llvm-project/llvm/utils/TableGen/GlobalISelEmitter.cpp

4136 lines
152 KiB
C++
Raw Normal View History

//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineValueType.h"
2017-11-16 08:46:35 +08:00
#include "llvm/Support/CodeGenCoverage.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
2017-11-16 08:46:35 +08:00
#include <string>
using namespace llvm;
#define DEBUG_TYPE "gisel-emitter"
STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
2017-11-16 08:46:35 +08:00
STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
static cl::opt<bool> WarnOnSkippedPatterns(
"warn-on-skipped-patterns",
cl::desc("Explain why a pattern was skipped for inclusion "
"in the GlobalISel selector"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
2017-11-16 08:46:35 +08:00
static cl::opt<bool> GenerateCoverage(
"instrument-gisel-coverage",
cl::desc("Generate coverage instrumentation for GlobalISel"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
static cl::opt<std::string> UseCoverageFile(
"gisel-coverage-file", cl::init(""),
cl::desc("Specify file to retrieve coverage information from"),
cl::cat(GlobalISelEmitterCat));
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
static cl::opt<bool> OptimizeMatchTable(
"optimize-match-table",
cl::desc("Generate an optimized version of the match table"),
cl::init(true), cl::cat(GlobalISelEmitterCat));
namespace {
//===- Helper functions ---------------------------------------------------===//
/// Get the name of the enum value used to number the predicate function.
std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
Predicate.getFnName();
}
/// Get the opcode used to check this predicate.
std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
}
/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
LLT Ty;
public:
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
std::string getCxxEnumValue() const {
std::string Str;
raw_string_ostream OS(Str);
emitCxxEnumValue(OS);
return OS.str();
}
void emitCxxEnumValue(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "GILLT_s" << Ty.getSizeInBits();
return;
}
if (Ty.isVector()) {
OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
return;
}
if (Ty.isPointer()) {
OS << "GILLT_p" << Ty.getAddressSpace();
if (Ty.getSizeInBits() > 0)
OS << "s" << Ty.getSizeInBits();
return;
}
llvm_unreachable("Unhandled LLT");
}
void emitCxxConstructorCall(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
return;
}
if (Ty.isVector()) {
OS << "LLT::vector(" << Ty.getNumElements() << ", "
<< Ty.getScalarSizeInBits() << ")";
return;
}
if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
<< Ty.getSizeInBits() << ")";
return;
}
llvm_unreachable("Unhandled LLT");
}
const LLT &get() const { return Ty; }
/// This ordering is used for std::unique() and std::sort(). There's no
/// particular logic behind the order but either A < B or B < A must be
/// true if A != B.
bool operator<(const LLTCodeGen &Other) const {
if (Ty.isValid() != Other.Ty.isValid())
return Ty.isValid() < Other.Ty.isValid();
if (!Ty.isValid())
return false;
if (Ty.isVector() != Other.Ty.isVector())
return Ty.isVector() < Other.Ty.isVector();
if (Ty.isScalar() != Other.Ty.isScalar())
return Ty.isScalar() < Other.Ty.isScalar();
if (Ty.isPointer() != Other.Ty.isPointer())
return Ty.isPointer() < Other.Ty.isPointer();
if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
return Ty.getNumElements() < Other.Ty.getNumElements();
return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
}
bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
};
class InstructionMatcher;
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
MVT VT(SVT);
if (VT.isVector() && VT.getVectorNumElements() != 1)
return LLTCodeGen(
LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
if (VT.isInteger() || VT.isFloatingPoint())
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
return None;
}
static std::string explainPredicates(const TreePatternNode *N) {
std::string Explanation = "";
StringRef Separator = "";
for (const auto &P : N->getPredicateFns()) {
Explanation +=
(Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
Separator = ", ";
if (P.isAlwaysTrue())
Explanation += " always-true";
if (P.isImmediatePattern())
Explanation += " immediate";
if (P.isUnindexed())
Explanation += " unindexed";
if (P.isNonExtLoad())
Explanation += " non-extload";
if (P.isAnyExtLoad())
Explanation += " extload";
if (P.isSignExtLoad())
Explanation += " sextload";
if (P.isZeroExtLoad())
Explanation += " zextload";
if (P.isNonTruncStore())
Explanation += " non-truncstore";
if (P.isTruncStore())
Explanation += " truncstore";
if (Record *VT = P.getMemoryVT())
Explanation += (" MemVT=" + VT->getName()).str();
if (Record *VT = P.getScalarMemoryVT())
Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
if (P.isAtomicOrderingMonotonic())
Explanation += " monotonic";
if (P.isAtomicOrderingAcquire())
Explanation += " acquire";
if (P.isAtomicOrderingRelease())
Explanation += " release";
if (P.isAtomicOrderingAcquireRelease())
Explanation += " acq_rel";
if (P.isAtomicOrderingSequentiallyConsistent())
Explanation += " seq_cst";
if (P.isAtomicOrderingAcquireOrStronger())
Explanation += " >=acquire";
if (P.isAtomicOrderingWeakerThanAcquire())
Explanation += " <acquire";
if (P.isAtomicOrderingReleaseOrStronger())
Explanation += " >=release";
if (P.isAtomicOrderingWeakerThanRelease())
Explanation += " <release";
}
return Explanation;
}
std::string explainOperator(Record *Operator) {
if (Operator->isSubClassOf("SDNode"))
return (" (" + Operator->getValueAsString("Opcode") + ")").str();
if (Operator->isSubClassOf("Intrinsic"))
return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
if (Operator->isSubClassOf("ComplexPattern"))
return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
")")
.str();
if (Operator->isSubClassOf("SDNodeXForm"))
return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
")")
.str();
return (" (Operator " + Operator->getName() + " not understood)").str();
}
/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
return make_error<StringError>(Reason, inconvertibleErrorCode());
}
static Error isTrivialOperatorNode(const TreePatternNode *N) {
std::string Explanation = "";
std::string Separator = "";
bool HasUnsupportedPredicate = false;
for (const auto &Predicate : N->getPredicateFns()) {
if (Predicate.isAlwaysTrue())
continue;
if (Predicate.isImmediatePattern())
continue;
if (Predicate.isNonExtLoad())
continue;
if (Predicate.isNonTruncStore())
continue;
if (Predicate.isLoad() || Predicate.isStore()) {
if (Predicate.isUnindexed())
continue;
}
if (Predicate.isAtomic() && Predicate.getMemoryVT())
continue;
if (Predicate.isAtomic() &&
(Predicate.isAtomicOrderingMonotonic() ||
Predicate.isAtomicOrderingAcquire() ||
Predicate.isAtomicOrderingRelease() ||
Predicate.isAtomicOrderingAcquireRelease() ||
Predicate.isAtomicOrderingSequentiallyConsistent() ||
Predicate.isAtomicOrderingAcquireOrStronger() ||
Predicate.isAtomicOrderingWeakerThanAcquire() ||
Predicate.isAtomicOrderingReleaseOrStronger() ||
Predicate.isAtomicOrderingWeakerThanRelease()))
continue;
HasUnsupportedPredicate = true;
Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
Separator = ", ";
Explanation += (Separator + "first-failing:" +
Predicate.getOrigPatFragRecord()->getRecord()->getName())
.str();
break;
}
if (!HasUnsupportedPredicate)
return Error::success();
return failedImport(Explanation);
}
static Record *getInitValueAsRegClass(Init *V) {
if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
return VDefInit->getDef()->getValueAsDef("RegClass");
if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
return VDefInit->getDef();
}
return nullptr;
}
std::string
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
std::string Name = "GIFBS";
for (const auto &Feature : FeatureBitset)
Name += ("_" + Feature->getName()).str();
return Name;
}
//===- MatchTable Helpers -------------------------------------------------===//
class MatchTable;
/// A record to be stored in a MatchTable.
///
/// This class represents any and all output that may be required to emit the
/// MatchTable. Instances are most often configured to represent an opcode or
/// value that will be emitted to the table with some formatting but it can also
/// represent commas, comments, and other formatting instructions.
struct MatchTableRecord {
enum RecordFlagsBits {
MTRF_None = 0x0,
/// Causes EmitStr to be formatted as comment when emitted.
MTRF_Comment = 0x1,
/// Causes the record value to be followed by a comma when emitted.
MTRF_CommaFollows = 0x2,
/// Causes the record value to be followed by a line break when emitted.
MTRF_LineBreakFollows = 0x4,
/// Indicates that the record defines a label and causes an additional
/// comment to be emitted containing the index of the label.
MTRF_Label = 0x8,
/// Causes the record to be emitted as the index of the label specified by
/// LabelID along with a comment indicating where that label is.
MTRF_JumpTarget = 0x10,
/// Causes the formatter to add a level of indentation before emitting the
/// record.
MTRF_Indent = 0x20,
/// Causes the formatter to remove a level of indentation after emitting the
/// record.
MTRF_Outdent = 0x40,
};
/// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
/// reference or define.
unsigned LabelID;
/// The string to emit. Depending on the MTRF_* flags it may be a comment, a
/// value, a label name.
std::string EmitStr;
private:
/// The number of MatchTable elements described by this record. Comments are 0
/// while values are typically 1. Values >1 may occur when we need to emit
/// values that exceed the size of a MatchTable element.
unsigned NumElements;
public:
/// A bitfield of RecordFlagsBits flags.
unsigned Flags;
MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
unsigned NumElements, unsigned Flags)
: LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
EmitStr(EmitStr), NumElements(NumElements), Flags(Flags) {
assert((!LabelID_.hasValue() || LabelID != ~0u) &&
"This value is reserved for non-labels");
}
void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
const MatchTable &Table) const;
unsigned size() const { return NumElements; }
};
/// Holds the contents of a generated MatchTable to enable formatting and the
/// necessary index tracking needed to support GIM_Try.
class MatchTable {
/// An unique identifier for the table. The generated table will be named
/// MatchTable${ID}.
unsigned ID;
/// The records that make up the table. Also includes comments describing the
/// values being emitted and line breaks to format it.
std::vector<MatchTableRecord> Contents;
/// The currently defined labels.
DenseMap<unsigned, unsigned> LabelMap;
/// Tracks the sum of MatchTableRecord::NumElements as the table is built.
unsigned CurrentSize;
/// A unique identifier for a MatchTable label.
static unsigned CurrentLabelID;
public:
static MatchTableRecord LineBreak;
static MatchTableRecord Comment(StringRef Comment) {
return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
}
static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
unsigned ExtraFlags = 0;
if (IndentAdjust > 0)
ExtraFlags |= MatchTableRecord::MTRF_Indent;
if (IndentAdjust < 0)
ExtraFlags |= MatchTableRecord::MTRF_Outdent;
return MatchTableRecord(None, Opcode, 1,
MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
}
static MatchTableRecord NamedValue(StringRef NamedValue) {
return MatchTableRecord(None, NamedValue, 1,
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTableRecord NamedValue(StringRef Namespace,
StringRef NamedValue) {
return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTableRecord IntValue(int64_t IntValue) {
return MatchTableRecord(None, llvm::to_string(IntValue), 1,
MatchTableRecord::MTRF_CommaFollows);
}
static MatchTableRecord Label(unsigned LabelID) {
return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
MatchTableRecord::MTRF_Label |
MatchTableRecord::MTRF_Comment |
MatchTableRecord::MTRF_LineBreakFollows);
}
static MatchTableRecord JumpTarget(unsigned LabelID) {
return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
MatchTableRecord::MTRF_JumpTarget |
MatchTableRecord::MTRF_Comment |
MatchTableRecord::MTRF_CommaFollows);
}
MatchTable(unsigned ID) : ID(ID), CurrentSize(0) {}
void push_back(const MatchTableRecord &Value) {
if (Value.Flags & MatchTableRecord::MTRF_Label)
defineLabel(Value.LabelID);
Contents.push_back(Value);
CurrentSize += Value.size();
}
unsigned allocateLabelID() const { return CurrentLabelID++; }
void defineLabel(unsigned LabelID) {
LabelMap.insert(std::make_pair(LabelID, CurrentSize));
}
unsigned getLabelIndex(unsigned LabelID) const {
const auto I = LabelMap.find(LabelID);
assert(I != LabelMap.end() && "Use of undeclared label");
return I->second;
}
void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
void emitDeclaration(raw_ostream &OS) const {
unsigned Indentation = 4;
OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
LineBreak.emit(OS, true, *this);
OS << std::string(Indentation, ' ');
for (auto I = Contents.begin(), E = Contents.end(); I != E;
++I) {
bool LineBreakIsNext = false;
const auto &NextI = std::next(I);
if (NextI != E) {
if (NextI->EmitStr == "" &&
NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
LineBreakIsNext = true;
}
if (I->Flags & MatchTableRecord::MTRF_Indent)
Indentation += 2;
I->emit(OS, LineBreakIsNext, *this);
if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
OS << std::string(Indentation, ' ');
if (I->Flags & MatchTableRecord::MTRF_Outdent)
Indentation -= 2;
}
OS << "};\n";
}
};
unsigned MatchTable::CurrentLabelID = 0;
MatchTableRecord MatchTable::LineBreak = {
None, "" /* Emit String */, 0 /* Elements */,
MatchTableRecord::MTRF_LineBreakFollows};
void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
const MatchTable &Table) const {
bool UseLineComment =
LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
UseLineComment = false;
if (Flags & MTRF_Comment)
OS << (UseLineComment ? "// " : "/*");
OS << EmitStr;
if (Flags & MTRF_Label)
OS << ": @" << Table.getLabelIndex(LabelID);
if (Flags & MTRF_Comment && !UseLineComment)
OS << "*/";
if (Flags & MTRF_JumpTarget) {
if (Flags & MTRF_Comment)
OS << " ";
OS << Table.getLabelIndex(LabelID);
}
if (Flags & MTRF_CommaFollows) {
OS << ",";
if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
OS << " ";
}
if (Flags & MTRF_LineBreakFollows)
OS << "\n";
}
MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
Table.push_back(Value);
return Table;
}
//===- Matchers -----------------------------------------------------------===//
class OperandMatcher;
class MatchAction;
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
class PredicateMatcher;
class RuleMatcher;
class Matcher {
public:
virtual ~Matcher() = default;
virtual void emit(MatchTable &Table) = 0;
virtual std::unique_ptr<PredicateMatcher> forgetFirstCondition() = 0;
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
};
class GroupMatcher : public Matcher {
SmallVector<std::unique_ptr<PredicateMatcher>, 8> Conditions;
SmallVector<Matcher *, 8> Rules;
public:
void addCondition(std::unique_ptr<PredicateMatcher> &&Predicate) {
Conditions.emplace_back(std::move(Predicate));
}
void addRule(Matcher &Rule) { Rules.push_back(&Rule); }
const std::unique_ptr<PredicateMatcher> &conditions_back() const {
return Conditions.back();
}
bool lastConditionMatches(const PredicateMatcher &Predicate) const;
bool conditions_empty() const { return Conditions.empty(); }
void clear() {
Conditions.clear();
Rules.clear();
}
void emit(MatchTable &Table) override;
std::unique_ptr<PredicateMatcher> forgetFirstCondition() override {
// We shouldn't need to mess up with groups, since we
// should have merged everything shareable upfront.
