->getOperand(0)))
|
|
|
|
return TCC_Free;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise delegate to the fully generic implementations.
|
|
|
|
return getOperationCost(Operator::getOpcode(U), U->getType(),
|
|
|
|
U->getNumOperands() == 1 ?
|
2014-04-15 12:59:12 +08:00
|
|
|
U->getOperand(0)->getType() : nullptr);
|
2013-01-21 09:27:39 +08:00
|
|
|
}
|
2013-01-05 19:43:11 +08:00
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool hasBranchDivergence() const override { return false; }
|
2013-07-27 08:01:07 +08:00
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool isLoweredToCall(const Function *F) const override {
|
2013-01-22 19:26:02 +08:00
|
|
|
// FIXME: These should almost certainly not be handled here, and instead
|
|
|
|
// handled with the help of TLI or the target itself. This was largely
|
|
|
|
// ported from existing analysis heuristics here so that such refactorings
|
|
|
|
// can take place in the future.
|
|
|
|
|
|
|
|
if (F->isIntrinsic())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (F->hasLocalLinkage() || !F->hasName())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
StringRef Name = F->getName();
|
|
|
|
|
|
|
|
// These will all likely lower to a single selection DAG node.
|
|
|
|
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
|
|
|
|
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
|
|
|
|
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
|
|
|
|
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// These are all likely to be optimized into something smaller.
|
|
|
|
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
|
|
|
|
Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
|
|
|
|
"floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
|
|
|
|
Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
void getUnrollingPreferences(Loop *, UnrollingPreferences &) const override {
|
|
|
|
}
|
2013-09-12 03:25:43 +08:00
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool isLegalAddImmediate(int64_t Imm) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return false;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool isLegalICmpImmediate(int64_t Imm) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return false;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
2014-03-02 17:09:27 +08:00
|
|
|
bool HasBaseReg, int64_t Scale) const override
|
2014-01-25 02:22:59 +08:00
|
|
|
{
|
Switch the SCEV expander and LoopStrengthReduce to use
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.
This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.
The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.
I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.
Yet again, almost all of the formatting changes brought to you by
clang-format. =]
llvm-svn: 171735
2013-01-07 22:41:08 +08:00
|
|
|
// Guess that reg+reg addressing is allowed. This heuristic is taken from
|
|
|
|
// the implementation of LSR.
|
|
|
|
return !BaseGV && BaseOffset == 0 && Scale <= 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2013-06-01 05:29:03 +08:00
|
|
|
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
2014-03-02 17:09:27 +08:00
|
|
|
bool HasBaseReg, int64_t Scale) const override {
|
2013-06-01 05:29:03 +08:00
|
|
|
// Guess that all legal addressing mode are free.
|
|
|
|
if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
|
|
|
|
return 0;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return false;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool isTypeLegal(Type *Ty) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return false;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getJumpBufAlignment() const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 0;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getJumpBufSize() const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 0;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool shouldBuildLookupTables() const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return true;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-01-25 02:22:59 +08:00
|
|
|
PopcntSupportKind
|
2014-03-02 17:09:27 +08:00
|
|
|
getPopcntSupport(unsigned IntTyWidthInBit) const override {
|
2013-01-07 11:16:03 +08:00
|
|
|
return PSK_Software;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
bool haveFastSqrt(Type *Ty) const override {
|
2013-08-23 18:27:02 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override {
|
2014-01-25 10:02:55 +08:00
|
|
|
return TCC_Basic;
|
|
|
|
}
|
|
|
|
|
2014-03-21 14:04:45 +08:00
|
|
|
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
|
2014-03-02 17:09:27 +08:00
|
|
|
Type *Ty) const override {
|
2014-01-25 10:02:55 +08:00
|
|
|
return TCC_Free;
|
|
|
|
}
|
|
|
|
|
2014-03-21 14:04:45 +08:00
|
|
|
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
2014-03-02 17:09:27 +08:00
|
|
|
Type *Ty) const override {
|
2014-01-25 10:02:55 +08:00
|
|
|
return TCC_Free;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getNumberOfRegisters(bool Vector) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 8;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getRegisterBitWidth(bool Vector) const override {
|
2013-01-10 06:29:00 +08:00
|
|
|
return 32;
|
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getMaximumUnrollFactor() const override {
|
2013-01-09 09:15:42 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2013-04-05 07:26:21 +08:00
|
|
|
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
|
2014-03-02 17:09:27 +08:00
|
|
|
OperandValueKind) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-01-25 02:22:59 +08:00
|
|
|
unsigned getShuffleCost(ShuffleKind Kind, Type *Ty,
|
2014-04-15 12:59:12 +08:00
|
|
|
int Index = 0, Type *SubTp = nullptr) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
2014-03-02 17:09:27 +08:00
|
|
|
Type *Src) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getCFInstrCost(unsigned Opcode) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
2014-04-15 12:59:12 +08:00
|
|
|
Type *CondTy = nullptr) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned Index = -1) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
|
|
unsigned AddressSpace) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
|
|
ArrayRef<Type*> Tys) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 1;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getNumberOfParts(Type *Tp) const override {
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
return 0;
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|
2013-02-08 22:50:48 +08:00
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getAddressComputationCost(Type *Tp, bool) const override {
|
2013-02-08 22:50:48 +08:00
|
|
|
return 0;
|
|
|
|
}
|
Costmodel: Add support for horizontal vector reductions
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.
We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:
(v0, v1, v2, v3)
\ \ / /
\ \ /
+ +
(v0+v2, v1+v3, undef, undef)
\ /
((v0+v2) + (v1+v3), undef, undef)
%rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
%rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
%r = extractelement <4 x float> %bin.rdx8, i32 0
This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.
We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).
(v0, v1, v2, v3)
\ / \ /
(v0+v1, v2+v3, undef, undef)
\ /
((v0+v1)+(v2+v3), undef, undef, undef)
%rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
%rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
%bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
%rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
%rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
%r = extractelement <4 x float> %bin.rdx.1, i32 0
llvm-svn: 190876
2013-09-18 02:06:50 +08:00
|
|
|
|
2014-03-02 17:09:27 +08:00
|
|
|
unsigned getReductionCost(unsigned, Type *, bool) const override {
|
Costmodel: Add support for horizontal vector reductions
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.
We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:
(v0, v1, v2, v3)
\ \ / /
\ \ /
+ +
(v0+v2, v1+v3, undef, undef)
\ /
((v0+v2) + (v1+v3), undef, undef)
%rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
%rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
%r = extractelement <4 x float> %bin.rdx8, i32 0
This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.
We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).
(v0, v1, v2, v3)
\ / \ /
(v0+v1, v2+v3, undef, undef)
\ /
((v0+v1)+(v2+v3), undef, undef, undef)
%rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
%rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
%bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
%rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
%rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
%r = extractelement <4 x float> %bin.rdx.1, i32 0
llvm-svn: 190876
2013-09-18 02:06:50 +08:00
|
|
|
return 1;
|
|
|
|
}
|
2013-01-05 19:43:11 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
|
2013-01-05 19:43:11 +08:00
|
|
|
"No target information", true, true, true)
|
|
|
|
char NoTTI::ID = 0;
|
|
|
|
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 09:37:14 +08:00
|
|
|
ImmutablePass *llvm::createNoTargetTransformInfoPass() {
|
|
|
|
return new NoTTI();
|
2013-01-05 19:43:11 +08:00
|
|
|
}
|