llvm-project/mlir/test/IR/affine-map.mlir

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

376 lines
15 KiB
MLIR
Raw Normal View History

// RUN: mlir-opt %s | FileCheck %s
// Identity maps used in trivial compositions in MemRefs are optimized away.
// CHECK-NOT: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0, d1)>
#map0 = affine_map<(i, j) -> (i, j)>
// CHECK-NOT: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0, d1)>
#map1 = affine_map<(i, j)[s0] -> (i, j)>
// CHECK: #map{{[0-9]+}} = affine_map<() -> (0)>
// A map may have 0 inputs.
// However, an affine.apply always takes at least one input.
#map2 = affine_map<() -> (0)>
// All the maps in the following block are equivalent and are unique'd as one
// map. Therefore there should be only one output and we explicitly CHECK-NOT
// for the others.
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0 + 1, d1 * 4 + 2)>
#map3 = affine_map<(i, j) -> (i+1, 4*j + 2)>
// CHECK-NOT: #map3{{[a-z]}}
#map3a = affine_map<(i, j) -> (1+i, 4*j + 2)>
#map3b = affine_map<(i, j) -> (2 + 3 - 2*2 + i, 4*j + 2)>
#map3c = affine_map<(i, j) -> (i +1 + 0, 4*j + 2)>
#map3d = affine_map<(i, j) -> (i + 3 + 2 - 4, 4*j + 2)>
#map3e = affine_map<(i, j) -> (1*i+3*2-2*2-1, 4*j + 2)>
#map3f = affine_map<(i, j) -> (i + 1, 4*j*1 + 2)>
#map3g = affine_map<(i, j) -> (i + 1, 2*2*j + 2)>
#map3h = affine_map<(i, j) -> (i + 1, 2*j*2 + 2)>
#map3i = affine_map<(i, j) -> (i + 1, j*2*2 + 2)>
#map3j = affine_map<(i, j) -> (i + 1, j*1*4 + 2)>
#map3k = affine_map<(i, j) -> (i + 1, j*4*1 + 2)>
// The following reduction should be unique'd out too but such expression
// simplification is not performed for IR parsing, but only through analyses
// and transforms.
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d1 - d0 + (d0 - d1 + 1) * 2 + d1 - 1, d1 * 4 + 2)>
#map3l = affine_map<(i, j) -> ((j - i) + 2*(i - j + 1) + j - 1 + 0, j + j + 1 + j + j + 1)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0 + 2, d1)>
#map4 = affine_map<(i, j) -> (3+3-2*2+i, j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + s0, d1)>
#map5 = affine_map<(i, j)[s0] -> (i + s0, j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + s0, d1 + 5)>
#map6 = affine_map<(i, j)[s0] -> (i + s0, j + 5)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1 + s0, d1)>
#map7 = affine_map<(i, j)[s0] -> (i + j + s0, j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1 + s0 + 5, d1)>
#map8 = affine_map<(i, j)[s0] -> (5 + i + j + s0, j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1 + 5, d1)>
#map9 = affine_map<(i, j)[s0] -> ((i + j) + 5, j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1 + 5, d1)>
#map10 = affine_map<(i, j)[s0] -> (i + (j + 5), j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 * 2, d1 * 3)>
#map11 = affine_map<(i, j)[s0] -> (2*i, 3*j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + (d1 + s0 * 3) * 5 + 12, d1)>
#map12 = affine_map<(i, j)[s0] -> (i + 2*6 + 5*(j+s0*3), j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 * 5 + d1, d1)>
#map13 = affine_map<(i, j)[s0] -> (5*i + j, j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1, d1)>
#map14 = affine_map<(i, j)[s0] -> ((i + j), (j))>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1 + 7, d1 + 3)>
#map15 = affine_map<(i, j)[s0] -> ((i + j + 2) + 5, (j)+3)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0, 0)>
#map16 = affine_map<(i, j)[s1] -> (i, 0)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0, d1 * s0)>
#map17 = affine_map<(i, j)[s0] -> (i, s0*j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0, d0 * 3 + d1)>
#map19 = affine_map<(i, j) -> (i, 3*i + j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0, d0 + d1 * 3)>