// If we start to look into reordering predicates,
// we may want to reconsider this.
assert(0 && "Groups should be formed maximal for now");
llvm_unreachable("No need for this for now");
}
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
};
/// Generates code to check that a match rule matches.
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
class RuleMatcher : public Matcher {
public:
using ActionVec = std::vector<std::unique_ptr<MatchAction>>;
using action_iterator = ActionVec::iterator;
protected:
/// A list of matchers that all need to succeed for the current rule to match.
/// FIXME: This currently supports a single match position but could be
/// extended to support multiple positions to support div/rem fusion or
/// load-multiple instructions.
std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
/// A list of actions that need to be taken when all predicates in this rule
/// have succeeded.
ActionVec Actions;
using DefinedInsnVariablesMap =
std::map<const InstructionMatcher *, unsigned>;
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
/// A map of instruction matchers to the local variables created by
/// emitCaptureOpcodes().
[globalisel][tablegen] Do not merge memoperands from instructions that weren't in the match. Summary: Fix a bug discovered in an out-of-tree target where memoperands from pseudo-instructions that weren't part of the match were being merged into the result instructions as part of GIR_MergeMemOperands. This bug was caused by a change to the handling of State.MIs between rules when the state machine tables were fused into a single table. Previously, each rule would reset State.MIs using State.MIs.resize(1) but this is no longer done, as a result stale data is occasionally left in some elements of State.MIs. Most opcodes aren't affected by this but GIR_MergeMemOperands merges all memoperands from the intructions recorded in State.MIs into the result instruction. Suppose for example, we processed but rejected the following pattern: (signextend (load x)) at this point, State.MIs contains the signextend and the load. Now suppose we process and accept this pattern: (add x, y) at this point, State.MIs contains the add as well as the (now irrelevant) load. When GIR_MergeMemOperands is processed, the memoperands from that irrelevant load will be merged into the result instruction even though it was not part of the match. Bringing back the State.MIs.resize(1) would fix the problem but it would limit our ability to optimize the table in the future. Instead, this patch fixes the problem by explicitly stating which instructions should be merged into the result. There's no direct test case in this commit because a test case would be very brittle. However, at the time of writing this should fix the failures in http://green.lab.llvm.org/green/job/Compiler_Verifiers_GlobalISEL/ as well as a failure in test/CodeGen/ARM/GlobalISel/arm-isel.ll when expensive checks are enabled. Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar Subscribers: fhahn, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D36094 llvm-svn: 309804
2017-08-02 19:03:36 +08:00
DefinedInsnVariablesMap InsnVariableIDs;
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
using MutatableInsnSet = SmallPtrSet<const InstructionMatcher *, 4>;
// The set of instruction matchers that have not yet been claimed for mutation
// by a BuildMI.
MutatableInsnSet MutatableInsns;
/// A map of named operands defined by the matchers that may be referenced by
/// the renderers.
StringMap<OperandMatcher *> DefinedOperands;
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
/// ID for the next instruction variable defined with defineInsnVar()
unsigned NextInsnVarID;
/// ID for the next output instruction allocated with allocateOutputInsnID()
unsigned NextOutputInsnID;
/// ID for the next temporary register ID allocated with allocateTempRegID()
unsigned NextTempRegID;
std::vector<Record *> RequiredFeatures;
ArrayRef<SMLoc> SrcLoc;
typedef std::tuple<Record *, unsigned, unsigned>
DefinedComplexPatternSubOperand;
typedef StringMap<DefinedComplexPatternSubOperand>
DefinedComplexPatternSubOperandMap;
/// A map of Symbolic Names to ComplexPattern sub-operands.
DefinedComplexPatternSubOperandMap ComplexSubOperands;
2017-11-16 08:46:35 +08:00
uint64_t RuleID;
static uint64_t NextRuleID;
public:
RuleMatcher(ArrayRef<SMLoc> SrcLoc)
: Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
2017-11-16 08:46:35 +08:00
NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
RuleID(NextRuleID++) {}
RuleMatcher(RuleMatcher &&Other) = default;
RuleMatcher &operator=(RuleMatcher &&Other) = default;
2017-11-16 08:46:35 +08:00
uint64_t getRuleID() const { return RuleID; }
InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
void addRequiredFeature(Record *Feature);
const std::vector<Record *> &getRequiredFeatures() const;
template <class Kind, class... Args> Kind &addAction(Args &&... args);
template <class Kind, class... Args>
action_iterator insertAction(action_iterator InsertPt, Args &&... args);
/// Define an instruction without emitting any code to do so.
/// This is used for the root of the match.
unsigned implicitlyDefineInsnVar(const InstructionMatcher &Matcher);
void clearImplicitMap() {
NextInsnVarID = 0;
InsnVariableIDs.clear();
};
/// Define an instruction and emit corresponding state-machine opcodes.
unsigned defineInsnVar(MatchTable &Table, const InstructionMatcher &Matcher,
unsigned InsnVarID, unsigned OpIdx);
unsigned getInsnVarID(const InstructionMatcher &InsnMatcher) const;
[globalisel][tablegen] Do not merge memoperands from instructions that weren't in the match. Summary: Fix a bug discovered in an out-of-tree target where memoperands from pseudo-instructions that weren't part of the match were being merged into the result instructions as part of GIR_MergeMemOperands. This bug was caused by a change to the handling of State.MIs between rules when the state machine tables were fused into a single table. Previously, each rule would reset State.MIs using State.MIs.resize(1) but this is no longer done, as a result stale data is occasionally left in some elements of State.MIs. Most opcodes aren't affected by this but GIR_MergeMemOperands merges all memoperands from the intructions recorded in State.MIs into the result instruction. Suppose for example, we processed but rejected the following pattern: (signextend (load x)) at this point, State.MIs contains the signextend and the load. Now suppose we process and accept this pattern: (add x, y) at this point, State.MIs contains the add as well as the (now irrelevant) load. When GIR_MergeMemOperands is processed, the memoperands from that irrelevant load will be merged into the result instruction even though it was not part of the match. Bringing back the State.MIs.resize(1) would fix the problem but it would limit our ability to optimize the table in the future. Instead, this patch fixes the problem by explicitly stating which instructions should be merged into the result. There's no direct test case in this commit because a test case would be very brittle. However, at the time of writing this should fix the failures in http://green.lab.llvm.org/green/job/Compiler_Verifiers_GlobalISEL/ as well as a failure in test/CodeGen/ARM/GlobalISel/arm-isel.ll when expensive checks are enabled. Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar Subscribers: fhahn, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D36094 llvm-svn: 309804
2017-08-02 19:03:36 +08:00
DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
return InsnVariableIDs.begin();
}
DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
return InsnVariableIDs.end();
}
iterator_range<typename DefinedInsnVariablesMap::const_iterator>
defined_insn_vars() const {
return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
}
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
MutatableInsnSet::const_iterator mutatable_insns_begin() const {
return MutatableInsns.begin();
}
MutatableInsnSet::const_iterator mutatable_insns_end() const {
return MutatableInsns.end();
}
iterator_range<typename MutatableInsnSet::const_iterator>
mutatable_insns() const {
return make_range(mutatable_insns_begin(), mutatable_insns_end());
}
void reserveInsnMatcherForMutation(const InstructionMatcher *InsnMatcher) {
bool R = MutatableInsns.erase(InsnMatcher);
assert(R && "Reserving a mutatable insn that isn't available");
(void)R;
}
action_iterator actions_begin() { return Actions.begin(); }
action_iterator actions_end() { return Actions.end(); }
iterator_range<action_iterator> actions() {
return make_range(actions_begin(), actions_end());
}
void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
unsigned RendererID, unsigned SubOperandID) {
assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
ComplexSubOperands[SymbolicName] =
std::make_tuple(ComplexPattern, RendererID, SubOperandID);
}
Optional<DefinedComplexPatternSubOperand>
getComplexSubOperand(StringRef SymbolicName) const {
const auto &I = ComplexSubOperands.find(SymbolicName);
if (I == ComplexSubOperands.end())
return None;
return I->second;
}
const InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
const OperandMatcher &getOperandMatcher(StringRef Name) const;
void emitCaptureOpcodes(MatchTable &Table);
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
void emit(MatchTable &Table) override;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const RuleMatcher &B) const;
/// Report the maximum number of temporary operands needed by the rule
/// matcher.
unsigned countRendererFns() const;
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
std::unique_ptr<PredicateMatcher> forgetFirstCondition() override;
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
// FIXME: Remove this as soon as possible
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
unsigned allocateTempRegID() { return NextTempRegID++; }
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
bool insnmatchers_empty() const { return Matchers.empty(); }
void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
};
2017-11-16 08:46:35 +08:00
uint64_t RuleMatcher::NextRuleID = 0;
using action_iterator = RuleMatcher::action_iterator;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
template <class PredicateTy> class PredicateListMatcher {
private:
typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
PredicateVec Predicates;
/// Template instantiations should specialize this to return a string to use
/// for the comment emitted when there are no predicates.
std::string getNoPredicateComment() const;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
/// Construct a new operand predicate and add it to the matcher.
template <class Kind, class... Args>
Optional<Kind *> addPredicate(Args&&... args) {
Predicates.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return static_cast<Kind *>(Predicates.back().get());
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
}
typename PredicateVec::const_iterator predicates_begin() const {
return Predicates.begin();
}
typename PredicateVec::const_iterator predicates_end() const {
return Predicates.end();
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
iterator_range<typename PredicateVec::const_iterator> predicates() const {
return make_range(predicates_begin(), predicates_end());
}
typename PredicateVec::size_type predicates_size() const {
return Predicates.size();
}
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
bool predicates_empty() const { return Predicates.empty(); }
std::unique_ptr<PredicateTy> predicates_pop_front() {
std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
Predicates.erase(Predicates.begin());
return Front;
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Emit MatchTable opcodes that tests whether all the predicates are met.
template <class... Args>
void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) const {
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
if (Predicates.empty()) {
Table << MatchTable::Comment(getNoPredicateComment())
<< MatchTable::LineBreak;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
return;
}
unsigned OpIdx = (*predicates_begin())->getOpIdx();
(void)OpIdx;
for (const auto &Predicate : predicates()) {
assert(Predicate->getOpIdx() == OpIdx &&
"Checks touch different operands?");
Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
}
};
class PredicateMatcher {
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
///
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
/// but OPM_Int must have priority over OPM_RegBank since constant integers
/// are represented by a virtual register defined by a G_CONSTANT instruction.
///
/// Note: The relative priority between IPM_ and OPM_ does not matter, they
/// are currently not compared between each other.
enum PredicateKind {
IPM_Opcode,
IPM_ImmPredicate,
IPM_AtomicOrderingMMO,
OPM_SameOperand,
OPM_ComplexPattern,
OPM_IntrinsicID,
OPM_Instruction,
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
OPM_Int,
OPM_LiteralInt,
OPM_LLT,
OPM_PointerToAny,
OPM_RegBank,
OPM_MBB,
};
protected:
PredicateKind Kind;
unsigned InsnVarID;
unsigned OpIdx;
public:
PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
: Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
unsigned getOpIdx() const { return OpIdx; }
virtual ~PredicateMatcher() = default;
/// Emit MatchTable opcodes that check the predicate for the given operand.
virtual void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const = 0;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
PredicateKind getKind() const { return Kind; }
virtual bool isIdentical(const PredicateMatcher &B) const {
if (InsnVarID != 0 || OpIdx != (unsigned)~0) {
// We currently don't hoist the record of instruction properly.
// Therefore we can only work on the orig instruction (InsnVarID
// == 0).
DEBUG(dbgs() << "Non-zero instr ID not supported yet\n");
return false;
}
return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
OpIdx == B.OpIdx;
}
};
/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher : public PredicateMatcher {
public:
OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
unsigned OpIdx)
: PredicateMatcher(Kind, InsnVarID, OpIdx) {}
virtual ~OperandPredicateMatcher() {}
/// Emit MatchTable opcodes to capture instructions into the MIs table.
