2012-02-18 20:03:15 +08:00
|
|
|
//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
|
2005-04-22 07:30:14 +08:00
|
|
|
//
|
2004-08-17 12:55:41 +08:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
2007-12-30 04:36:04 +08:00
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
2005-04-22 07:30:14 +08:00
|
|
|
//
|
2004-08-17 12:55:41 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2014-08-14 00:26:38 +08:00
|
|
|
#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
|
|
|
|
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
|
2004-08-17 12:55:41 +08:00
|
|
|
|
2005-10-15 07:51:18 +08:00
|
|
|
#include "PPC.h"
|
2005-10-15 07:59:06 +08:00
|
|
|
#include "PPCRegisterInfo.h"
|
2017-11-08 09:01:31 +08:00
|
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
2004-08-17 12:55:41 +08:00
|
|
|
|
2011-07-02 01:57:27 +08:00
|
|
|
#define GET_INSTRINFO_HEADER
|
|
|
|
#include "PPCGenInstrInfo.inc"
|
|
|
|
|
2004-08-17 12:55:41 +08:00
|
|
|
namespace llvm {
|
2006-03-12 17:13:49 +08:00
|
|
|
|
|
|
|
/// PPCII - This namespace holds all of the PowerPC target-specific
|
|
|
|
/// per-instruction flags. These must match the corresponding definitions in
|
|
|
|
/// PPC.td and PPCInstrFormats.td.
|
|
|
|
namespace PPCII {
|
|
|
|
enum {
|
|
|
|
// PPC970 Instruction Flags. These flags describe the characteristics of the
|
|
|
|
// PowerPC 970 (aka G5) dispatch groups and how they are formed out of
|
|
|
|
// raw machine instructions.
|
|
|
|
|
|
|
|
/// PPC970_First - This instruction starts a new dispatch group, so it will
|
|
|
|
/// always be the first one in the group.
|
|
|
|
PPC970_First = 0x1,
|
2010-12-24 12:28:06 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
/// PPC970_Single - This instruction starts a new dispatch group and
|
|
|
|
/// terminates it, so it will be the sole instruction in the group.
|
|
|
|
PPC970_Single = 0x2,
|
|
|
|
|
2006-03-13 13:15:10 +08:00
|
|
|
/// PPC970_Cracked - This instruction is cracked into two pieces, requiring
|
|
|
|
/// two dispatch pipes to be available to issue.
|
|
|
|
PPC970_Cracked = 0x4,
|
2010-12-24 12:28:06 +08:00
|
|
|
|
2006-03-12 17:13:49 +08:00
|
|
|
/// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
|
|
|
|
/// an instruction is issued to.
|
2006-03-13 13:15:10 +08:00
|
|
|
PPC970_Shift = 3,
|
2006-05-25 01:04:05 +08:00
|
|
|
PPC970_Mask = 0x07 << PPC970_Shift
|
2006-03-12 17:13:49 +08:00
|
|
|
};
|
|
|
|
enum PPC970_Unit {
|
|
|
|
/// These are the various PPC970 execution unit pipelines. Each instruction
|
|
|
|
/// is one of these.
|
|
|
|
PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
|
|
|
|
PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
|
|
|
|
PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
|
|
|
|
PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
|
|
|
|
PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
|
|
|
|
PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
|
|
|
|
PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
|
2006-05-25 01:04:05 +08:00
|
|
|
PPC970_BRU = 7 << PPC970_Shift // Branch Unit
|
2006-03-12 17:13:49 +08:00
|
|
|
};
|
2016-10-04 14:59:23 +08:00
|
|
|
|
|
|
|
enum {
|
|
|
|
/// Shift count to bypass PPC970 flags
|
|
|
|
NewDef_Shift = 6,
|
|
|
|
|
|
|
|
/// The VSX instruction that uses VSX register (vs0-vs63), instead of VMX
|
|
|
|
/// register (v0-v31).
|
2018-03-27 01:39:18 +08:00
|
|
|
UseVSXReg = 0x1 << NewDef_Shift,
|
|
|
|
/// This instruction is an X-Form memory operation.