#map20 = affine_map<(i, j) -> (i, i + 3*j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0, d0 * ((s0 * s0) * 9) + 3)>
#map18 = affine_map<(i, j)[N] -> (i, 2 + N*N*9*i + 1)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (1, d0 + d1 * 3 + 5)>
#map21 = affine_map<(i, j) -> (1, i + 3*j + 5)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (s0 * 5, d0 + d1 * 3 + d0 * 5)>
#map22 = affine_map<(i, j)[s0] -> (5*s0, i + 3*j + 5*i)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0 * (s0 * s1), d1)>
#map23 = affine_map<(i, j)[s0, s1] -> (i*(s0*s1), j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0, d1 mod 5)>
#map24 = affine_map<(i, j)[s0, s1] -> (i, j mod 5)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0, d1 floordiv 5)>
#map25 = affine_map<(i, j)[s0, s1] -> (i, j floordiv 5)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0, d1 ceildiv 5)>
#map26 = affine_map<(i, j)[s0, s1] -> (i, j ceildiv 5)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0, d0 - d1 - 5)>
#map29 = affine_map<(i, j)[s0, s1] -> (i, i - j - 5)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0, d0 - d1 * s1 + 2)>
#map30 = affine_map<(i, j)[M, N] -> (i, i - N*j + 2)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0 * -5, d1 * -3, -2, -(d0 + d1), -s0)>
#map32 = affine_map<(i, j)[s0, s1] -> (-5*i, -3*j, -2, -1*(i+j), -1*s0)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (-4, -d0)>
#map33 = affine_map<(i, j) -> (-2+-5-(-3), -1*i)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0, d1 floordiv s0, d1 mod s0)>
#map34 = affine_map<(i, j)[s0, s1] -> (i, j floordiv s0, j mod s0)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1, d2)[s0, s1, s2] -> ((d0 * s1) * s2 + d1 * s1 + d2)>
#map35 = affine_map<(i, j, k)[s0, s1, s2] -> (i*s1*s2 + j*s1 + k)>
// Constant folding.
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (8, 4, 1, 3, 2, 4)>
#map36 = affine_map<(i, j) -> (5+3, 2*2, 8-7, 100 floordiv 32, 5 mod 3, 10 ceildiv 3)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (4, 11, 512, 15)>
#map37 = affine_map<(i, j) -> (5 mod 3 + 2, 5*3 - 4, 128 * (500 ceildiv 128), 40 floordiv 7 * 3)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0 * 2 + 1, d1 + 2)>
#map38 = affine_map<(i, j) -> (1 + i*2, 2 + j)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0, s1] -> (d0 * s0, d0 + s0, d0 + 2, d1 * 2, s1 * 2, s0 + 2)>
#map39 = affine_map<(i, j)[M, N] -> (i*M, M + i, 2+i, j*2, N*2, 2 + M)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> ((d0 * 5) floordiv 4, (d1 ceildiv 7) mod s0)>
#map43 = affine_map<(i, j) [s0] -> ( i * 5 floordiv 4, j ceildiv 7 mod s0)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0 - d1 * 2, (d1 * 6) floordiv 4)>
#map44 = affine_map<(i, j) -> (i - 2*j, j * 6 floordiv 4)>
// Simplifications
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1, d2)[s0] -> (d0 + d1 + d2 + 1, d2 + d1, (d0 * s0) * 8)>
#map45 = affine_map<(i, j, k) [N] -> (1 + i + 3 + j - 3 + k, k + 5 + j - 5, 2*i*4*N)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1, d2) -> (0, d1, d0 * 2, 0)>
#map46 = affine_map<(i, j, k) -> (i*0, 1*j, i * 128 floordiv 64, j * 0 floordiv 64)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1, d2) -> (d0, d0 * 4, 0, 0, 0)>
#map47 = affine_map<(i, j, k) -> (i * 64 ceildiv 64, i * 512 ceildiv 128, 4 * j mod 4, 4*j*4 mod 8, k mod 1)>
// floordiv should resolve similarly to ceildiv and be unique'd out.
// CHECK-NOT: #map48{{[a-z]}}
#map48 = affine_map<(i, j, k) -> (i * 64 floordiv 64, i * 512 floordiv 128, 4 * j mod 4, 4*j*4 mod 8)>
// Simplifications for mod using known GCD's of the LHS expr.