///
/// Only InstructionOperandMatcher needs to do anything for this method the
/// rest just walk the tree.
virtual void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
virtual unsigned countRendererFns() const { return 0; }
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
};
template <>
std::string
PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
return "No operand predicates";
}
/// Generates code to check that a register operand is defined by the same exact
/// one as another.
class SameOperandMatcher : public OperandPredicateMatcher {
std::string MatchingName;
public:
SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
: OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
MatchingName(MatchingName) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_SameOperand;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override;
};
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
LLTCodeGen Ty;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
static std::set<LLTCodeGen> KnownTypes;
LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
: OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
KnownTypes.insert(Ty);
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_LLT;
}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Ty == cast<LLTOperandMatcher>(&B)->Ty;
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
<< MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
<< MatchTable::NamedValue(Ty.getCxxEnumValue())
<< MatchTable::LineBreak;
}
};
std::set<LLTCodeGen> LLTOperandMatcher::KnownTypes;
/// Generates code to check that an operand is a pointer to any address space.
///
/// In SelectionDAG, the types did not describe pointers or address spaces. As a
/// result, iN is used to describe a pointer of N bits to any address space and
/// PatFrag predicates are typically used to constrain the address space. There's
/// no reliable means to derive the missing type information from the pattern so
/// imported rules must test the components of a pointer separately.
///
/// If SizeInBits is zero, then the pointer size will be obtained from the
/// subtarget.
class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
protected:
unsigned SizeInBits;
public:
PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
unsigned SizeInBits)
: OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
SizeInBits(SizeInBits) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_PointerToAny;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckPointerToAny")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("SizeInBits")
<< MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
const OperandMatcher &Operand;
const Record &TheDef;
unsigned getAllocatedTemporariesBaseID() const;
public:
bool isIdentical(const PredicateMatcher &B) const override { return false; }
ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
const OperandMatcher &Operand,
const Record &TheDef)
: OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
Operand(Operand), TheDef(TheDef) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_ComplexPattern;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
unsigned ID = getAllocatedTemporariesBaseID();
Table << MatchTable::Opcode("GIM_CheckComplexPattern")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
<< MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
<< MatchTable::LineBreak;
}
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
unsigned countRendererFns() const override {
return 1;
}
};
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenRegisterClass &RC;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
const CodeGenRegisterClass &RC)
: OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_RegBank;
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("RC")
<< MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
<< MatchTable::LineBreak;
}
};
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
: OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_MBB;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
<< MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
}
};
/// Generates code to check that an operand is a G_CONSTANT with a particular
/// int.
class ConstantIntOperandMatcher : public OperandPredicateMatcher {
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
protected:
int64_t Value;
public:
ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
: OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Value == cast<ConstantIntOperandMatcher>(&B)->Value;
}
static bool classof(const PredicateMatcher *P) {
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
return P->getKind() == OPM_Int;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckConstantInt")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::IntValue(Value) << MatchTable::LineBreak;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
}
};
/// Generates code to check that an operand is a raw int (where MO.isImm() or
/// MO.isCImm() is true).
class LiteralIntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
: OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
Value(Value) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
Value == cast<LiteralIntOperandMatcher>(&B)->Value;
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_LiteralInt;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckLiteralInt")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::IntValue(Value) << MatchTable::LineBreak;
}
};
/// Generates code to check that an operand is an intrinsic ID.
class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenIntrinsic *II;
public:
IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
const CodeGenIntrinsic *II)
: OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
bool isIdentical(const PredicateMatcher &B) const override {
return OperandPredicateMatcher::isIdentical(B) &&
II == cast<IntrinsicIDOperandMatcher>(&B)->II;
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_IntrinsicID;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::NamedValue("Intrinsic::" + II->EnumName)
<< MatchTable::LineBreak;
}
};
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
InstructionMatcher &Insn;
unsigned OpIdx;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
std::string SymbolicName;
/// The index of the first temporary variable allocated to this operand. The
/// number of allocated temporaries can be found with
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
/// countRendererFns().
unsigned AllocatedTemporariesBaseID;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID)
: Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
bool hasSymbolicName() const { return !SymbolicName.empty(); }
const StringRef getSymbolicName() const { return SymbolicName; }
void setSymbolicName(StringRef Name) {
assert(SymbolicName.empty() && "Operand already has a symbolic name");
SymbolicName = Name;
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
unsigned getOperandIndex() const { return OpIdx; }
unsigned getInsnVarID() const;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
std::string getOperandExpr(unsigned InsnVarID) const {
return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
llvm::to_string(OpIdx) + ")";
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
InstructionMatcher &getInstructionMatcher() const { return Insn; }
Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
bool OperandIsAPointer);
/// Emit MatchTable opcodes to capture instructions into the MIs table.
void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
for (const auto &Predicate : predicates())
Predicate->emitCaptureOpcodes(Table, Rule);
}
/// Emit MatchTable opcodes that test whether the instruction named in
/// InsnVarID matches all the predicates and all the operands.
void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
std::string Comment;
raw_string_ostream CommentOS(Comment);
CommentOS << "MIs[" << getInsnVarID() << "] ";
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
if (SymbolicName.empty())
CommentOS << "Operand " << OpIdx;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
else
CommentOS << SymbolicName;
Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
emitPredicateListOpcodes(Table, Rule);
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const OperandMatcher &B) const {
// Operand matchers involving more predicates have higher priority.
if (predicates_size() > B.predicates_size())
return true;
if (predicates_size() < B.predicates_size())
return false;
// This assumes that predicates are added in a consistent order.
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the operand
/// matcher.
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
unsigned countRendererFns() const {
return std::accumulate(
predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
return A + Predicate->countRendererFns();
});
}
unsigned getAllocatedTemporariesBaseID() const {
return AllocatedTemporariesBaseID;
}
bool isSameAsAnotherOperand() const {
for (const auto &Predicate : predicates())
if (isa<SameOperandMatcher>(Predicate))
return true;
return false;
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
};
// Specialize OperandMatcher::addPredicate() to refrain from adding redundant
// predicates.
template <>
template <class Kind, class... Args>
Optional<Kind *>
PredicateListMatcher<OperandPredicateMatcher>::addPredicate(Args &&... args) {
auto *OpMatcher = static_cast<OperandMatcher *>(this);
if (static_cast<OperandMatcher *>(this)->isSameAsAnotherOperand())
return None;
Predicates.emplace_back(llvm::make_unique<Kind>(OpMatcher->getInsnVarID(),
OpMatcher->getOperandIndex(),
std::forward<Args>(args)...));
return static_cast<Kind *>(Predicates.back().get());
}
Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
bool OperandIsAPointer) {
if (!VTy.isMachineValueType())
return failedImport("unsupported typeset");
if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
addPredicate<PointerToAnyOperandMatcher>(0);
return Error::success();
}
auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
if (!OpTyOrNone)
return failedImport("unsupported type");
if (OperandIsAPointer)
addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
else
addPredicate<LLTOperandMatcher>(*OpTyOrNone);
return Error::success();
}
unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
return Operand.getAllocatedTemporariesBaseID();
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher : public PredicateMatcher {
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
: PredicateMatcher(Kind, InsnVarID) {}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
virtual ~InstructionPredicateMatcher() {}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool
isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
virtual unsigned countRendererFns() const { return 0; }
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
};
template <>
std::string
PredicateListMatcher<InstructionPredicateMatcher>::getNoPredicateComment() const {
return "No instruction predicates";
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
const CodeGenInstruction *I;
public:
InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
: InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_Opcode;
}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
I == cast<InstructionOpcodeMatcher>(&B)->I;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID)
<< MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
<< MatchTable::LineBreak;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
}
/// Compare the priority of this object and B.
///
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// Returns true if this object is more important than B.
bool
isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
return false;
// Prioritize opcodes for cosmetic reasons in the generated source. Although
// this is cosmetic at the moment, we may want to drive a similar ordering
// using instruction frequency information to improve compile time.
if (const InstructionOpcodeMatcher *BO =
dyn_cast<InstructionOpcodeMatcher>(&B))
return I->TheDef->getName() < BO->I->TheDef->getName();
return false;
};
bool isConstantInstruction() const {
return I->TheDef->getName() == "G_CONSTANT";
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
};
/// Generates code to check that this instruction is a constant whose value
/// meets an immediate predicate.
///
/// Immediates are slightly odd since they are typically used like an operand
/// but are represented as an operator internally. We typically write simm8:$src
/// in a tablegen pattern, but this is just syntactic sugar for
/// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
/// that will be matched and the predicate (which is attached to the imm
/// operator) that will be tested. In SelectionDAG this describes a
/// ConstantSDNode whose internal value will be tested using the simm8 predicate.
///
/// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
/// this representation, the immediate could be tested with an
/// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
/// OperandPredicateMatcher-subclass to check the Value meets the predicate but
/// there are two implementation issues with producing that matcher
/// configuration from the SelectionDAG pattern:
/// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
/// were we to sink the immediate predicate to the operand we would have to
/// have two partial implementations of PatFrag support, one for immediates
/// and one for non-immediates.
/// * At the point we handle the predicate, the OperandMatcher hasn't been
/// created yet. If we were to sink the predicate to the OperandMatcher we
/// would also have to complicate (or duplicate) the code that descends and
/// creates matchers for the subtree.
/// Overall, it's simpler to handle it in the place it was found.
class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
protected:
TreePredicateFn Predicate;
public:
InstructionImmPredicateMatcher(unsigned InsnVarID,
const TreePredicateFn &Predicate)
: InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
Predicate(Predicate) {}
bool isIdentical(const PredicateMatcher &B) const override {
return InstructionPredicateMatcher::isIdentical(B) &&
Predicate.getOrigPatFragRecord() ==
cast<InstructionImmPredicateMatcher>(&B)
->Predicate.getOrigPatFragRecord();
}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == IPM_ImmPredicate;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Predicate")
<< MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
<< MatchTable::LineBreak;
}
};
/// Generates code to check that a memory instruction has a atomic ordering
/// MachineMemoryOperand.
class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
public:
enum AOComparator {
AO_Exactly,
AO_OrStronger,
AO_WeakerThan,
};
protected:
StringRef Order;
AOComparator Comparator;
public:
AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
AOComparator Comparator = AO_Exactly)
: InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
Order(Order), Comparator(Comparator) {}
static bool classof(const InstructionPredicateMatcher *P) {
return P->getKind() == IPM_AtomicOrderingMMO;
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
StringRef Opcode = "GIM_CheckAtomicOrdering";
if (Comparator == AO_OrStronger)
Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
if (Comparator == AO_WeakerThan)
Opcode = "GIM_CheckAtomicOrderingWeakerThan";
Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
<< MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
<< MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
<< MatchTable::LineBreak;
}
};
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher
: public PredicateListMatcher<InstructionPredicateMatcher> {
protected:
typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
RuleMatcher &Rule;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// The operands to match. All rendered operands must be present even if the
/// condition is always true.
OperandVec Operands;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
std::string SymbolicName;
unsigned InsnVarID;
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
public:
InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
: Rule(Rule), SymbolicName(SymbolicName) {
// We create a new instruction matcher.
// Get a new ID for that instruction.
InsnVarID = Rule.implicitlyDefineInsnVar(*this);
}
RuleMatcher &getRuleMatcher() const { return Rule; }
unsigned getVarID() const { return InsnVarID; }
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// Add an operand to the matcher.
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID) {
Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
AllocatedTemporariesBaseID));
if (!SymbolicName.empty())
Rule.defineOperand(SymbolicName, *Operands.back());
return *Operands.back();
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
}
OperandMatcher &getOperand(unsigned OpIdx) {
auto I = std::find_if(Operands.begin(), Operands.end(),
[&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
return X->getOperandIndex() == OpIdx;
});
if (I != Operands.end())
return **I;
llvm_unreachable("Failed to lookup operand");
}
StringRef getSymbolicName() const { return SymbolicName; }
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
unsigned getNumOperands() const { return Operands.size(); }
OperandVec::iterator operands_begin() { return Operands.begin(); }
OperandVec::iterator operands_end() { return Operands.end(); }
iterator_range<OperandVec::iterator> operands() {
return make_range(operands_begin(), operands_end());
}
OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
OperandVec::const_iterator operands_end() const { return Operands.end(); }
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
iterator_range<OperandVec::const_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
bool operands_empty() const { return Operands.empty(); }
void pop_front() { Operands.erase(Operands.begin()); }
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// Emit MatchTable opcodes to check the shape of the match and capture
/// instructions into the MIs table.
void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) {
Table << MatchTable::Opcode("GIM_CheckNumOperands")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("Expected")
<< MatchTable::IntValue(getNumOperands()) << MatchTable::LineBreak;
for (const auto &Operand : Operands)
Operand->emitCaptureOpcodes(Table, Rule);
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
}
/// Emit MatchTable opcodes that test whether the instruction named in
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
/// InsnVarName matches all the predicates and all the operands.
void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
emitPredicateListOpcodes(Table, Rule);
for (const auto &Operand : Operands)
Operand->emitPredicateOpcodes(Table, Rule);
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const InstructionMatcher &B) const {
// Instruction matchers involving more operands have higher priority.
if (Operands.size() > B.Operands.size())
return true;
if (Operands.size() < B.Operands.size())
return false;
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
for (const auto &Operand : zip(Operands, B.Operands)) {
if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
return true;
if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the instruction
/// matcher.
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
unsigned countRendererFns() const {
return std::accumulate(predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<InstructionPredicateMatcher>
&Predicate) {
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
return A + Predicate->countRendererFns();
}) +
std::accumulate(
Operands.begin(), Operands.end(), 0,
[](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
return A + Operand->countRendererFns();
});
}
bool isConstantInstruction() const {
for (const auto &P : predicates())
if (const InstructionOpcodeMatcher *Opcode =
dyn_cast<InstructionOpcodeMatcher>(P.get()))
return Opcode->isConstantInstruction();
return false;
}
};
template <>
template <class Kind, class... Args>
Optional<Kind *>
PredicateListMatcher<InstructionPredicateMatcher>::addPredicate(
Args &&... args) {
InstructionMatcher *InstMatcher = static_cast<InstructionMatcher *>(this);
Predicates.emplace_back(llvm::make_unique<Kind>(InstMatcher->getVarID(),
std::forward<Args>(args)...));
return static_cast<Kind *>(Predicates.back().get());
}
/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
/// For example, the pattern:
/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
/// the:
/// (G_ADD $src1, $src2)
/// subpattern.
