llvm-project/clang/AST/CFG.cpp

351 lines
12 KiB
C++
Raw Normal View History

//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CFG and CFGBuilder classes for representing and
// building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include <iostream>
#include <iomanip>
#include <algorithm>
using namespace clang;
namespace {
// SaveAndRestore - A utility class that uses RIIA to save and restore
// the value of a variable.
template<typename T>
struct SaveAndRestore {
SaveAndRestore(T& x) : X(x), old_value(x) {}
~SaveAndRestore() { X = old_value; }
T& X;
T old_value;
};
}
/// CFGBuilder - This class is implements CFG construction from an AST.
/// The builder is stateful: an instance of the builder should be used to only
/// construct a single CFG.
///
/// Example usage:
///
/// CFGBuilder builder;
/// CFG* cfg = builder.BuildAST(stmt1);
///
class CFGBuilder {
CFG* cfg;
CFGBlock* Block;
CFGBlock* Exit;
CFGBlock* Succ;
unsigned NumBlocks;
public:
explicit CFGBuilder() : cfg(NULL), Block(NULL), Exit(NULL), Succ(NULL),
NumBlocks(0) {
// Create an empty CFG.
cfg = new CFG();
}
~CFGBuilder() { delete cfg; }
/// buildCFG - Constructs a CFG from an AST (a Stmt*). The AST can
/// represent an arbitrary statement. Examples include a single expression
/// or a function body (compound statement). The ownership of the returned
/// CFG is transferred to the caller. If CFG construction fails, this method
/// returns NULL.
CFG* buildCFG(Stmt* Statement) {
if (!Statement) return NULL;
assert (cfg && "CFGBuilder should only be used to construct one CFG");
// Create the exit block.
Block = createBlock();
Exit = Block;
// Visit the statements and create the CFG.
if (CFGBlock* B = visitStmt(Statement)) {
// Reverse the statements in the last constructed block. Statements
// are inserted into the blocks in reverse order.
B->reverseStmts();
// NULL out cfg so that repeated calls
CFG* t = cfg;
cfg = NULL;
return t;
}
else {
// Error occured while building CFG: Delete the partially constructed CFG.
delete cfg;
cfg = NULL;
return NULL;
}
}
private:
// createBlock - Used to lazily create blocks that are connected
// to the current (global) succcessor.
CFGBlock* createBlock( bool add_successor = true ) {
CFGBlock* B = cfg->createBlock(NumBlocks++);
if (add_successor && Succ) B->addSuccessor(Succ);
return B;
}
// visitStmt - CFG construction is done via a recursive walk of an AST.
// We actually parse the AST in reverse order so that the successor
// of a basic block is constructed prior to its predecessor. This
// allows us to nicely capture implicit fall-throughs without extra
// basic blocks.
//
// The value returned from this function is the last created CFGBlock
// that represents the "entry" point for the translated AST node.
CFGBlock* visitStmt(Stmt* Statement) {
assert (Statement && "visitStmt does not accept NULL Stmt*");
switch (Statement->getStmtClass()) {
default:
assert (false && "statement case for CFGBuilder not yet implemented");
return NULL;
// Statements with no branching control flow.
case Stmt::NullStmtClass:
case Stmt::DeclStmtClass:
case Stmt::PreDefinedExprClass:
case Stmt::DeclRefExprClass:
case Stmt::IntegerLiteralClass:
case Stmt::FloatingLiteralClass:
case Stmt::StringLiteralClass:
case Stmt::CharacterLiteralClass:
case Stmt::ParenExprClass:
case Stmt::UnaryOperatorClass:
case Stmt::SizeOfAlignOfTypeExprClass:
case Stmt::ArraySubscriptExprClass:
case Stmt::CallExprClass:
case Stmt::BinaryOperatorClass:
case Stmt::ImplicitCastExprClass:
case Stmt::CompoundLiteralExprClass:
case Stmt::OCUVectorElementExprClass:
// We cannot assume that we are in the middle of a basic block, since
// the CFG might only be constructed for this single statement. If
// we have no current basic block, just create one lazily.
if (!Block) Block = createBlock();
// Simply add the statement to the current block. We actually
// insert statements in reverse order; this order is reversed later
// when processing the containing element in the AST.
Block->appendStmt(Statement);
break;
case Stmt::CompoundStmtClass: {
// Iterate through the statements of the compound statement in reverse
// order. Because this statement may contain statements that have
// complicated control flow, the value of "Block" may change at any
// time. This means that statements in the compound statement will
// automatically be distributed across multiple basic blocks when
// necessary.
CompoundStmt* C = cast<CompoundStmt>(Statement);
for (CompoundStmt::reverse_body_iterator I = C->body_rbegin(),
E = C->body_rend(); I != E; ++I )
// Add the statement to the current block.
if (!visitStmt(*I)) return NULL;
break;
}
case Stmt::IfStmtClass: {
IfStmt* I = cast<IfStmt>(Statement);
// We may see an if statement in the middle of a basic block, or
// it may be the first statement we are processing. In either case,
// we create a new basic block. First, we create the blocks for
// the then...else statements, and then we create the block containing
// the if statement. If we were in the middle of a block, we
// stop processing that block and reverse its statements. That block
// is then the implicit successor for the "then" and "else" clauses.