|
|
|
|
XFormMemOp = 0x1 << (NewDef_Shift+1)
|
2016-10-04 14:59:23 +08:00
|
|
|
};
|
2010-11-15 07:42:06 +08:00
|
|
|
} // end namespace PPCII
|
2010-12-24 12:28:06 +08:00
|
|
|
|
2017-12-15 15:27:53 +08:00
|
|
|
// Instructions that have an immediate form might be convertible to that
|
|
|
|
// form if the correct input is a result of a load immediate. In order to
|
|
|
|
// know whether the transformation is special, we might need to know some
|
|
|
|
// of the details of the two forms.
|
|
|
|
struct ImmInstrInfo {
|
|
|
|
// Is the immediate field in the immediate form signed or unsigned?
|
|
|
|
uint64_t SignedImm : 1;
|
|
|
|
// Does the immediate need to be a multiple of some value?
|
|
|
|
uint64_t ImmMustBeMultipleOf : 5;
|
|
|
|
// Is R0/X0 treated specially by the original r+r instruction?
|
|
|
|
// If so, in which operand?
|
|
|
|
uint64_t ZeroIsSpecialOrig : 3;
|
|
|
|
// Is R0/X0 treated specially by the new r+i instruction?
|
|
|
|
// If so, in which operand?
|
|
|
|
uint64_t ZeroIsSpecialNew : 3;
|
|
|
|
// Is the operation commutative?
|
|
|
|
uint64_t IsCommutative : 1;
|
|
|
|
// The operand number to check for load immediate.
|
|
|
|
uint64_t ConstantOpNo : 3;
|
|
|
|
// The operand number for the immediate.
|
|
|
|
uint64_t ImmOpNo : 3;
|
|
|
|
// The opcode of the new instruction.
|
|
|
|
uint64_t ImmOpcode : 16;
|
|
|
|
// The size of the immediate.
|
|
|
|
uint64_t ImmWidth : 5;
|
2017-12-29 20:22:27 +08:00
|
|
|
// The immediate should be truncated to N bits.
|
|
|
|
uint64_t TruncateImmTo : 5;
|
2017-12-15 15:27:53 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
// Information required to convert an instruction to just a materialized
|
|
|
|
// immediate.
|
|
|
|
struct LoadImmediateInfo {
|
|
|
|
unsigned Imm : 16;
|
|
|
|
unsigned Is64Bit : 1;
|
|
|
|
unsigned SetCR : 1;
|
|
|
|
};
|
|
|
|
|
2015-03-12 14:07:16 +08:00
|
|
|
class PPCSubtarget;
|
2011-07-02 01:57:27 +08:00
|
|
|
class PPCInstrInfo : public PPCGenInstrInfo {
|
2014-06-13 05:48:52 +08:00
|
|
|
PPCSubtarget &Subtarget;
|
2005-10-16 13:39:50 +08:00
|
|
|
const PPCRegisterInfo RI;
|
2008-03-11 06:49:16 +08:00
|
|
|
|
2018-03-27 01:39:18 +08:00
|
|
|
void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
|
|
|
|
int FrameIdx, const TargetRegisterClass *RC,
|
|
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const;
|
|
|
|
void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
|
2008-07-08 07:14:23 +08:00
|
|
|
unsigned DestReg, int FrameIdx,
|
2008-03-11 06:49:16 +08:00
|
|
|
const TargetRegisterClass *RC,
|
2018-03-27 01:39:18 +08:00
|
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const;
|
2017-12-15 15:27:53 +08:00
|
|
|
bool transformToImmForm(MachineInstr &MI, const ImmInstrInfo &III,
|
|
|
|
unsigned ConstantOpNo, int64_t Imm) const;
|
|
|
|
MachineInstr *getConstantDefMI(MachineInstr &MI, unsigned &ConstOp,
|
|
|
|
bool &SeenIntermediateUse) const;
|
2018-03-27 01:39:18 +08:00
|
|
|
const unsigned *getStoreOpcodesForSpillArray() const;
|
|
|
|
const unsigned *getLoadOpcodesForSpillArray() const;
|
2013-11-19 08:57:56 +08:00
|
|
|
virtual void anchor();
|
2015-09-29 04:33:22 +08:00
|
|
|
|
|
|
|
protected:
|
|
|
|
/// Commutes the operands in the given instruction.
|
|
|
|
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
|
|
|
|
///
|
|
|
|
/// Do not call this method for a non-commutable instruction or for
|
|
|
|
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
|
|
|
|
/// Even though the instruction is commutable, the method may still
|
|
|
|
/// fail to commute the operands, null pointer is returned in such cases.