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
std::unique_ptr<InstructionMatcher> InsnMatcher;
public:
InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
RuleMatcher &Rule, StringRef SymbolicName)
: OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
static bool classof(const PredicateMatcher *P) {
return P->getKind() == OPM_Instruction;
}
InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
unsigned InsnID =
Rule.defineInsnVar(Table, *InsnMatcher, InsnVarID, getOpIdx());
(void)InsnID;
assert(InsnMatcher->getVarID() == InsnID &&
"Mismatch between build and emit");
InsnMatcher->emitCaptureOpcodes(Table, Rule);
}
void emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const override {
InsnMatcher->emitPredicateOpcodes(Table, Rule);
}
bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
if (OperandPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
return false;
if (const InstructionOperandMatcher *BP =
dyn_cast<InstructionOperandMatcher>(&B))
if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
return true;
return false;
}
};
//===- Actions ------------------------------------------------------------===//
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
class OperandRenderer {
public:
enum RendererKind {
OR_Copy,
OR_CopyOrAddZeroReg,
OR_CopySubReg,
OR_CopyConstantAsImm,
OR_CopyFConstantAsFPImm,
OR_Imm,
OR_Register,
OR_TempRegister,
OR_ComplexPattern,
OR_Custom
};
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
protected:
RendererKind Kind;
public:
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
virtual ~OperandRenderer() {}
RendererKind getKind() const { return Kind; }
virtual void emitRenderOpcodes(MatchTable &Table,
RuleMatcher &Rule) const = 0;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
};
/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// The name of the operand.
const StringRef SymbolicName;
public:
CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
: OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
SymbolicName(SymbolicName) {
assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Copy;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
<< MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOperandIndex())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
}
};
/// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
/// existing instruction to the one being built. If the operand turns out to be
/// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
class CopyOrAddZeroRegRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const StringRef SymbolicName;
const Record *ZeroRegisterDef;
public:
CopyOrAddZeroRegRenderer(unsigned NewInsnID,
StringRef SymbolicName, Record *ZeroRegisterDef)
: OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyOrAddZeroReg;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOperandIndex())
<< MatchTable::NamedValue(
(ZeroRegisterDef->getValue("Namespace")
? ZeroRegisterDef->getValueAsString("Namespace")
: ""),
ZeroRegisterDef->getName())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
/// an extended immediate operand.
class CopyConstantAsImmRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const std::string SymbolicName;
bool Signed;
public:
CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
: OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
SymbolicName(SymbolicName), Signed(true) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyConstantAsImm;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
: "GIR_CopyConstantAsUImm")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID)
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
/// instruction to an extended immediate operand.
class CopyFConstantAsFPImmRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const std::string SymbolicName;
public:
CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
: OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
SymbolicName(SymbolicName) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopyFConstantAsFPImm;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID)
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// A CopySubRegRenderer emits code to copy a single register operand from an
/// existing instruction to the one being built and indicate that only a
/// subregister should be copied.
class CopySubRegRenderer : public OperandRenderer {
protected:
unsigned NewInsnID;
/// The name of the operand.
const StringRef SymbolicName;
/// The subregister to extract.
const CodeGenSubRegIndex *SubReg;
public:
CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
const CodeGenSubRegIndex *SubReg)
: OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
SymbolicName(SymbolicName), SubReg(SubReg) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_CopySubReg;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
Table << MatchTable::Opcode("GIR_CopySubReg")
<< MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
<< MatchTable::IntValue(Operand.getOperandIndex())
<< MatchTable::Comment("SubRegIdx")
<< MatchTable::IntValue(SubReg->EnumValue)
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
unsigned InsnID;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
const Record *RegisterDef;
public:
AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
: OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Register;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_AddRegister")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::NamedValue(
(RegisterDef->getValue("Namespace")
? RegisterDef->getValueAsString("Namespace")
: ""),
RegisterDef->getName())
<< MatchTable::LineBreak;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
}
};
/// Adds a specific temporary virtual register to the instruction being built.
/// This is used to chain instructions together when emitting multiple
/// instructions.
class TempRegRenderer : public OperandRenderer {
protected:
unsigned InsnID;
unsigned TempRegID;
bool IsDef;
public:
TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
: OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
IsDef(IsDef) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_TempRegister;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_AddTempRegister")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
<< MatchTable::Comment("TempRegFlags");
if (IsDef)
Table << MatchTable::NamedValue("RegState::Define");
else
Table << MatchTable::IntValue(0);
Table << MatchTable::LineBreak;
}
};
/// Adds a specific immediate to the instruction being built.
class ImmRenderer : public OperandRenderer {
protected:
unsigned InsnID;
int64_t Imm;
public:
ImmRenderer(unsigned InsnID, int64_t Imm)
: OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Imm;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
<< MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
<< MatchTable::IntValue(Imm) << MatchTable::LineBreak;
}
};
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
/// Adds operands by calling a renderer function supplied by the ComplexPattern
/// matcher function.
class RenderComplexPatternOperand : public OperandRenderer {
private:
unsigned InsnID;
const Record &TheDef;
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
/// The name of the operand.
const StringRef SymbolicName;
/// The renderer number. This must be unique within a rule since it's used to
/// identify a temporary variable to hold the renderer function.
unsigned RendererID;
/// When provided, this is the suboperand of the ComplexPattern operand to
/// render. Otherwise all the suboperands will be rendered.
Optional<unsigned> SubOperand;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
public:
RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
StringRef SymbolicName, unsigned RendererID,
Optional<unsigned> SubOperand = None)
: OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
SymbolicName(SymbolicName), RendererID(RendererID),
SubOperand(SubOperand) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_ComplexPattern;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
: "GIR_ComplexRenderer")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("RendererID")
<< MatchTable::IntValue(RendererID);
if (SubOperand.hasValue())
Table << MatchTable::Comment("SubOperand")
<< MatchTable::IntValue(SubOperand.getValue());
Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
class CustomRenderer : public OperandRenderer {
protected:
unsigned InsnID;
const Record &Renderer;
/// The name of the operand.
const std::string SymbolicName;
public:
CustomRenderer(unsigned InsnID, const Record &Renderer,
StringRef SymbolicName)
: OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
SymbolicName(SymbolicName) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Custom;
}
void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
const InstructionMatcher &InsnMatcher =
Rule.getInstructionMatcher(SymbolicName);
unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
Table << MatchTable::Opcode("GIR_CustomRenderer")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("OldInsnID")
<< MatchTable::IntValue(OldInsnVarID)
<< MatchTable::Comment("Renderer")
<< MatchTable::NamedValue(
"GICR_" + Renderer.getValueAsString("RendererFn").str())
<< MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
}
};
/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
virtual ~MatchAction() {}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// Emit the MatchTable opcodes to implement the action.
virtual void emitActionOpcodes(MatchTable &Table,
RuleMatcher &Rule) const = 0;
};
/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
std::string S;
public:
DebugCommentAction(StringRef S) : S(S) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Comment(S) << MatchTable::LineBreak;
}
};
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
unsigned InsnID;
const CodeGenInstruction *I;
const InstructionMatcher *Matched;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
/// True if the instruction can be built solely by mutating the opcode.
bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
if (!Insn)
return false;
if (OperandRenderers.size() != Insn->getNumOperands())
return false;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
for (const auto &Renderer : enumerate(OperandRenderers)) {
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
if (Insn != &OM.getInstructionMatcher() ||
OM.getOperandIndex() != Renderer.index())
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
return false;
} else
return false;
}
return true;
}
public:
BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
: InsnID(InsnID), I(I), Matched(nullptr) {}
const CodeGenInstruction *getCGI() const { return I; }
void chooseInsnToMutate(RuleMatcher &Rule) {
for (const auto *MutateCandidate : Rule.mutatable_insns()) {
if (canMutate(Rule, MutateCandidate)) {
// Take the first one we're offered that we're able to mutate.
Rule.reserveInsnMatcherForMutation(MutateCandidate);
Matched = MutateCandidate;
return;
}
}
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
template <class Kind, class... Args>
Kind &addRenderer(Args&&... args) {
OperandRenderers.emplace_back(
llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
return *static_cast<Kind *>(OperandRenderers.back().get());
}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
if (Matched) {
assert(canMutate(Rule, Matched) &&
"Arranged to mutate an insn that isn't mutatable");
unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
Table << MatchTable::Opcode("GIR_MutateOpcode")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("RecycleInsnID")
<< MatchTable::IntValue(RecycleInsnID)
<< MatchTable::Comment("Opcode")
<< MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
<< MatchTable::LineBreak;
if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
for (auto Def : I->ImplicitDefs) {
auto Namespace = Def->getValue("Namespace")
? Def->getValueAsString("Namespace")
: "";
Table << MatchTable::Opcode("GIR_AddImplicitDef")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::NamedValue(Namespace, Def->getName())
<< MatchTable::LineBreak;
}
for (auto Use : I->ImplicitUses) {
auto Namespace = Use->getValue("Namespace")
? Use->getValueAsString("Namespace")
: "";
Table << MatchTable::Opcode("GIR_AddImplicitUse")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::NamedValue(Namespace, Use->getName())
<< MatchTable::LineBreak;
}
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
return;
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
// TODO: Simple permutation looks like it could be almost as common as
// mutation due to commutative operations.
Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
<< MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
<< MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
<< MatchTable::LineBreak;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
for (const auto &Renderer : OperandRenderers)
Renderer->emitRenderOpcodes(Table, Rule);
if (I->mayLoad || I->mayStore) {
Table << MatchTable::Opcode("GIR_MergeMemOperands")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("MergeInsnID's");
// Emit the ID's for all the instructions that are matched by this rule.
// TODO: Limit this to matched instructions that mayLoad/mayStore or have
// some other means of having a memoperand. Also limit this to
// emitted instructions that expect to have a memoperand too. For
// example, (G_SEXT (G_LOAD x)) that results in separate load and
// sign-extend instructions shouldn't put the memoperand on the
// sign-extend since it has no effect there.
std::vector<unsigned> MergeInsnIDs;
for (const auto &IDMatcherPair : Rule.defined_insn_vars())
MergeInsnIDs.push_back(IDMatcherPair.second);
std::sort(MergeInsnIDs.begin(), MergeInsnIDs.end());
for (const auto &MergeInsnID : MergeInsnIDs)
Table << MatchTable::IntValue(MergeInsnID);
Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
<< MatchTable::LineBreak;
}
// FIXME: This is a hack but it's sufficient for ISel. We'll need to do
// better for combines. Particularly when there are multiple match
// roots.
if (InsnID == 0)
Table << MatchTable::Opcode("GIR_EraseFromParent")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::LineBreak;
}
};
/// Generates code to constrain the operands of an output instruction to the
/// register classes specified by the definition of that instruction.
class ConstrainOperandsToDefinitionAction : public MatchAction {
unsigned InsnID;
public:
ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::LineBreak;
}
};
/// Generates code to constrain the specified operand of an output instruction
/// to the specified register class.
class ConstrainOperandToRegClassAction : public MatchAction {
unsigned InsnID;
unsigned OpIdx;
const CodeGenRegisterClass &RC;
public:
ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
const CodeGenRegisterClass &RC)
: InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("RC " + RC.getName())
<< MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
}
};
/// Generates code to create a temporary register which can be used to chain
/// instructions together.
class MakeTempRegisterAction : public MatchAction {
private:
LLTCodeGen Ty;
unsigned TempRegID;
public:
MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
: Ty(Ty), TempRegID(TempRegID) {}
void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
Table << MatchTable::Opcode("GIR_MakeTempReg")
<< MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
<< MatchTable::Comment("TypeID")
<< MatchTable::NamedValue(Ty.getCxxEnumValue())
<< MatchTable::LineBreak;
}
};
InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
MutatableInsns.insert(Matchers.back().get());
return *Matchers.back();
}
[globalisel] Re-factor ISel matchers into a hierarchy. NFC Summary: This should make it possible to easily add everything needed to import all the existing SelectionDAG rules. It should also serve the likely kinds of GlobalISel rules (some of which are not currently representable in SelectionDAG) once we've nailed down the tablegen definition for that. The hierarchy is as follows: MatcherRule - A matching rule. Currently used to emit C++ ISel code but will | also be used to emit test cases and tablegen definitions in the | near future. |- Instruction(s) - Represents the instruction to be matched. |- Instruction Predicate(s) - Test the opcode, arithmetic flags, etc. of an | instruction. \- Operand(s) - Represents a particular operand of the instruction. In the | future, there may be subclasses to test the same predicates | on multiple operands (including for variadic instructions). \ Operand Predicate(s) - Test the type, register bank, etc. of an operand. This is where the ComplexPattern equivalent will be represented. It's also nested-instruction matching will live as a predicate that follows the DefUse chain to the Def and tests a MatcherRule from that position. Support for multiple instruction matchers in a rule has been retained from the existing code but has been adjusted to assert when it is used. Previously it would silently drop all but the first instruction matcher. The tablegen-erated file is not functionally changed but has more parentheses and no longer attempts to format the if-statements since keeping track of the indentation is tricky in the presence of the matcher hierarchy. It would be nice to have CMakes tablegen() run the output through clang-format (when available) so we don't have to complicate TableGen with pretty-printing. It's also worth mentioning that this hierarchy will also be able to emit TableGen definitions and test cases in the near future. This is the reason for favouring explicit emit*() calls rather than the << operator. Reviewers: aditya_nandakumar, rovka, t.p.northover, qcolombet, ab Reviewed By: ab Subscribers: igorb, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D28942 llvm-svn: 293172
2017-01-26 19:10:14 +08:00
void RuleMatcher::addRequiredFeature(Record *Feature) {
RequiredFeatures.push_back(Feature);
}
const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
return RequiredFeatures;
}
// Emplaces an action of the specified Kind at the end of the action list.