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (0, 0, 0, 1)>
#map49 = affine_map<(i, j)[s0] -> ( (i * 4 + 8) mod 4, 32 * j * s0 * 8 mod 256, (4*i + (j * (s0 * 2))) mod 2, (4*i + 3) mod 2)>
Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop unroll/unroll-and-jam more powerful; add additional affine expr builder methods - use previously added analysis/simplification to infer multiple of unroll factor trip counts, making loop unroll/unroll-and-jam more general. - for loop unroll, support bounds that are single result affine map's with the same set of operands. For unknown loop bounds, loop unroll will now work as long as trip count can be determined to be a multiple of unroll factor. - extend getConstantTripCount to deal with single result affine map's with the same operands. move it to mlir/Analysis/LoopAnalysis.cpp - add additional builder utility methods for affine expr arithmetic (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to use the utility methods. - move affine analysis routines to AffineAnalysis.cpp/.h from AffineStructures.cpp/.h. - Rename LoopUnrollJam to LoopUnrollAndJam to match class name. - add an additional simplification for simplifyFloorDiv, simplifyCeilDiv - Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does not have operands. Operands are passed to it through affine_apply, from loop bounds/if condition's, etc., operands are stored in the latter. This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU code generation, and can move to other analyses/transformations. Loop nests like these are now unrolled without any cleanup loop being generated. for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) { %x = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) { %y = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) { %x = "foo"() : () -> i32 } } TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor changes). PiperOrigin-RevId: 212661212
2018-09-13 01:21:23 +08:00
// Floordiv, ceildiv divide by one.
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 * 2 + 1, d1 + s0)>
#map50 = affine_map<(i, j)[s0] -> ( (i * 2 + 1) ceildiv 1, (j + s0) floordiv 1)>
Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop unroll/unroll-and-jam more powerful; add additional affine expr builder methods - use previously added analysis/simplification to infer multiple of unroll factor trip counts, making loop unroll/unroll-and-jam more general. - for loop unroll, support bounds that are single result affine map's with the same set of operands. For unknown loop bounds, loop unroll will now work as long as trip count can be determined to be a multiple of unroll factor. - extend getConstantTripCount to deal with single result affine map's with the same operands. move it to mlir/Analysis/LoopAnalysis.cpp - add additional builder utility methods for affine expr arithmetic (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to use the utility methods. - move affine analysis routines to AffineAnalysis.cpp/.h from AffineStructures.cpp/.h. - Rename LoopUnrollJam to LoopUnrollAndJam to match class name. - add an additional simplification for simplifyFloorDiv, simplifyCeilDiv - Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does not have operands. Operands are passed to it through affine_apply, from loop bounds/if condition's, etc., operands are stored in the latter. This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU code generation, and can move to other analyses/transformations. Loop nests like these are now unrolled without any cleanup loop being generated. for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) { %x = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) { %y = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) { %x = "foo"() : () -> i32 } } TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor changes). PiperOrigin-RevId: 212661212
2018-09-13 01:21:23 +08:00
// floordiv, ceildiv, and mod where LHS is negative.
// CHECK: #map{{[0-9]+}} = affine_map<(d0) -> (-2, 1, -1)>
#map51 = affine_map<(i) -> (-5 floordiv 3, -5 mod 3, -5 ceildiv 3)>
// Parenthesis elision.
// CHECK: #map{{[0-9]+}} = affine_map<(d0) -> (d0 * 16 - (d0 + 1) + 15)>
#map52 = affine_map<(d0) -> (16*d0 + ((d0 + 1) * -1) + 15)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0) -> (d0 - (d0 + 1))>
#map53 = affine_map<(d0) -> (d0 - (d0 + 1))>
// CHECK: #map{{[0-9]+}} = affine_map<(d0)[s0] -> ((-s0) floordiv 4, d0 floordiv -1)>
#map54 = affine_map<(d0)[s0] -> (-s0 floordiv 4, d0 floordiv -1)>
// CHECK: #map{{[0-9]+}} = affine_map<() -> ()>
#map55 = affine_map<() -> ()>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0, d0 * 2 + d1 * 4 + 2, 1, 2, (d0 * 4) mod 8)>
#map56 = affine_map<(d0, d1) -> ((4*d0 + 2) floordiv 4, (4*d0 + 8*d1 + 5) floordiv 2, (2*d0 + 4*d1 + 3) mod 2, (3*d0 - 4) mod 3, (4*d0 + 8*d1) mod 8)>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d1, d0, 0)>
#map57 = affine_map<(d0, d1) -> (d0 - d0 + d1, -d0 + d0 + d0, (1 + d0 + d1 floordiv 4) - (d0 + d1 floordiv 4 + 1))>
// CHECK: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0 * 3, (d0 + d1) * 2, d0 mod 2)>
#map58 = affine_map<(d0, d1) -> (4*d0 - 2*d0 + d0, (d0 + d1) + (d0 + d1), 2 * (d0 mod 2) - d0 mod 2)>
// Single identity maps are removed.