|
|
|
|
///
|
|
|
|
/// For example, we can commute rlwimi instructions, but only if the
|
|
|
|
/// rotate amt is zero. We also have to munge the immediates a bit.
|
2016-06-30 08:01:54 +08:00
|
|
|
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
2015-09-29 04:33:22 +08:00
|
|
|
unsigned OpIdx1,
|
|
|
|
unsigned OpIdx2) const override;
|
|
|
|
|
2004-08-17 12:55:41 +08:00
|
|
|
public:
|
2014-06-13 05:48:52 +08:00
|
|
|
explicit PPCInstrInfo(PPCSubtarget &STI);
|
2004-08-17 12:55:41 +08:00
|
|
|
|
|
|
|
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
|
|
|
|
/// such, whenever a client has an instance of instruction info, it should
|
|
|
|
/// always be able to get register info as well (through this method).
|
|
|
|
///
|
2014-04-29 15:57:37 +08:00
|
|
|
const PPCRegisterInfo &getRegisterInfo() const { return RI; }
|
2004-08-17 12:55:41 +08:00
|
|
|
|
2018-03-27 01:39:18 +08:00
|
|
|
bool isXFormMemOp(unsigned Opcode) const {
|
|
|
|
return get(Opcode).TSFlags & PPCII::XFormMemOp;
|
|
|
|
}
|
|
|
|
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
llvm-svn: 122541
2010-12-24 13:03:26 +08:00
|
|
|
ScheduleHazardRecognizer *
|
2014-06-14 06:38:52 +08:00
|
|
|
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
|
2014-04-29 15:57:37 +08:00
|
|
|
const ScheduleDAG *DAG) const override;
|
2011-12-02 12:58:02 +08:00
|
|
|
ScheduleHazardRecognizer *
|
|
|
|
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
2014-04-29 15:57:37 +08:00
|
|
|
const ScheduleDAG *DAG) const override;
|
Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
llvm-svn: 122541
2010-12-24 13:03:26 +08:00
|
|
|
|
[PowerPC] Fix the PPCInstrInfo::getInstrLatency implementation
PowerPC uses itineraries to describe processor pipelines (and dispatch-group
restrictions for P7/P8 cores). Unfortunately, the target-independent
implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that
looks for the largest cycle count in the pipeline for any given instruction.
This, however, yields the wrong answer for the PPC itineraries, because we
don't encode the full pipeline. Because the functional units are fully
pipelined, we only model the initial stages (there are no relevant hazards in
the later stages to model), and so the technique employed by getStageLatency
does not really work. Instead, we should take the maximum output operand
latency, and that's what PPCInstrInfo::getInstrLatency now does.
This caused some test-case churn, including two unfortunate side effects.
First, the new arrangement of copies we get from function parameters now
sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the
test cases), and we have one significant test-suite regression:
SingleSource/Benchmarks/BenchmarkGame/spectral-norm
56.4185% +/- 18.9398%
In this benchmark we have a loop with a vectorized FP divide, and it with the
new scheduling both divides end up in the same dispatch group (which in this
case seems to cause a problem, although why is not exactly clear). The grouping
structure is hard to predict from the bottom of the loop, and there may not be
much we can do to fix this.
Very few other test-suite performance effects were really significant, but
almost all weakly favor this change. However, in light of the issues
highlighted above, I've left the old behavior available via a
command-line flag.
llvm-svn: 242188
2015-07-15 04:02:02 +08:00
|
|
|
unsigned getInstrLatency(const InstrItineraryData *ItinData,
|
2016-06-30 08:01:54 +08:00
|
|
|
const MachineInstr &MI,
|
[PowerPC] Fix the PPCInstrInfo::getInstrLatency implementation
PowerPC uses itineraries to describe processor pipelines (and dispatch-group
restrictions for P7/P8 cores). Unfortunately, the target-independent
implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that
looks for the largest cycle count in the pipeline for any given instruction.
This, however, yields the wrong answer for the PPC itineraries, because we
don't encode the full pipeline. Because the functional units are fully
pipelined, we only model the initial stages (there are no relevant hazards in
the later stages to model), and so the technique employed by getStageLatency
does not really work. Instead, we should take the maximum output operand
latency, and that's what PPCInstrInfo::getInstrLatency now does.
This caused some test-case churn, including two unfortunate side effects.