//
// Returns a reference to the newly created action.
//
// Like std::vector::emplace_back(), may invalidate all iterators if the new
// size exceeds the capacity. Otherwise, only invalidates the past-the-end
// iterator.
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Actions.back().get());
}
// Emplaces an action of the specified Kind before the given insertion point.
//
// Returns an iterator pointing at the newly created instruction.
//
// Like std::vector::insert(), may invalidate all iterators if the new size
// exceeds the capacity. Otherwise, only invalidates the iterators from the
// insertion point onwards.
template <class Kind, class... Args>
action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
Args &&... args) {
return Actions.emplace(InsertPt,
llvm::make_unique<Kind>(std::forward<Args>(args)...));
}
unsigned
RuleMatcher::implicitlyDefineInsnVar(const InstructionMatcher &Matcher) {
unsigned NewInsnVarID = NextInsnVarID++;
InsnVariableIDs[&Matcher] = NewInsnVarID;
return NewInsnVarID;
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
}
unsigned RuleMatcher::defineInsnVar(MatchTable &Table,
const InstructionMatcher &Matcher,
unsigned InsnID, unsigned OpIdx) {
unsigned NewInsnVarID = implicitlyDefineInsnVar(Matcher);
Table << MatchTable::Opcode("GIM_RecordInsn")
<< MatchTable::Comment("DefineMI") << MatchTable::IntValue(NewInsnVarID)
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnID)
<< MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
<< MatchTable::LineBreak;
return NewInsnVarID;
}
unsigned RuleMatcher::getInsnVarID(const InstructionMatcher &InsnMatcher) const {
const auto &I = InsnVariableIDs.find(&InsnMatcher);
if (I != InsnVariableIDs.end())
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
return I->second;
llvm_unreachable("Matched Insn was not captured in a local variable");
}
void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
DefinedOperands[SymbolicName] = &OM;
return;
}
// If the operand is already defined, then we must ensure both references in
// the matcher have the exact same node.
OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
}
const InstructionMatcher &
RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
for (const auto &I : InsnVariableIDs)
if (I.first->getSymbolicName() == SymbolicName)
return *I.first;
llvm_unreachable(
("Failed to lookup instruction " + SymbolicName).str().c_str());
}
const OperandMatcher &
RuleMatcher::getOperandMatcher(StringRef Name) const {
const auto &I = DefinedOperands.find(Name);
if (I == DefinedOperands.end())
PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
return *I->second;
}
/// Emit MatchTable opcodes to check the shape of the match and capture
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
/// instructions into local variables.
void RuleMatcher::emitCaptureOpcodes(MatchTable &Table) {
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
unsigned InsnVarID = implicitlyDefineInsnVar(*Matchers.front());
(void)InsnVarID;
assert(Matchers.front()->getVarID() == InsnVarID &&
"IDs differ between build and emit");
Matchers.front()->emitCaptureOpcodes(Table, *this);
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
}
void RuleMatcher::emit(MatchTable &Table) {
if (Matchers.empty())
llvm_unreachable("Unexpected empty matcher!");
// Reset the ID generation so that the emitted IDs match the ones
// we set while building the InstructionMatcher and such.
clearImplicitMap();
// The representation supports rules that require multiple roots such as:
// %ptr(p0) = ...
// %elt0(s32) = G_LOAD %ptr
// %1(p0) = G_ADD %ptr, 4
// %elt1(s32) = G_LOAD p0 %1
// which could be usefully folded into:
// %ptr(p0) = ...
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
// on some targets but we don't need to make use of that yet.
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
unsigned LabelID = Table.allocateLabelID();
Table << MatchTable::Opcode("GIM_Try", +1)
<< MatchTable::Comment("On fail goto") << MatchTable::JumpTarget(LabelID)
<< MatchTable::LineBreak;
if (!RequiredFeatures.empty()) {
Table << MatchTable::Opcode("GIM_CheckFeatures")
<< MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
<< MatchTable::LineBreak;
}
[tablegen][globalisel] Capture instructions into locals and related infrastructure for multiple instructions matches. Summary: Prepare the way for nested instruction matching support by having actions like CopyRenderer look up operands in the RuleMatcher rather than a specific InstructionMatcher. This allows actions to reference any operand from any matched instruction. It works by checking the 'shape' of the match and capturing each matched instruction to a local variable. If the shape is wrong (not enough operands, leaf nodes where non-leafs are expected, etc.), then the rule exits early without checking the predicates. Once we've captured the instructions, we then test the predicates as before (except using the local variables). If the match is successful, then we render the new instruction as before using the local variables. It's not noticable in this patch but by the time we support multiple instruction matching, this patch will also cause a significant improvement to readability of the emitted code since MRI.getVRegDef(I->getOperand(0).getReg()) will simply be MI1 after emitCxxCaptureStmts(). This isn't quite NFC because I've also fixed a bug that I'm surprised we haven't encountered yet. It now checks there are at least the expected number of operands before accessing them with getOperand(). Depends on D30531 Reviewers: t.p.northover, qcolombet, aditya_nandakumar, ab, rovka Reviewed By: rovka Subscribers: dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D30535 llvm-svn: 298257
2017-03-20 23:20:42 +08:00
emitCaptureOpcodes(Table);
Matchers.front()->emitPredicateOpcodes(Table, *this);
// We must also check if it's safe to fold the matched instructions.
if (InsnVariableIDs.size() >= 2) {
// Invert the map to create stable ordering (by var names)
SmallVector<unsigned, 2> InsnIDs;
for (const auto &Pair : InsnVariableIDs) {
// Skip the root node since it isn't moving anywhere. Everything else is
// sinking to meet it.
if (Pair.first == Matchers.front().get())
continue;
InsnIDs.push_back(Pair.second);
}
std::sort(InsnIDs.begin(), InsnIDs.end());
for (const auto &InsnID : InsnIDs) {
// Reject the difficult cases until we have a more accurate check.
Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
<< MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
<< MatchTable::LineBreak;
// FIXME: Emit checks to determine it's _actually_ safe to fold and/or
// account for unsafe cases.
//
// Example:
// MI1--> %0 = ...
// %1 = ... %0
// MI0--> %2 = ... %0
// It's not safe to erase MI1. We currently handle this by not
// erasing %0 (even when it's dead).
//
// Example:
// MI1--> %0 = load volatile @a
// %1 = load volatile @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// MI1--> %0 = load @a
// %1 = store @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// G_CONDBR %cond, @BB1
// BB0:
// MI1--> %0 = load @a
// G_BR @BB1
// BB1:
// MI0--> %2 = ... %0
// It's not always safe to sink %0 across control flow. In this
// case it may introduce a memory fault. We currentl handle this
// by rejecting all loads.
}
}
for (const auto &MA : Actions)
MA->emitActionOpcodes(Table, *this);
2017-11-16 08:46:35 +08:00
if (GenerateCoverage)
Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
<< MatchTable::LineBreak;
Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
<< MatchTable::Label(LabelID);
}
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
// Rules involving more match roots have higher priority.
if (Matchers.size() > B.Matchers.size())
return true;
if (Matchers.size() < B.Matchers.size())
return false;
for (const auto &Matcher : zip(Matchers, B.Matchers)) {
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
return true;
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
return false;
}
return false;
}
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
unsigned RuleMatcher::countRendererFns() const {
return std::accumulate(
Matchers.begin(), Matchers.end(), 0,
[](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
return A + Matcher->countRendererFns();
});
}
bool OperandPredicateMatcher::isHigherPriorityThan(
const OperandPredicateMatcher &B) const {
// Generally speaking, an instruction is more important than an Int or a
// LiteralInt because it can cover more nodes but theres an exception to
// this. G_CONSTANT's are less important than either of those two because they
// are more permissive.
const InstructionOperandMatcher *AOM =
dyn_cast<InstructionOperandMatcher>(this);
const InstructionOperandMatcher *BOM =
dyn_cast<InstructionOperandMatcher>(&B);
bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
if (AOM && BOM) {
// The relative priorities between a G_CONSTANT and any other instruction
// don't actually matter but this code is needed to ensure a strict weak
// ordering. This is particularly important on Windows where the rules will
// be incorrectly sorted without it.
if (AIsConstantInsn != BIsConstantInsn)
return AIsConstantInsn < BIsConstantInsn;
return false;
}
if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
return false;
if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
return true;
return Kind < B.Kind;
}
void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
RuleMatcher &Rule) const {
const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getVarID());
Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
<< MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
<< MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
<< MatchTable::Comment("OtherMI")
<< MatchTable::IntValue(OtherInsnVarID)
<< MatchTable::Comment("OtherOpIdx")
<< MatchTable::IntValue(OtherOM.getOperandIndex())
<< MatchTable::LineBreak;
}
//===- GlobalISelEmitter class --------------------------------------------===//
class GlobalISelEmitter {
public:
explicit GlobalISelEmitter(RecordKeeper &RK);
void run(raw_ostream &OS);
private:
const RecordKeeper &RK;
const CodeGenDAGPatterns CGP;
const CodeGenTarget &Target;
CodeGenRegBank CGRegs;
/// Keep track of the equivalence between SDNodes and Instruction by mapping
/// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
/// check for attributes on the relation such as CheckMMOIsNonAtomic.
/// This is defined using 'GINodeEquiv' in the target description.
DenseMap<Record *, Record *> NodeEquivs;
/// Keep track of the equivalence between ComplexPattern's and
/// GIComplexOperandMatcher. Map entries are specified by subclassing
/// GIComplexPatternEquiv.
DenseMap<const Record *, const Record *> ComplexPatternEquivs;
/// Keep track of the equivalence between SDNodeXForm's and
/// GICustomOperandRenderer. Map entries are specified by subclassing
/// GISDNodeXFormEquiv.
DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
// Map of predicates to their subtarget features.
SubtargetFeatureInfoMap SubtargetFeatures;
2017-11-16 08:46:35 +08:00
// Rule coverage information.
Optional<CodeGenCoverage> RuleCoverage;
void gatherNodeEquivs();
Record *findNodeEquiv(Record *N) const;
Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
Expected<InstructionMatcher &> createAndImportSelDAGMatcher(
RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
const TreePatternNode *Src, unsigned &TempOpIdx) const;
Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
unsigned &TempOpIdx) const;
Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
const TreePatternNode *SrcChild,
bool OperandIsAPointer, unsigned OpIdx,
unsigned &TempOpIdx) const;
Expected<BuildMIAction &>
createAndImportInstructionRenderer(RuleMatcher &M,
const TreePatternNode *Dst);
Expected<action_iterator> createAndImportSubInstructionRenderer(
action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
unsigned TempReg);
Expected<action_iterator>
createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
const TreePatternNode *Dst);
void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
Expected<action_iterator>
importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
BuildMIAction &DstMIBuilder,
const llvm::TreePatternNode *Dst);
Expected<action_iterator>
importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
BuildMIAction &DstMIBuilder,
TreePatternNode *DstChild);
Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
DagInit *DefaultOps) const;
Error
importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const;
void emitImmPredicates(raw_ostream &OS, StringRef TypeIdentifier,
StringRef Type,
std::function<bool(const Record *R)> Filter);
/// Analyze pattern \p P, returning a matcher for it if possible.
/// Otherwise, return an Error explaining why we don't support it.
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
void declareSubtargetFeature(Record *Predicate);
TreePatternNode *fixupPatternNode(TreePatternNode *N);
void fixupPatternTrees(TreePattern *P);
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
/// Takes a sequence of \p Rules and group them based on the predicates
/// they share. \p StorageGroupMatcher is used as a memory container
/// for the group that are created as part of this process.
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
/// The optimization process does not change the relative order of
/// the rules. In particular, we don't try to share predicates if
/// that means reordering the rules (e.g., we won't group R1 and R3
/// in the following example as it would imply reordering R2 and R3
/// => R1 p1, R2 p2, R3 p1).
///
/// What this optimization does looks like:
/// Output without optimization:
/// \verbatim
/// # R1
/// # predicate A
/// # predicate B
/// ...
/// # R2
/// # predicate A // <-- effectively this is going to be checked twice.
/// // Once in R1 and once in R2.
/// # predicate C
/// \endverbatim
/// Output with optimization:
/// \verbatim
/// # Group1_2
/// # predicate A // <-- Check is now shared.