// CHECK: func @f0(memref<2x4xi8, 1>)
func @f0(memref<2x4xi8, #map0, 1>)
// Single identity maps are removed.
// CHECK: func @f1(memref<2x4xi8, 1>)
func @f1(memref<2x4xi8, #map1, 1>)
// CHECK: func @f2(memref<i8, #map{{[0-9]+}}, 1>)
func @f2(memref<i8, #map2, 1>)
// CHECK: func @f3(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3(memref<2x4xi8, #map3, 1>)
// CHECK: func @f3a(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3a(memref<2x4xi8, #map3a, 1>)
// CHECK: func @f3b(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3b(memref<2x4xi8, #map3b, 1>)
// CHECK: func @f3c(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3c(memref<2x4xi8, #map3c, 1>)
// CHECK: func @f3d(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3d(memref<2x4xi8, #map3d, 1>)
// CHECK: func @f3e(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3e(memref<2x4xi8, #map3e, 1>)
// CHECK: func @f3f(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3f(memref<2x4xi8, #map3f, 1>)
// CHECK: func @f3g(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3g(memref<2x4xi8, #map3g, 1>)
// CHECK: func @f3h(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3h(memref<2x4xi8, #map3h, 1>)
// CHECK: func @f3i(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3i(memref<2x4xi8, #map3i, 1>)
// CHECK: func @f3j(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3j(memref<2x4xi8, #map3j, 1>)
// CHECK: func @f3k(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3k(memref<2x4xi8, #map3k, 1>)
// CHECK: func @f3l(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f3l(memref<2x4xi8, #map3l, 1>)
// CHECK: func @f4(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f4(memref<2x4xi8, #map4, 1>)
// CHECK: func @f5(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f5(memref<2x4xi8, #map5, 1>)
// CHECK: func @f6(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f6(memref<2x4xi8, #map6, 1>)
// CHECK: func @f7(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f7(memref<2x4xi8, #map7, 1>)
// CHECK: func @f8(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f8(memref<2x4xi8, #map8, 1>)
// CHECK: func @f9(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f9(memref<2x4xi8, #map9, 1>)
// CHECK: func @f10(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f10(memref<2x4xi8, #map10, 1>)
// CHECK: func @f11(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f11(memref<2x4xi8, #map11, 1>)
// CHECK: func @f12(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f12(memref<2x4xi8, #map12, 1>)
// CHECK: func @f13(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f13(memref<2x4xi8, #map13, 1>)
// CHECK: func @f14(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f14(memref<2x4xi8, #map14, 1>)
// CHECK: func @f15(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f15(memref<2x4xi8, #map15, 1>)
// CHECK: func @f16(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f16(memref<2x4xi8, #map16, 1>)
// CHECK: func @f17(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f17(memref<2x4xi8, #map17, 1>)
// CHECK: func @f19(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f19(memref<2x4xi8, #map19, 1>)
// CHECK: func @f20(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f20(memref<2x4xi8, #map20, 1>)
// CHECK: func @f18(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f18(memref<2x4xi8, #map18, 1>)
// CHECK: func @f21(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f21(memref<2x4xi8, #map21, 1>)
// CHECK: func @f22(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f22(memref<2x4xi8, #map22, 1>)
// CHECK: func @f23(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f23(memref<2x4xi8, #map23, 1>)
// CHECK: func @f24(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f24(memref<2x4xi8, #map24, 1>)
// CHECK: func @f25(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f25(memref<2x4xi8, #map25, 1>)
// CHECK: func @f26(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f26(memref<2x4xi8, #map26, 1>)
// CHECK: func @f29(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f29(memref<2x4xi8, #map29, 1>)
// CHECK: func @f30(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f30(memref<2x4xi8, #map30, 1>)