First, the new arrangement of copies we get from function parameters now
sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the
test cases), and we have one significant test-suite regression:
SingleSource/Benchmarks/BenchmarkGame/spectral-norm
56.4185% +/- 18.9398%
In this benchmark we have a loop with a vectorized FP divide, and it with the
new scheduling both divides end up in the same dispatch group (which in this
case seems to cause a problem, although why is not exactly clear). The grouping
structure is hard to predict from the bottom of the loop, and there may not be
much we can do to fix this.
Very few other test-suite performance effects were really significant, but
almost all weakly favor this change. However, in light of the issues
highlighted above, I've left the old behavior available via a
command-line flag.
llvm-svn: 242188
2015-07-15 04:02:02 +08:00
|
|
|
unsigned *PredCost = nullptr) const override;
|
|
|
|
|
2013-12-12 08:19:11 +08:00
|
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
2016-06-30 08:01:54 +08:00
|
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
|
|
const MachineInstr &UseMI,
|
2014-04-29 15:57:37 +08:00
|
|
|
unsigned UseIdx) const override;
|
2013-12-12 08:19:11 +08:00
|
|
|
int getOperandLatency(const InstrItineraryData *ItinData,
|
|
|
|
SDNode *DefNode, unsigned DefIdx,
|
2014-04-29 15:57:37 +08:00
|
|
|
SDNode *UseNode, unsigned UseIdx) const override {
|
2013-12-12 08:19:11 +08:00
|
|
|
return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
|
|
|
|
UseNode, UseIdx);
|
|
|
|
}
|
|
|
|
|
2015-06-13 11:42:11 +08:00
|
|
|
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
|
2016-06-30 08:01:54 +08:00
|
|
|
const MachineInstr &DefMI,
|
2015-01-09 06:11:49 +08:00
|
|
|
unsigned DefIdx) const override {
|
|
|
|
// Machine LICM should hoist all instructions in low-register-pressure
|
|
|
|
// situations; none are sufficiently free to justify leaving in a loop
|
|
|
|
// body.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-07-15 16:23:05 +08:00
|
|
|
bool useMachineCombiner() const override {
|
|
|
|
return true;
|
|
|
|
}
|
2015-09-21 23:09:11 +08:00
|
|
|
|
2015-07-15 16:23:05 +08:00
|
|
|
/// Return true when there is potentially a faster code sequence
|
|
|
|
/// for an instruction chain ending in <Root>. All potential patterns are
|
|
|
|
/// output in the <Pattern> array.
|
|
|
|
bool getMachineCombinerPatterns(
|
|
|
|
MachineInstr &Root,
|
2015-11-06 03:34:57 +08:00
|
|
|
SmallVectorImpl<MachineCombinerPattern> &P) const override;
|
2015-09-21 23:09:11 +08:00
|
|
|
|
|
|
|
bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
|
2015-07-15 16:23:05 +08:00
|
|
|
|
2012-06-20 05:14:34 +08:00
|
|
|
bool isCoalescableExtInstr(const MachineInstr &MI,
|
|
|
|
unsigned &SrcReg, unsigned &DstReg,
|
2014-04-29 15:57:37 +08:00
|
|
|
unsigned &SubIdx) const override;
|
2016-06-30 08:01:54 +08:00
|
|
|
unsigned isLoadFromStackSlot(const MachineInstr &MI,
|
2014-04-29 15:57:37 +08:00
|
|
|
int &FrameIndex) const override;
|
2017-06-22 01:17:56 +08:00
|
|
|
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
|
|
AliasAnalysis *AA) const override;
|
2016-06-30 08:01:54 +08:00
|
|
|
unsigned isStoreToStackSlot(const MachineInstr &MI,
|
2014-04-29 15:57:37 +08:00
|
|
|
int &FrameIndex) const override;
|
2006-02-03 04:12:32 +08:00
|
|
|
|
2016-06-30 08:01:54 +08:00
|
|
|
bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
|
2014-04-29 15:57:37 +08:00
|
|
|
unsigned &SrcOpIdx2) const override;
|
2014-03-26 03:26:43 +08:00
|
|
|
|
2014-04-29 15:57:37 +08:00
|
|
|
void insertNoop(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MI) const override;
|
2006-03-06 07:49:55 +08:00
|
|
|
|
2006-10-14 05:21:17 +08:00
|
|
|
|
|
|
|
// Branch analysis.