// The block we were proccessing is now finished. Make it the
// successor block.
if (Block) {
Succ = Block;
Block->reverseStmts();
}
// Process the false branch. NULL out Block so that the recursive
// call to visitStmt will create a new basic block.
// Null out Block so that all successor
CFGBlock* ElseBlock = Succ;
if (Stmt* Else = I->getElse()) {
SaveAndRestore<CFGBlock*> sv(Succ);
// NULL out Block so that the recursive call to visitStmt will
// create a new basic block.
Block = NULL;
ElseBlock = visitStmt(Else);
if (!ElseBlock) return NULL;
ElseBlock->reverseStmts();
}
// Process the true branch. NULL out Block so that the recursive
// call to visitStmt will create a new basic block.
// Null out Block so that all successor
CFGBlock* ThenBlock;
{
Stmt* Then = I->getThen();
assert (Then);
SaveAndRestore<CFGBlock*> sv(Succ);
Block = NULL;
ThenBlock = visitStmt(Then);
if (!ThenBlock) return NULL;
ThenBlock->reverseStmts();
}
// Now create a new block containing the if statement.
Block = createBlock(false);
// Add the condition as the last statement in the new block.
Block->appendStmt(I->getCond());
// Set the terminator of the new block to the If statement.
Block->setTerminator(I);
// Now add the successors.
Block->addSuccessor(ThenBlock);
Block->addSuccessor(ElseBlock);
break;
}
case Stmt::ReturnStmtClass: {
ReturnStmt* R = cast<ReturnStmt>(Statement);
// If we were in the middle of a block we stop processing that block
// and reverse its statements.
//
// NOTE: If a "return" appears in the middle of a block, this means
// that the code afterwards is DEAD (unreachable). We still
// keep a basic block for that code; a simple "mark-and-sweep"
// from the entry block will be able to report such dead
// blocks.
if (Block) Block->reverseStmts();
// Create the new block.
Block = createBlock(false);
// The Exit block is the only successor.
Block->addSuccessor(Exit);
// Add the return expression to the block.
Block->appendStmt(R);
// Add the return statement itself to the block.
if (R->getRetValue()) Block->appendStmt(R->getRetValue());
break;
}
} // end dispatch on statement class
return Block;
}
};
// BuildCFG - A helper function that builds CFGs from ASTS.
CFG* CFG::BuildCFG( Stmt* Statement ) {
CFGBuilder Builder;
return Builder.buildCFG(Statement);
}
// reverseStmts - A method that reverses the order of the statements within
// a CFGBlock.
void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); }
// dump - A simple pretty printer of a CFG that outputs to stderr.
void CFG::dump() { print(std::cerr); }
// print - A simple pretty printer of a CFG that outputs to an ostream.
void CFG::print(std::ostream& OS) {
// Iterate through the CFGBlocks and print them one by one. Specially
// designate the Entry and Exit blocks.
for (iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
OS << "\n [ B" << I->getBlockID();
if (&(*I) == getExit()) OS << " (EXIT) ]\n";
else if (&(*I) == getEntry()) OS << " (ENTRY) ]\n";
else OS << " ]\n";
I->print(OS);
}
OS << "\n";
}
// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
void CFGBlock::dump() { print(std::cerr); }
// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
// Generally this will only be called from CFG::print.
void CFGBlock::print(std::ostream& OS) {
// Iterate through the statements in the block and print them.
OS << " ------------------------\n";
unsigned j = 1;
for (iterator I = Stmts.begin(), E = Stmts.end() ; I != E ; ++I, ++j ) {
OS << " " << std::setw(3) << j << ": ";
(*I)->printPretty(OS);
if (isa<Expr>(*I)) OS << '\n';
}
OS << " ------------------------\n";
// Print the predecessors of this block.
OS << " Predecessors (" << pred_size() << "):";
unsigned i = 0;
for (pred_iterator I = pred_begin(), E = pred_end(); I != E; ++I, ++i ) {
if (i == 8 || (i-8) == 0) {
OS << "\n ";
}
OS << " B" << (*I)->getBlockID();
}
// Print the terminator of this block.
OS << "\n Terminator: ";
if (ControlFlowStmt) {
switch (ControlFlowStmt->getStmtClass()) {
case Stmt::IfStmtClass: {
IfStmt* I = cast<IfStmt>(ControlFlowStmt);
OS << "if ";
I->getCond()->printPretty(std::cerr);
OS << "\n";
break;
}
case Stmt::ReturnStmtClass: {
ReturnStmt* R = cast<ReturnStmt>(ControlFlowStmt);
R->printPretty(std::cerr);
break;
}
default:
assert(false && "terminator print not fully implemented");
}
}
else OS << "<NULL>\n";
// Print the successors of this block.
OS << " Successors (" << succ_size() << "):";
i = 0;
for (succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I, ++i ) {
if (i == 8 || (i-8) % 10 == 0) {
OS << "\n ";
}
OS << " B" << (*I)->getBlockID();
}
OS << '\n';
}