/// # R1
/// # predicate B
/// # R2
/// # predicate C
/// \endverbatim
std::vector<Matcher *> optimizeRules(
const std::vector<Matcher *> &Rules,
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
std::vector<std::unique_ptr<GroupMatcher>> &StorageGroupMatcher);
};
void GlobalISelEmitter::gatherNodeEquivs() {
assert(NodeEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
assert(ComplexPatternEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
ComplexPatternEquivs[SelDAGEquiv] = Equiv;
}
assert(SDNodeXFormEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
}
}
Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
return NodeEquivs.lookup(N);
}
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
: RK(RK), CGP(RK, [&](TreePattern *P) { fixupPatternTrees(P); }),
Target(CGP.getTargetInfo()), CGRegs(RK, Target.getHwModes()) {}
//===- Emitter ------------------------------------------------------------===//
Error
GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
ArrayRef<Predicate> Predicates) {
for (const Predicate &P : Predicates) {
if (!P.Def)
continue;
declareSubtargetFeature(P.Def);
M.addRequiredFeature(P.Def);
}
return Error::success();
}
Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
const TreePatternNode *Src, unsigned &TempOpIdx) const {
Record *SrcGIEquivOrNull = nullptr;
const CodeGenInstruction *SrcGIOrNull = nullptr;
// Start with the defined operands (i.e., the results of the root operator).
if (Src->getExtTypes().size() > 1)
return failedImport("Src pattern has multiple results");
if (Src->isLeaf()) {
Init *SrcInit = Src->getLeafValue();
if (isa<IntInit>(SrcInit)) {
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
&Target.getInstruction(RK.getDef("G_CONSTANT")));
} else
return failedImport(
"Unable to deduce gMIR opcode to handle Src (which is a leaf)");
} else {
SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
if (!SrcGIEquivOrNull)
return failedImport("Pattern operator lacks an equivalent Instruction" +
explainOperator(Src->getOperator()));
SrcGIOrNull = &Target.getInstruction(SrcGIEquivOrNull->getValueAsDef("I"));
// The operators look good: match the opcode
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
}
unsigned OpIdx = 0;
for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
// Results don't have a name unless they are the root node. The caller will
// set the name if appropriate.
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
return failedImport(toString(std::move(Error)) +
" for result of Src pattern operator");
}
for (const auto &Predicate : Src->getPredicateFns()) {
if (Predicate.isAlwaysTrue())
continue;
if (Predicate.isImmediatePattern()) {
InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
continue;
}
// No check required. G_LOAD by itself is a non-extending load.
if (Predicate.isNonExtLoad())
continue;
// No check required. G_STORE by itself is a non-extending store.
if (Predicate.isNonTruncStore())
continue;
if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
if (Predicate.getMemoryVT() != nullptr) {
Optional<LLTCodeGen> MemTyOrNone =
MVTToLLT(getValueType(Predicate.getMemoryVT()));
if (!MemTyOrNone)
return failedImport("MemVT could not be converted to LLT");
OperandMatcher &OM = InsnMatcher.getOperand(0);
OM.addPredicate<LLTOperandMatcher>(MemTyOrNone.getValue());
continue;
}
}
if (Predicate.isLoad() || Predicate.isStore()) {
// No check required. A G_LOAD/G_STORE is an unindexed load.
if (Predicate.isUnindexed())
continue;
}
if (Predicate.isAtomic()) {
if (Predicate.isAtomicOrderingMonotonic()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Monotonic");
continue;
}
if (Predicate.isAtomicOrderingAcquire()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
continue;
}
if (Predicate.isAtomicOrderingRelease()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
continue;
}
if (Predicate.isAtomicOrderingAcquireRelease()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"AcquireRelease");
continue;
}
if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"SequentiallyConsistent");
continue;
}
if (Predicate.isAtomicOrderingAcquireOrStronger()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
continue;
}
if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
continue;
}
if (Predicate.isAtomicOrderingReleaseOrStronger()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
continue;
}
if (Predicate.isAtomicOrderingWeakerThanRelease()) {
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
"Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
continue;
}
}
return failedImport("Src pattern child has predicate (" +
explainPredicates(Src) + ")");
}
if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
if (Src->isLeaf()) {
Init *SrcInit = Src->getLeafValue();
if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
} else
return failedImport(
"Unable to deduce gMIR opcode to handle Src (which is a leaf)");
} else {
assert(SrcGIOrNull &&
"Expected to have already found an equivalent Instruction");
if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
// imm/fpimm still have operands but we don't need to do anything with it
// here since we don't support ImmLeaf predicates yet. However, we still
// need to note the hidden operand to get GIM_CheckNumOperands correct.
InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
return InsnMatcher;
}
// Match the used operands (i.e. the children of the operator).
for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
TreePatternNode *SrcChild = Src->getChild(i);
// SelectionDAG allows pointers to be represented with iN since it doesn't
// distinguish between pointers and integers but they are different types in GlobalISel.
// Coerce integers to pointers to address space 0 if the context indicates a pointer.
bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
// For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
// following the defs is an intrinsic ID.
if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
i == 0) {
if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
OM.addPredicate<IntrinsicIDOperandMatcher>(II);
continue;
}
return failedImport("Expected IntInit containing instrinsic ID)");
}
if (auto Error =
importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
OpIdx++, TempOpIdx))
return std::move(Error);
}
}
return InsnMatcher;
}
Error GlobalISelEmitter::importComplexPatternOperandMatcher(
OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
const auto &ComplexPattern = ComplexPatternEquivs.find(R);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
") not mapped to GlobalISel");
OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
TempOpIdx++;
return Error::success();
}
Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
InstructionMatcher &InsnMatcher,
const TreePatternNode *SrcChild,
bool OperandIsAPointer,
unsigned OpIdx,
unsigned &TempOpIdx) const {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
if (OM.isSameAsAnotherOperand())
return Error::success();
ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Src pattern child has multiple results");
// Check MBB's before the type check since they are not a known type.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
OM.addPredicate<MBBOperandMatcher>();
return Error::success();
}
}
}
if (auto Error =
OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
return failedImport(toString(std::move(Error)) + " for Src operand (" +
to_string(*SrcChild) + ")");
// Check for nested instructions.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
// When a ComplexPattern is used as an operator, it should do the same
// thing as when used as a leaf. However, the children of the operator
// name the sub-operands that make up the complex operand and we must
// prepare to reference them in the renderer too.
unsigned RendererID = TempOpIdx;
if (auto Error = importComplexPatternOperandMatcher(
OM, SrcChild->getOperator(), TempOpIdx))
return Error;
for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
auto *SubOperand = SrcChild->getChild(i);
if (!SubOperand->getName().empty())
Rule.defineComplexSubOperand(SubOperand->getName(),
SrcChild->getOperator(), RendererID, i);
}
return Error::success();
}
auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
InsnMatcher.getRuleMatcher(), SrcChild->getName());
if (!MaybeInsnOperand.hasValue()) {
// This isn't strictly true. If the user were to provide exactly the same
// matchers as the original operand then we could allow it. However, it's
// simpler to not permit the redundant specification.
return failedImport("Nested instruction cannot be the same as another operand");
}
// Map the node to a gMIR instruction.
InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
auto InsnMatcherOrError = createAndImportSelDAGMatcher(
Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
if (auto Error = InsnMatcherOrError.takeError())
return Error;
return Error::success();
}
if (SrcChild->hasAnyPredicate())
return failedImport("Src pattern child has unsupported predicate");
// Check for constant immediates.
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
return Error::success();
}
// Check for def's like register classes or ComplexPattern's.
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
// Check for register classes.
if (ChildRec->isSubClassOf("RegisterClass") ||
ChildRec->isSubClassOf("RegisterOperand")) {
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
return Error::success();
}
// Check for ValueType.
if (ChildRec->isSubClassOf("ValueType")) {
// We already added a type check as standard practice so this doesn't need
// to do anything.
return Error::success();
}
// Check for ComplexPattern's.
if (ChildRec->isSubClassOf("ComplexPattern"))
return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
if (ChildRec->isSubClassOf("ImmLeaf")) {
return failedImport(
"Src pattern child def is an unsupported tablegen class (ImmLeaf)");
}
return failedImport(
"Src pattern child def is an unsupported tablegen class");
}
return failedImport("Src pattern child is an unsupported kind");
}
Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
TreePatternNode *DstChild) {
const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
if (SubOperand.hasValue()) {
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
*std::get<0>(*SubOperand), DstChild->getName(),
std::get<1>(*SubOperand), std::get<2>(*SubOperand));
return InsertPt;
}
if (!DstChild->isLeaf()) {
if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
auto Child = DstChild->getChild(0);
auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
if (I != SDNodeXFormEquivs.end()) {
DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
return InsertPt;
}
return failedImport("SDNodeXForm " + Child->getName() +
" has no custom renderer");
}
// We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
// inline, but in MI it's just another operand.
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
return InsertPt;
}
}
// Similarly, imm is an operator in TreePatternNode's view but must be
// rendered as operands.
// FIXME: The target should be able to choose sign-extended when appropriate
// (e.g. on Mips).
if (DstChild->getOperator()->getName() == "imm") {
DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
return InsertPt;
} else if (DstChild->getOperator()->getName() == "fpimm") {
DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
DstChild->getName());
return InsertPt;
}
if (DstChild->getOperator()->isSubClassOf("Instruction")) {
ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
Optional<LLTCodeGen> OpTyOrNone = None;
if (ChildTypes.front().isMachineValueType())
OpTyOrNone =
MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
unsigned TempRegID = Rule.allocateTempRegID();
InsertPt = Rule.insertAction<MakeTempRegisterAction>(
InsertPt, OpTyOrNone.getValue(), TempRegID);
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
auto InsertPtOrError = createAndImportSubInstructionRenderer(
++InsertPt, Rule, DstChild, TempRegID);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
return InsertPtOrError.get();
}
return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
}
// It could be a specific immediate in which case we should just check for
// that immediate.
if (const IntInit *ChildIntInit =
dyn_cast<IntInit>(DstChild->getLeafValue())) {
DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
return InsertPt;
}
// Otherwise, we're looking for a bog-standard RegisterClass operand.
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
Optional<LLTCodeGen> OpTyOrNone = None;
if (ChildTypes.front().isMachineValueType())
OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
if (ChildRec->isSubClassOf("Register")) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
return InsertPt;
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
}
if (ChildRec->isSubClassOf("RegisterClass") ||
ChildRec->isSubClassOf("RegisterOperand") ||
ChildRec->isSubClassOf("ValueType")) {
if (ChildRec->isSubClassOf("RegisterOperand") &&
!ChildRec->isValueUnset("GIZeroRegister")) {
DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
return InsertPt;
}
DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
return InsertPt;
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
*ComplexPattern->second, DstChild->getName(),
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
OM.getAllocatedTemporariesBaseID());
return InsertPt;
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
return failedImport(
"Dst pattern child def is an unsupported tablegen class");
}
return failedImport("Dst pattern child is an unsupported kind");
}
Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
RuleMatcher &M, const TreePatternNode *Dst) {
auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
action_iterator InsertPt = InsertPtOrError.get();
BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
importExplicitDefRenderers(DstMIBuilder);
if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
.takeError())
return std::move(Error);
return DstMIBuilder;
}
Expected<action_iterator>
GlobalISelEmitter::createAndImportSubInstructionRenderer(
action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
unsigned TempRegID) {
auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
// TODO: Assert there's exactly one result.
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
InsertPt = InsertPtOrError.get();
BuildMIAction &DstMIBuilder =
*static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
// Assign the result to TempReg.
DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
InsertPtOrError = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst);
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
return InsertPtOrError.get();
}
Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction")) {
if (DstOp->isSubClassOf("ValueType"))
return failedImport(
"Pattern operator isn't an instruction (it's a ValueType)");
return failedImport("Pattern operator isn't an instruction");
}
CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
// COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
// attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
DstI = &Target.getInstruction(RK.getDef("COPY"));
else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
DstI = &Target.getInstruction(RK.getDef("COPY"));
else if (DstI->TheDef->getName() == "REG_SEQUENCE")
return failedImport("Unable to emit REG_SEQUENCE");
return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
DstI);
}
void GlobalISelEmitter::importExplicitDefRenderers(
BuildMIAction &DstMIBuilder) {
const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
}
}
Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
const llvm::TreePatternNode *Dst) {
const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
// EXTRACT_SUBREG needs to use a subregister COPY.
if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
if (!Dst->getChild(0)->isLeaf())
return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
if (DefInit *SubRegInit =
dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (!RCDef)
return failedImport("EXTRACT_SUBREG child #0 could not "
"be coerced to a register class");
CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
const auto &SrcRCDstRCPair =
RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
if (SrcRCDstRCPair.hasValue()) {
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
if (SrcRCDstRCPair->first != RC)
return failedImport("EXTRACT_SUBREG requires an additional COPY");
}
DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
SubIdx);
return InsertPt;
}
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
}
// Render the explicit uses.
unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
unsigned ExpectedDstINumUses = Dst->getNumChildren();
if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
DstINumUses--; // Ignore the class constraint.
ExpectedDstINumUses--;
}
unsigned Child = 0;
unsigned NumDefaultOps = 0;
for (unsigned I = 0; I != DstINumUses; ++I) {
const CGIOperandList::OperandInfo &DstIOperand =
DstI->Operands[DstI->Operands.NumDefs + I];
// If the operand has default values, introduce them now.
// FIXME: Until we have a decent test case that dictates we should do
// otherwise, we're going to assume that operands with default values cannot
// be specified in the patterns. Therefore, adding them will not cause us to
// end up with too many rendered operands.
if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
return std::move(Error);
++NumDefaultOps;
continue;
}
auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
Dst->getChild(Child));
if (auto Error = InsertPtOrError.takeError())
return std::move(Error);
InsertPt = InsertPtOrError.get();
++Child;
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
return failedImport("Expected " + llvm::to_string(DstINumUses) +
" used operands but found " +
llvm::to_string(ExpectedDstINumUses) +
" explicit ones and " + llvm::to_string(NumDefaultOps) +
" default ones");
return InsertPt;
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
Error GlobalISelEmitter::importDefaultOperandRenderers(
BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
for (const auto *DefaultOp : DefaultOps->getArgs()) {
// Look through ValueType operators.
if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
if (const DefInit *DefaultDagOperator =
dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
DefaultOp = DefaultDagOp->getArg(0);
}
}
if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
continue;
}
if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
continue;
}
return failedImport("Could not add default op");
}
return Error::success();
}
Error GlobalISelEmitter::importImplicitDefRenderers(
BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const {
if (!ImplicitDefs.empty())
return failedImport("Pattern defines a physical register");
return Error::success();
}
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
// Keep track of the matchers and actions to emit.