|
2016-07-15 22:41:04 +08:00
|
|
|
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
2014-04-29 15:57:37 +08:00
|
|
|
MachineBasicBlock *&FBB,
|
|
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
|
|
bool AllowModify) const override;
|
2016-09-15 04:43:16 +08:00
|
|
|
unsigned removeBranch(MachineBasicBlock &MBB,
|
2016-09-15 01:23:48 +08:00
|
|
|
int *BytesRemoved = nullptr) const override;
|
2016-09-15 01:24:15 +08:00
|
|
|
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
2015-06-12 03:30:37 +08:00
|
|
|
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
|
2016-09-15 01:23:48 +08:00
|
|
|
const DebugLoc &DL,
|
|
|
|
int *BytesAdded = nullptr) const override;
|
2013-04-06 07:29:01 +08:00
|
|
|
|
|
|
|
// Select analysis.
|
2015-06-12 03:30:37 +08:00
|
|
|
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
|
|
|
|
unsigned, unsigned, int &, int &, int &) const override;
|
|
|
|
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
2016-06-12 23:39:02 +08:00
|
|
|
const DebugLoc &DL, unsigned DstReg,
|
|
|
|
ArrayRef<MachineOperand> Cond, unsigned TrueReg,
|
|
|
|
unsigned FalseReg) const override;
|
2014-04-29 15:57:37 +08:00
|
|
|
|
2016-06-12 23:39:02 +08:00
|
|
|
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
|
|
|
|
const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
|
2014-04-29 15:57:37 +08:00
|
|
|
bool KillSrc) const override;
|
|
|
|
|
|
|
|
void storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
unsigned SrcReg, bool isKill, int FrameIndex,
|
|
|
|
const TargetRegisterClass *RC,
|
|
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
|
|
|
|
void loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator MBBI,
|
|
|
|
unsigned DestReg, int FrameIndex,
|
|
|
|
const TargetRegisterClass *RC,
|
|
|
|
const TargetRegisterInfo *TRI) const override;
|
|
|
|
|
2018-03-27 01:39:18 +08:00
|
|
|
unsigned getStoreOpcodeForSpill(unsigned Reg,
|
|
|
|
const TargetRegisterClass *RC = nullptr) const;
|
|
|
|
|
|
|
|
unsigned getLoadOpcodeForSpill(unsigned Reg,
|
|
|
|
const TargetRegisterClass *RC = nullptr) const;
|
|
|
|
|
2014-04-29 15:57:37 +08:00
|
|
|
bool
|
2016-09-15 04:43:16 +08:00
|
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
|
2014-04-29 15:57:37 +08:00
|
|
|
|
2016-06-30 08:01:54 +08:00
|
|
|
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
|
|
|
|
MachineRegisterInfo *MRI) const override;
|
2013-04-07 03:30:30 +08:00
|
|
|
|
2013-04-10 06:58:37 +08:00
|
|
|
// If conversion by predication (only supported by some branch instructions).
|
|
|
|
// All of the profitability checks always return true; it is always
|
|
|
|
// profitable to use the predicated branches.
|
2014-04-29 15:57:37 +08:00
|
|
|
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
|
|
unsigned NumCycles, unsigned ExtraPredCycles,
|
2015-09-11 07:10:42 +08:00
|
|
|
BranchProbability Probability) const override {
|
2013-04-10 06:58:37 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-04-29 15:57:37 +08:00
|
|
|
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
|
|
unsigned NumT, unsigned ExtraT,
|
|
|
|
MachineBasicBlock &FMBB,
|
|
|
|
unsigned NumF, unsigned ExtraF,
|
2015-09-11 07:10:42 +08:00
|
|
|
BranchProbability Probability) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2015-09-11 07:10:42 +08:00
|
|
|
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
|
|
|
|
BranchProbability Probability) const override {
|
2013-04-10 06:58:37 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-04-29 15:57:37 +08:00
|
|
|
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
|
|
|
|
MachineBasicBlock &FMBB) const override {
|
2013-04-10 06:58:37 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Predication support.