// CHECK: func @f32(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f32(memref<2x4xi8, #map32, 1>)
// CHECK: func @f33(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f33(memref<2x4xi8, #map33, 1>)
// CHECK: func @f34(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f34(memref<2x4xi8, #map34, 1>)
// CHECK: func @f35(memref<2x4x4xi8, #map{{[0-9]+}}, 1>)
func @f35(memref<2x4x4xi8, #map35, 1>)
// CHECK: func @f36(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f36(memref<2x4xi8, #map36, 1>)
// CHECK: func @f37(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f37(memref<2x4xi8, #map37, 1>)
// CHECK: func @f38(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f38(memref<2x4xi8, #map38, 1>)
// CHECK: func @f39(memref<2x4xi8, #map{{[0-9]+}}, 1>)
func @f39(memref<2x4xi8, #map39, 1>)
// CHECK: func @f43(memref<2x4xi8, #map{{[0-9]+}}>)
func @f43(memref<2x4xi8, #map43>)
// CHECK: func @f44(memref<2x4xi8, #map{{[0-9]+}}>)
func @f44(memref<2x4xi8, #map44>)
// CHECK: func @f45(memref<100x100x100xi8, #map{{[0-9]+}}>)
func @f45(memref<100x100x100xi8, #map45>)
// CHECK: func @f46(memref<100x100x100xi8, #map{{[0-9]+}}>)
func @f46(memref<100x100x100xi8, #map46>)
// CHECK: func @f47(memref<100x100x100xi8, #map{{[0-9]+}}>)
func @f47(memref<100x100x100xi8, #map47>)
// CHECK: func @f48(memref<100x100x100xi8, #map{{[0-9]+}}>)
func @f48(memref<100x100x100xi8, #map48>)
// CHECK: func @f49(memref<100x100xi8, #map{{[0-9]+}}>)
func @f49(memref<100x100xi8, #map49>)
Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop unroll/unroll-and-jam more powerful; add additional affine expr builder methods - use previously added analysis/simplification to infer multiple of unroll factor trip counts, making loop unroll/unroll-and-jam more general. - for loop unroll, support bounds that are single result affine map's with the same set of operands. For unknown loop bounds, loop unroll will now work as long as trip count can be determined to be a multiple of unroll factor. - extend getConstantTripCount to deal with single result affine map's with the same operands. move it to mlir/Analysis/LoopAnalysis.cpp - add additional builder utility methods for affine expr arithmetic (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to use the utility methods. - move affine analysis routines to AffineAnalysis.cpp/.h from AffineStructures.cpp/.h. - Rename LoopUnrollJam to LoopUnrollAndJam to match class name. - add an additional simplification for simplifyFloorDiv, simplifyCeilDiv - Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does not have operands. Operands are passed to it through affine_apply, from loop bounds/if condition's, etc., operands are stored in the latter. This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU code generation, and can move to other analyses/transformations. Loop nests like these are now unrolled without any cleanup loop being generated. for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) { %x = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { // unroll factor 4: no cleanup loop will be generated. for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) { %y = "foo"(%j) : (affineint) -> i32 } } for %i = 1 to 100 { for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) { %x = "foo"() : () -> i32 } } TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor changes). PiperOrigin-RevId: 212661212
2018-09-13 01:21:23 +08:00
// CHECK: func @f50(memref<100x100xi8, #map{{[0-9]+}}>)
func @f50(memref<100x100xi8, #map50>)
// CHECK: func @f51(memref<1xi8, #map{{[0-9]+}}>)
func @f51(memref<1xi8, #map51>)
// CHECK: func @f52(memref<1xi8, #map{{[0-9]+}}>)
func @f52(memref<1xi8, #map52>)
// CHECK: func @f53(memref<1xi8, #map{{[0-9]+}}>)
func @f53(memref<1xi8, #map53>)
// CHECK: func @f54(memref<10xi32, #map{{[0-9]+}}>)
func @f54(memref<10xi32, #map54>)
// CHECK: "foo.op"() {map = #map{{[0-9]+}}} : () -> ()
"foo.op"() {map = #map55} : () -> ()
// CHECK: func @f56(memref<1x1xi8, #map{{[0-9]+}}>)
func @f56(memref<1x1xi8, #map56>)
// CHECK: "f57"() {map = #map{{[0-9]+}}} : () -> ()
"f57"() {map = #map57} : () -> ()
// CHECK: "f58"() {map = #map{{[0-9]+}}} : () -> ()
"f58"() {map = #map58} : () -> ()