RuleMatcher M(P.getSrcRecord()->getLoc());
M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
" => " +
llvm::to_string(*P.getDstPattern()));
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
if (auto Error = importRulePredicates(M, P.getPredicates()))
return std::move(Error);
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
// Next, analyze the pattern operators.
TreePatternNode *Src = P.getSrcPattern();
TreePatternNode *Dst = P.getDstPattern();
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
// If the root of either pattern isn't a simple operator, ignore it.
if (auto Err = isTrivialOperatorNode(Dst))
return failedImport("Dst pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
if (auto Err = isTrivialOperatorNode(Src))
return failedImport("Src pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
// The different predicates and matchers created during
// addInstructionMatcher use the RuleMatcher M to set up their
// instruction ID (InsnVarID) that are going to be used when
// M is going to be emitted.
// However, the code doing the emission still relies on the IDs
// returned during that process by the RuleMatcher when issuing
// the recordInsn opcodes.
// Because of that:
// 1. The order in which we created the predicates
// and such must be the same as the order in which we emit them,
// and
// 2. We need to reset the generation of the IDs in M somewhere between
// addInstructionMatcher and emit
//
// FIXME: Long term, we don't want to have to rely on this implicit
// naming being the same. One possible solution would be to have
// explicit operator for operation capture and reference those.
// The plus side is that it would expose opportunities to share
// the capture accross rules. The downside is that it would
// introduce a dependency between predicates (captures must happen
// before their first use.)
InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
unsigned TempOpIdx = 0;
auto InsnMatcherOrError =
createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
if (auto Error = InsnMatcherOrError.takeError())
return std::move(Error);
InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
if (Dst->isLeaf()) {
Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
if (RCDef) {
// We need to replace the def and all its uses with the specified
// operand. However, we must also insert COPY's wherever needed.
// For now, emit a copy and let the register allocator clean up.
auto &DstI = Target.getInstruction(RK.getDef("COPY"));
const auto &DstIOperand = DstI.Operands[0];
OperandMatcher &OM0 = InsnMatcher.getOperand(0);
OM0.setSymbolicName(DstIOperand.Name);
M.defineOperand(OM0.getSymbolicName(), OM0);
OM0.addPredicate<RegisterBankOperandMatcher>(RC);
auto &DstMIBuilder =
M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
return failedImport("Dst pattern root isn't a known leaf");
}
// Start with the defined operands (i.e., the results of the root operator).
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
return failedImport("Pattern operator isn't an instruction");
auto &DstI = Target.getInstruction(DstOp);
if (DstI.Operands.NumDefs != Src->getExtTypes().size())
return failedImport("Src pattern results and dst MI defs are different (" +
to_string(Src->getExtTypes().size()) + " def(s) vs " +
to_string(DstI.Operands.NumDefs) + " def(s))");
[globalisel] Decouple src pattern operands from dst pattern operands. Summary: This isn't testable for AArch64 by itself so this patch also adds support for constant immediates in the pattern and physical register uses in the result. The new IntOperandMatcher matches the constant in patterns such as '(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold immediates into an instruction so this is the first rule that will match across multiple BB's. The Renderer hierarchy is responsible for adding operands to the result instruction. Renderers can copy operands (CopyRenderer) or add physical registers (in particular %wzr and %xzr) to the result instruction in any order (OperandMatchers now import the operand names from SelectionDAG to allow renderers to access any operand). This allows us to emit the result instruction for: %1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0 %1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0 although the latter is untested since the matcher/importer has not been taught about commutativity yet. Added BuildMIAction which can build new instructions and mutate them where possible. W.r.t the mutation aspect, MatchActions are now told the name of an instruction they can recycle and BuildMIAction will emit mutation code when the renderers are appropriate. They are appropriate when all operands are rendered using CopyRenderer and the indices are the same as the matcher. This currently assumes that all operands have at least one matcher. Finally, this change also fixes a crash in AArch64InstructionSelector::select() caused by an immediate operand passing isImm() rather than isCImm(). This was uncovered by the other changes and was detected by existing tests. Depends on D29711 Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar Reviewed By: rovka Subscribers: aemerson, dberris, kristof.beyls, llvm-commits Differential Revision: https://reviews.llvm.org/D29712 llvm-svn: 296131
2017-02-24 23:43:30 +08:00
// The root of the match also has constraints on the register bank so that it
// matches the result instruction.
unsigned OpIdx = 0;
for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
(void)VTy;
const auto &DstIOperand = DstI.Operands[OpIdx];
Record *DstIOpRec = DstIOperand.Rec;
if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport(
"COPY_TO_REGCLASS operand #1 isn't a register class");
} else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
if (!Dst->getChild(0)->isLeaf())
return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
// We can assume that a subregister is in the same bank as it's super
// register.
DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport(
"EXTRACT_SUBREG operand #0 isn't a register class");
} else if (DstIOpRec->isSubClassOf("RegisterOperand"))
DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
else if (!DstIOpRec->isSubClassOf("RegisterClass"))
return failedImport("Dst MI def isn't a register class" +
to_string(*Dst));
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
OM.setSymbolicName(DstIOperand.Name);
M.defineOperand(OM.getSymbolicName(), OM);
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(DstIOpRec));
++OpIdx;
}
auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
if (auto Error = DstMIBuilderOrError.takeError())
return std::move(Error);
BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
// Render the implicit defs.
// These are only added to the root of the result.
if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
return std::move(Error);
DstMIBuilder.chooseInsnToMutate(M);
// Constrain the registers to classes. This is normally derived from the
// emitted instruction but a few instructions require special handling.
if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
// COPY_TO_REGCLASS does not provide operand constraints itself but the
// result is constrained to the class given by the second child.
Record *DstIOpRec =
getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
M.addAction<ConstrainOperandToRegClassAction>(
0, 0, Target.getRegisterClass(DstIOpRec));
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
// EXTRACT_SUBREG selects into a subregister COPY but unlike most
// instructions, the result register class is controlled by the
// subregisters of the operand. As a result, we must constrain the result
// class rather than check that it's already the right one.
if (!Dst->getChild(0)->isLeaf())
return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
if (!SubRegInit)
return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
// Constrain the result to the same register bank as the operand.
Record *DstIOpRec =
getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
if (DstIOpRec == nullptr)
return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
// It would be nice to leave this constraint implicit but we're required
// to pick a register class so constrain the result to a register class
// that can hold the correct MVT.
//
// FIXME: This may introduce an extra copy if the chosen class doesn't
// actually contain the subregisters.
assert(Src->getExtTypes().size() == 1 &&
"Expected Src of EXTRACT_SUBREG to have one result type");
const auto &SrcRCDstRCPair =
SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
// We're done with this pattern! It's eligible for GISel emission; return
// it.
++NumPatternImported;
return std::move(M);
}
M.addAction<ConstrainOperandsToDefinitionAction>(0);
// We're done with this pattern! It's eligible for GISel emission; return it.
++NumPatternImported;
return std::move(M);
}
// Emit imm predicate table and an enum to reference them with.
// The 'Predicate_' part of the name is redundant but eliminating it is more
// trouble than it's worth.
void GlobalISelEmitter::emitImmPredicates(
raw_ostream &OS, StringRef TypeIdentifier, StringRef Type,
std::function<bool(const Record *R)> Filter) {
std::vector<const Record *> MatchedRecords;
const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
[&](Record *Record) {
return !Record->getValueAsString("ImmediateCode").empty() &&
Filter(Record);
});
if (!MatchedRecords.empty()) {
OS << "// PatFrag predicates.\n"
<< "enum {\n";
std::string EnumeratorSeparator =
(" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
for (const auto *Record : MatchedRecords) {
OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
<< EnumeratorSeparator;
EnumeratorSeparator = ",\n";
}
OS << "};\n";
}
OS << "bool " << Target.getName() << "InstructionSelector::testImmPredicate_"
<< TypeIdentifier << "(unsigned PredicateID, " << Type
<< " Imm) const {\n";
if (!MatchedRecords.empty())
OS << " switch (PredicateID) {\n";
for (const auto *Record : MatchedRecords) {
OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
<< Record->getName() << ": {\n"
<< " " << Record->getValueAsString("ImmediateCode") << "\n"
<< " llvm_unreachable(\"ImmediateCode should have returned\");\n"
<< " return false;\n"
<< " }\n";
}
if (!MatchedRecords.empty())
OS << " }\n";
OS << " llvm_unreachable(\"Unknown predicate\");\n"
<< " return false;\n"
<< "}\n";
}
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
const std::vector<Matcher *> &Rules,
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
std::vector<std::unique_ptr<GroupMatcher>> &StorageGroupMatcher) {
std::vector<Matcher *> OptRules;
// Start with a stupid grouping for now.
std::unique_ptr<GroupMatcher> CurrentGroup = make_unique<GroupMatcher>();
assert(CurrentGroup->conditions_empty());
unsigned NbGroup = 0;
for (Matcher *Rule : Rules) {
std::unique_ptr<PredicateMatcher> Predicate = Rule->forgetFirstCondition();
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
if (!CurrentGroup->conditions_empty() &&
!CurrentGroup->lastConditionMatches(*Predicate)) {
// Start a new group.
++NbGroup;
OptRules.push_back(CurrentGroup.get());
StorageGroupMatcher.emplace_back(std::move(CurrentGroup));
CurrentGroup = make_unique<GroupMatcher>();
assert(CurrentGroup->conditions_empty());
}
if (CurrentGroup->conditions_empty())
CurrentGroup->addCondition(std::move(Predicate));
CurrentGroup->addRule(*Rule);
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
}
if (!CurrentGroup->conditions_empty()) {
++NbGroup;
OptRules.push_back(CurrentGroup.get());
StorageGroupMatcher.emplace_back(std::move(CurrentGroup));
}
DEBUG(dbgs() << "NbGroup: " << NbGroup << "\n");
return OptRules;
}
void GlobalISelEmitter::run(raw_ostream &OS) {
2017-11-16 08:46:35 +08:00
if (!UseCoverageFile.empty()) {
RuleCoverage = CodeGenCoverage();
auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
if (!RuleCoverageBufOrErr) {
PrintWarning(SMLoc(), "Missing rule coverage data");
RuleCoverage = None;
} else {
if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
RuleCoverage = None;
}
}
}
// Track the GINodeEquiv definitions.
gatherNodeEquivs();
emitSourceFileHeader(("Global Instruction Selector for the " +
Target.getName() + " target").str(), OS);
std::vector<RuleMatcher> Rules;
// Look through the SelectionDAG patterns we found, possibly emitting some.
for (const PatternToMatch &Pat : CGP.ptms()) {
++NumPatternTotal;
auto MatcherOrErr = runOnPattern(Pat);
// The pattern analysis can fail, indicating an unsupported pattern.
// Report that if we've been asked to do so.
if (auto Err = MatcherOrErr.takeError()) {
if (WarnOnSkippedPatterns) {
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Skipped pattern: " + toString(std::move(Err)));
} else {
consumeError(std::move(Err));
}
++NumPatternImportsSkipped;
continue;
}
2017-11-16 08:46:35 +08:00
if (RuleCoverage) {
if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
++NumPatternsTested;
else
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Pattern is not covered by a test");
}
Rules.push_back(std::move(MatcherOrErr.get()));
}
// Comparison function to order records by name.
auto orderByName = [](const Record *A, const Record *B) {
return A->getName() < B->getName();
};
std::vector<Record *> ComplexPredicates =
RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
std::sort(ComplexPredicates.begin(), ComplexPredicates.end(), orderByName);
std::vector<Record *> CustomRendererFns =
RK.getAllDerivedDefinitions("GICustomOperandRenderer");
std::sort(CustomRendererFns.begin(), CustomRendererFns.end(), orderByName);
unsigned MaxTemporaries = 0;
for (const auto &Rule : Rules)
[globalisel][tablegen] Revise API for ComplexPattern operands to improve flexibility. Summary: Some targets need to be able to do more complex rendering than just adding an operand or two to an instruction. For example, it may need to insert an instruction to extract a subreg first, or it may need to perform an operation on the operand. In SelectionDAG, targets would create SDNode's to achieve the desired effect during the complex pattern predicate. This worked because SelectionDAG had a form of garbage collection that would take care of SDNode's that were created but not used due to a later predicate rejecting a match. This doesn't translate well to GlobalISel and the churn was wasteful. The API changes in this patch enable GlobalISel to accomplish the same thing without the waste. The API is now: InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const; where Root is the root of the match. The return value can be omitted to indicate that the predicate failed to match, or a function with the signature ComplexRendererFn can be returned. For example: return OptionalComplexRendererFn( [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); }); adds two immediate operands to the rendered instruction. Immed and ShVal are captured from the predicate function. As an added bonus, this also reduces the amount of information we need to provide to GIComplexOperandMatcher. Depends on D31418 Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar Reviewed By: ab Subscribers: dberris, kristof.beyls, igorb, llvm-commits Differential Revision: https://reviews.llvm.org/D31761 llvm-svn: 301079
2017-04-22 23:11:04 +08:00
MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
<< "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
<< ";\n"
<< "using PredicateBitset = "
"llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
<< " mutable MatcherState State;\n"
<< " typedef "
"ComplexRendererFns("
<< Target.getName()
<< "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
<< " typedef void(" << Target.getName()
<< "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
"MachineInstr&) "
"const;\n"
<< " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
"CustomRendererFn> "
"ISelInfo;\n";
OS << " static " << Target.getName()
<< "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
<< " static " << Target.getName()
<< "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
<< "bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
"override;\n"
<< "bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
"const override;\n"
<< "bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
"&Imm) const override;\n"
<< "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
<< ", State(" << MaxTemporaries << "),\n"
<< "ISelInfo({TypeObjects, FeatureBitsets, ComplexPredicateFns, "
"CustomRenderers})\n"
<< "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
OS << "#ifdef GET_GLOBALISEL_IMPL\n";
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
OS);
// Separate subtarget features by how often they must be recomputed.