|
2016-02-23 10:46:52 +08:00
|
|
|
bool isPredicated(const MachineInstr &MI) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2016-02-23 10:46:52 +08:00
|
|
|
bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2016-02-23 10:46:52 +08:00
|
|
|
bool PredicateInstruction(MachineInstr &MI,
|
2015-06-12 03:30:37 +08:00
|
|
|
ArrayRef<MachineOperand> Pred) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2015-06-12 03:30:37 +08:00
|
|
|
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
|
|
|
|
ArrayRef<MachineOperand> Pred2) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2016-02-23 10:46:52 +08:00
|
|
|
bool DefinesPredicate(MachineInstr &MI,
|
2014-04-29 15:57:37 +08:00
|
|
|
std::vector<MachineOperand> &Pred) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2017-03-04 02:30:54 +08:00
|
|
|
bool isPredicable(const MachineInstr &MI) const override;
|
2013-04-10 06:58:37 +08:00
|
|
|
|
2013-04-19 06:15:08 +08:00
|
|
|
// Comparison optimization.
|
|
|
|
|
2016-06-30 08:01:54 +08:00
|
|
|
bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
|
|
|
|
unsigned &SrcReg2, int &Mask, int &Value) const override;
|
2013-04-19 06:15:08 +08:00
|
|
|
|
2016-06-30 08:01:54 +08:00
|
|
|
bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
|
|
|
|
unsigned SrcReg2, int Mask, int Value,
|
2014-04-29 15:57:37 +08:00
|
|
|
const MachineRegisterInfo *MRI) const override;
|
2013-04-19 06:15:08 +08:00
|
|
|
|
2008-04-17 04:10:13 +08:00
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
|
|
///
|
2016-07-29 16:16:16 +08:00
|
|
|
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
|
2014-08-09 03:13:23 +08:00
|
|
|
|
2017-04-22 05:48:41 +08:00
|
|
|
void getNoop(MCInst &NopInst) const override;
|
2015-08-30 15:50:35 +08:00
|
|
|
|
|
|
|
std::pair<unsigned, unsigned>
|
|
|
|
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
|
|
|
|
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
|
|
getSerializableDirectMachineOperandTargetFlags() const override;
|
|
|
|
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
|
|
getSerializableBitmaskMachineOperandTargetFlags() const override;
|
2016-04-20 04:14:52 +08:00
|
|
|
|
2017-11-20 22:38:30 +08:00
|
|
|
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
|
|
|
|
bool expandVSXMemPseudo(MachineInstr &MI) const;
|
|
|
|
|
2016-04-20 04:14:52 +08:00
|
|
|
// Lower pseudo instructions after register allocation.
|
2016-06-30 08:01:54 +08:00
|
|
|
bool expandPostRAPseudo(MachineInstr &MI) const override;
|
2016-10-04 14:59:23 +08:00
|
|
|
|
|
|
|
static bool isVFRegister(unsigned Reg) {
|
|
|
|
return Reg >= PPC::VF0 && Reg <= PPC::VF31;
|
|
|
|
}
|
|
|
|
static bool isVRRegister(unsigned Reg) {
|
|
|
|
return Reg >= PPC::V0 && Reg <= PPC::V31;
|
|
|
|
}
|
|
|
|
const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
|
2017-05-31 13:40:25 +08:00
|
|
|
static int getRecordFormOpcode(unsigned Opcode);
|
2017-10-16 12:12:57 +08:00
|
|
|
|
2017-11-28 04:26:36 +08:00
|
|
|
bool isTOCSaveMI(const MachineInstr &MI) const;
|
|
|
|
|
2017-10-16 12:12:57 +08:00
|
|
|
bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
|
|
|
|
const unsigned PhiDepth) const;
|
|
|
|
|
|
|
|
/// Return true if the output of the instruction is always a sign-extended,
|
|
|
|
/// i.e. 0 to 31-th bits are same as 32-th bit.
|
|
|
|
bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
|
|
|
|
return isSignOrZeroExtended(MI, true, depth);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return true if the output of the instruction is always zero-extended,
|
|
|
|
/// i.e. 0 to 31-th bits are all zeros
|
|
|
|
bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
|
|
|
|
return isSignOrZeroExtended(MI, false, depth);
|
|
|
|
}
|
2017-12-15 15:27:53 +08:00
|
|
|
|
|
|
|
bool convertToImmediateForm(MachineInstr &MI,
|
|
|
|
MachineInstr **KilledDef = nullptr) const;
|
|
|
|
void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
|
|
|
|
|
|
|
|
bool instrHasImmForm(const MachineInstr &MI, ImmInstrInfo &III) const;
|
2004-08-17 12:55:41 +08:00
|
|
|
};
|
|
|
|
|
2015-06-23 17:49:53 +08:00
|
|
|
}
|
2004-08-17 12:55:41 +08:00
|
|
|
|
|
|
|
#endif
|