SubtargetFeatureInfoMap ModuleFeatures;
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
std::inserter(ModuleFeatures, ModuleFeatures.end()),
[](const SubtargetFeatureInfoMap::value_type &X) {
return !X.second.mustRecomputePerFunction();
});
SubtargetFeatureInfoMap FunctionFeatures;
std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
std::inserter(FunctionFeatures, FunctionFeatures.end()),
[](const SubtargetFeatureInfoMap::value_type &X) {
return X.second.mustRecomputePerFunction();
});
SubtargetFeatureInfo::emitComputeAvailableFeatures(
Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
ModuleFeatures, OS);
SubtargetFeatureInfo::emitComputeAvailableFeatures(
Target.getName(), "InstructionSelector",
"computeAvailableFunctionFeatures", FunctionFeatures, OS,
"const MachineFunction *MF");
// Emit a table containing the LLT objects needed by the matcher and an enum
// for the matcher to reference them with.
std::vector<LLTCodeGen> TypeObjects;
for (const auto &Ty : LLTOperandMatcher::KnownTypes)
TypeObjects.push_back(Ty);
std::sort(TypeObjects.begin(), TypeObjects.end());
OS << "// LLT Objects.\n"
<< "enum {\n";
for (const auto &TypeObject : TypeObjects) {
OS << " ";
TypeObject.emitCxxEnumValue(OS);
OS << ",\n";
}
OS << "};\n"
<< "const static LLT TypeObjects[] = {\n";
for (const auto &TypeObject : TypeObjects) {
OS << " ";
TypeObject.emitCxxConstructorCall(OS);
OS << ",\n";
}
OS << "};\n\n";
// Emit a table containing the PredicateBitsets objects needed by the matcher
// and an enum for the matcher to reference them with.
std::vector<std::vector<Record *>> FeatureBitsets;
for (auto &Rule : Rules)
FeatureBitsets.push_back(Rule.getRequiredFeatures());
std::sort(
FeatureBitsets.begin(), FeatureBitsets.end(),
[&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
if (A.size() < B.size())
return true;
if (A.size() > B.size())
return false;
for (const auto &Pair : zip(A, B)) {
if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
return true;
if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
return false;
}
return false;
});
FeatureBitsets.erase(
std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
FeatureBitsets.end());
OS << "// Feature bitsets.\n"
<< "enum {\n"
<< " GIFBS_Invalid,\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
}
OS << "};\n"
<< "const static PredicateBitset FeatureBitsets[] {\n"
<< " {}, // GIFBS_Invalid\n";
for (const auto &FeatureBitset : FeatureBitsets) {
if (FeatureBitset.empty())
continue;
OS << " {";
for (const auto &Feature : FeatureBitset) {
const auto &I = SubtargetFeatures.find(Feature);
assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
OS << I->second.getEnumBitName() << ", ";
}
OS << "},\n";
}
OS << "};\n\n";
// Emit complex predicate table and an enum to reference them with.
OS << "// ComplexPattern predicates.\n"
<< "enum {\n"
<< " GICP_Invalid,\n";
for (const auto &Record : ComplexPredicates)
OS << " GICP_" << Record->getName() << ",\n";
OS << "};\n"
<< "// See constructor for table contents\n\n";
emitImmPredicates(OS, "I64", "int64_t", [](const Record *R) {
bool Unset;
return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
!R->getValueAsBit("IsAPInt");
});
emitImmPredicates(OS, "APFloat", "const APFloat &", [](const Record *R) {
bool Unset;
return R->getValueAsBitOrUnset("IsAPFloat", Unset);
});
emitImmPredicates(OS, "APInt", "const APInt &", [](const Record *R) {
return R->getValueAsBit("IsAPInt");
});
OS << "\n";
OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
<< Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
<< " nullptr, // GICP_Invalid\n";
for (const auto &Record : ComplexPredicates)
OS << " &" << Target.getName()
<< "InstructionSelector::" << Record->getValueAsString("MatcherFn")
<< ", // " << Record->getName() << "\n";
OS << "};\n\n";
OS << "// Custom renderers.\n"
<< "enum {\n"
<< " GICR_Invalid,\n";
for (const auto &Record : CustomRendererFns)
OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n";
OS << "};\n";
OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
<< Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
<< " nullptr, // GICP_Invalid\n";
for (const auto &Record : CustomRendererFns)
OS << " &" << Target.getName()
<< "InstructionSelector::" << Record->getValueAsString("RendererFn")
<< ", // " << Record->getName() << "\n";
OS << "};\n\n";
OS << "bool " << Target.getName()
2017-11-16 08:46:35 +08:00
<< "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
"&CoverageInfo) const {\n"
<< " MachineFunction &MF = *I.getParent()->getParent();\n"
<< " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
<< " // FIXME: This should be computed on a per-function basis rather "
"than per-insn.\n"
<< " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
"&MF);\n"
<< " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
<< " NewMIVector OutMIs;\n"
<< " State.MIs.clear();\n"
<< " State.MIs.push_back(&I);\n\n";
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
const RuleMatcher &B) {
if (A.isHigherPriorityThan(B)) {
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
"and less important at "
"the same time");
return true;
}
return false;
});
std::vector<std::unique_ptr<GroupMatcher>> StorageGroupMatcher;
std::vector<Matcher *> InputRules;
for (Matcher &Rule : Rules)
InputRules.push_back(&Rule);
std::vector<Matcher *> OptRules =
OptimizeMatchTable ? optimizeRules(InputRules, StorageGroupMatcher)
: InputRules;
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
MatchTable Table(0);
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
for (Matcher *Rule : OptRules) {
Rule->emit(Table);
++NumPatternEmitted;
}
Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
Table.emitDeclaration(OS);
OS << " if (executeMatchTable(*this, OutMIs, State, ISelInfo, ";
Table.emitUse(OS);
2017-11-16 08:46:35 +08:00
OS << ", TII, MRI, TRI, RBI, AvailableFeatures, CoverageInfo)) {\n"
<< " return true;\n"
<< " }\n\n";
OS << " return false;\n"
<< "}\n"
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
<< "PredicateBitset AvailableModuleFeatures;\n"
<< "mutable PredicateBitset AvailableFunctionFeatures;\n"
<< "PredicateBitset getAvailableFeatures() const {\n"
<< " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
<< "}\n"
<< "PredicateBitset\n"
<< "computeAvailableModuleFeatures(const " << Target.getName()
<< "Subtarget *Subtarget) const;\n"
<< "PredicateBitset\n"
<< "computeAvailableFunctionFeatures(const " << Target.getName()
<< "Subtarget *Subtarget,\n"
<< " const MachineFunction *MF) const;\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
<< "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
<< "AvailableFunctionFeatures()\n"
<< "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
}
void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
if (SubtargetFeatures.count(Predicate) == 0)
SubtargetFeatures.emplace(
Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
}
TreePatternNode *GlobalISelEmitter::fixupPatternNode(TreePatternNode *N) {
if (!N->isLeaf()) {
for (unsigned I = 0, E = N->getNumChildren(); I < E; ++I) {
TreePatternNode *OrigChild = N->getChild(I);
TreePatternNode *NewChild = fixupPatternNode(OrigChild);
if (OrigChild != NewChild)
N->setChild(I, NewChild);
}
if (N->getOperator()->getName() == "ld") {
// If it's a signext-load we need to adapt the pattern slightly. We need
// to split the node into (sext (ld ...)), remove the <<signext>> predicate,
// and then apply the <<signextTY>> predicate by updating the result type
// of the load.
//
// For example:
// (ld:[i32] [iPTR])<<unindexed>><<signext>><<signexti16>>
// must be transformed into:
// (sext:[i32] (ld:[i16] [iPTR])<<unindexed>>)
//
// Likewise for zeroext-load and anyext-load.
std::vector<TreePredicateFn> Predicates;
bool IsSignExtLoad = false;
bool IsZeroExtLoad = false;
bool IsAnyExtLoad = false;
Record *MemVT = nullptr;
for (const auto &P : N->getPredicateFns()) {
if (P.isLoad() && P.isSignExtLoad()) {
IsSignExtLoad = true;
continue;
}
if (P.isLoad() && P.isZeroExtLoad()) {
IsZeroExtLoad = true;
continue;
}
if (P.isLoad() && P.isAnyExtLoad()) {
IsAnyExtLoad = true;
continue;
}
if (P.isLoad() && P.getMemoryVT()) {
MemVT = P.getMemoryVT();
continue;
}
Predicates.push_back(P);
}
if ((IsSignExtLoad || IsZeroExtLoad || IsAnyExtLoad) && MemVT) {
assert((IsSignExtLoad + IsZeroExtLoad + IsAnyExtLoad) == 1 &&
"IsSignExtLoad, IsZeroExtLoad, IsAnyExtLoad are mutually exclusive");
TreePatternNode *Ext = new TreePatternNode(
RK.getDef(IsSignExtLoad ? "sext"
: IsZeroExtLoad ? "zext" : "anyext"),
{N}, 1);
Ext->setType(0, N->getType(0));
N->clearPredicateFns();
N->setPredicateFns(Predicates);
N->setType(0, getValueType(MemVT));
return Ext;
}
}
}
return N;
}
void GlobalISelEmitter::fixupPatternTrees(TreePattern *P) {
for (unsigned I = 0, E = P->getNumTrees(); I < E; ++I) {
TreePatternNode *OrigTree = P->getTree(I);
TreePatternNode *NewTree = fixupPatternNode(OrigTree);
if (OrigTree != NewTree)
P->setTree(I, NewTree);
}
}
[TableGen][GlobalISel] Optimize MatchTable for faster instruction selection *** Context *** Prior to this patchw, the table generated for matching instruction was straight forward but highly inefficient. Basically, each pattern generates its own set of self contained checks and actions. E.g., TableGen generated: // First pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDrr // Second pattern CheckNumOperand 3 CheckOpcode G_ADD ... Build ADDri // Third pattern CheckNumOperand 3 CheckOpcode G_SUB ... Build SUBrr *** Problem *** Because of that generation, a *lot* of check were redundant between each pattern and were checked every single time until we reach the pattern that matches. E.g., Taking the previous table, let say we are matching a G_SUB, that means we were going to check all the rules for G_ADD before looking at the G_SUB rule. In particular we are going to do: check 3 operands; PASS check G_ADD; FAIL ; Next rule check 3 operands; PASS (but we already knew that!) check G_ADD; FAIL (well it is still not true) ; Next rule check 3 operands; PASS (really!!) check G_SUB; PASS (at last :P) *** Proposed Solution *** This patch introduces a concept of group of rules (GroupMatcher) that share some predicates and only get checked once for the whole group. This patch only creates groups with one nesting level. Conceptually there is nothing preventing us for having deeper nest level. However, the current implementation is not smart enough to share the recording (aka capturing) of values. That limits its ability to do more sharing. For the given example the current patch will generate: // First group CheckOpcode G_ADD // First pattern CheckNumOperand 3 ... Build ADDrr // Second pattern CheckNumOperand 3 ... Build ADDri // Second group CheckOpcode G_SUB // Third pattern CheckNumOperand 3 ... Build SUBrr But if we allowed several nesting level, it could create a sub group for the checknumoperand 3. (We would need to call optimizeRules on the rules within a group.) *** Result *** With only one level of nesting, the instruction selection pass is up to 4x faster. For instance, one instruction now takes 500 checks, instead of 24k! With more nesting we could get in the tens I believe. Differential Revision: https://reviews.llvm.org/D39034 rdar://problem/34670699 llvm-svn: 321017
2017-12-19 03:47:41 +08:00
std::unique_ptr<PredicateMatcher> RuleMatcher::forgetFirstCondition() {
assert(!insnmatchers_empty() &&
"Trying to forget something that does not exist");
InstructionMatcher &Matcher = insnmatchers_front();
std::unique_ptr<PredicateMatcher> Condition;
if (!Matcher.predicates_empty())
Condition = Matcher.predicates_pop_front();
if (!Condition) {
// If there is no more predicate on the instruction itself, look at its
// operands.
assert(!Matcher.operands_empty() &&
"Empty instruction should have been discarded");
OperandMatcher &OpMatcher = **Matcher.operands_begin();
assert(!OpMatcher.predicates_empty() && "no operand constraint");
Condition = OpMatcher.predicates_pop_front();
// If this operand is free of constraints, rip it off.
if (OpMatcher.predicates_empty())
Matcher.pop_front();
}
// Rip the instruction off when it is empty.
if (Matcher.operands_empty() && Matcher.predicates_empty())
insnmatchers_pop_front();
return Condition;
}
bool GroupMatcher::lastConditionMatches(
const PredicateMatcher &Predicate) const {
const auto &LastCondition = conditions_back();
return Predicate.isIdentical(*LastCondition);
}
void GroupMatcher::emit(MatchTable &Table) {
unsigned LabelID = Table.allocateLabelID();
if (!conditions_empty()) {
Table << MatchTable::Opcode("GIM_Try", +1)
<< MatchTable::Comment("On fail goto")
<< MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
for (auto &Condition : Conditions)
Condition->emitPredicateOpcodes(
Table, *static_cast<RuleMatcher *>(*Rules.begin()));
}
// Emit the conditions.
// Then checks apply the rules.
for (const auto &Rule : Rules)
Rule->emit(Table);
// If we don't succeeded for that block, that means we are not going to select
// this instruction.
if (!conditions_empty()) {
Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
<< MatchTable::Label(LabelID);
}
}
unsigned OperandMatcher::getInsnVarID() const { return Insn.getVarID(); }
} // end anonymous namespace
//===----------------------------------------------------------------------===//
namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace