llvm-project/llvm/lib/Target/Hexagon/HexagonPatterns.td

3022 lines
133 KiB
TableGen
Raw Normal View History

//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Table of contents:
// (0) Definitions
// (1) Immediates
// (2) Type casts
// (3) Extend/truncate
// (4) Logical
// (5) Compare
// (6) Select
// (7) Insert/extract
// (8) Shift/permute
// (9) Arithmetic/bitwise
// (10) Bit
// (11) PIC
// (12) Load
// (13) Store
// (14) Memop
// (15) Call
// (16) Branch
// (17) Misc
// Guidelines (in no particular order):
// 1. Avoid relying on pattern ordering to give preference to one pattern
// over another, prefer using AddedComplexity instead. The reason for
// this is to avoid unintended conseqeuences (caused by altering the
// order) when making changes. The current order of patterns in this
// file obviously does play some role, but none of the ordering was
// deliberately chosen (other than to create a logical structure of
// this file). When making changes, adding AddedComplexity to existing
// patterns may be needed.
// 2. Maintain the logical structure of the file, try to put new patterns
// in designated sections.
// 3. Do not use A2_combinew instruction directly, use Combinew fragment
// instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
// 4. Most selection macros are based on PatFrags. For DAGs that involve
// SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
// whenever possible (see the Definitions section). When adding new
// macro, try to make is general to enable reuse across sections.
// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
// that the nested operation has only one use. Having it separated in case
// of multiple uses avoids duplication of (processor) work.
// 6. The v4 vector instructions (64-bit) are treated as core instructions,
// for example, A2_vaddh is in the "arithmetic" section with A2_add.
// 7. When adding a pattern for an instruction with a constant-extendable
// operand, allow all possible kinds of inputs for the immediate value
// (see AnyImm/anyimm and their variants in the Definitions section).
// --(0) Definitions -----------------------------------------------------
//
// This complex pattern exists only to create a machine instruction operand
// of type "frame index". There doesn't seem to be a way to do that directly
// in the patterns.
def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
// These complex patterns are not strictly necessary, since global address
// folding will happen during DAG combining. For distinguishing between GA
// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
// Global address or a constant being a multiple of 2^n.
def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
// Type helper frags.
def V2I1: PatLeaf<(v2i1 PredRegs:$R)>;
def V4I1: PatLeaf<(v4i1 PredRegs:$R)>;
def V8I1: PatLeaf<(v8i1 PredRegs:$R)>;
def V4I8: PatLeaf<(v4i8 IntRegs:$R)>;
def V2I16: PatLeaf<(v2i16 IntRegs:$R)>;
def V8I8: PatLeaf<(v8i8 DoubleRegs:$R)>;
def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>;
def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>;
def HQ8: PatLeaf<(VecQ8 HvxQR:$R)>;
def HQ16: PatLeaf<(VecQ16 HvxQR:$R)>;
def HQ32: PatLeaf<(VecQ32 HvxQR:$R)>;
def HVI8: PatLeaf<(VecI8 HvxVR:$R)>;
def HVI16: PatLeaf<(VecI16 HvxVR:$R)>;
def HVI32: PatLeaf<(VecI32 HvxVR:$R)>;
def HWI8: PatLeaf<(VecPI8 HvxWR:$R)>;
def HWI16: PatLeaf<(VecPI16 HvxWR:$R)>;
def HWI32: PatLeaf<(VecPI32 HvxWR:$R)>;
def SDTVecVecIntOp:
SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
SDTCisVT<3,i32>]>;
def HexagonVALIGN: SDNode<"HexagonISD::VALIGN", SDTVecVecIntOp>;
def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;
def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
(HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;
// Pattern fragments to extract the low and high subregisters from a
// 64-bit value.
def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
return isOrEquivalentToAdd(N);
}]>;
def IsPow2_32: PatLeaf<(i32 imm), [{
uint32_t V = N->getZExtValue();
return isPowerOf2_32(V);
}]>;
def IsPow2_64: PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V);
}]>;
def IsNPow2_32: PatLeaf<(i32 imm), [{
uint32_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def IsPow2_64L: PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V) && Log2_64(V) < 32;
}]>;
def IsPow2_64H: PatLeaf<(i64 imm), [{
uint64_t V = N->getZExtValue();
return isPowerOf2_64(V) && Log2_64(V) >= 32;
}]>;
def IsNPow2_64L: PatLeaf<(i64 imm), [{
uint64_t NV = ~N->getZExtValue();
return isPowerOf2_64(NV) && Log2_64(NV) < 32;
}]>;
def IsNPow2_64H: PatLeaf<(i64 imm), [{
uint64_t NV = ~N->getZExtValue();
return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
}]>;
class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
"uint64_t V = N->getZExtValue();" #
"return isUInt<" # Width # ">(V) && V > " # Arg # ";"
>;
def SDEC1: SDNodeXForm<imm, [{
int32_t V = N->getSExtValue();
return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;
def UDEC1: SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
assert(V >= 1);
return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;
def UDEC32: SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
assert(V >= 32);
return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
}]>;
def Log2_32: SDNodeXForm<imm, [{
uint32_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def Log2_64: SDNodeXForm<imm, [{
uint64_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
}]>;
def LogN2_32: SDNodeXForm<imm, [{
uint32_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def LogN2_64: SDNodeXForm<imm, [{
uint64_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
}]>;
def NegImm8: SDNodeXForm<imm, [{
int8_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;
def NegImm16: SDNodeXForm<imm, [{
int16_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;
def NegImm32: SDNodeXForm<imm, [{
int32_t NV = -N->getSExtValue();
return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;
// Helpers for type promotions/contractions.
def I1toI32: OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
def I32toI1: OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
(REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
// Global address or an aligned constant.
def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
// This complex pattern is really only to detect various forms of
// sign-extension i32->i64. The selected value will be of type i64
// whose low word is the value being extended. The high word is
// unspecified.
def Usxtw: ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
(PS_fi (i32 AddrFI:$Rs), imm:$off)>;
// Converters from unary/binary SDNode to PatFrag.
class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
class Not2<PatFrag P>
: PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
// If there is a constant operand that feeds the and/or instruction,
// do not generate the compound instructions.
// It is not always profitable, as some times we end up with a transfer.
// Check the below example.
// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
// Instead this is preferable.
// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
class Su_ni1<PatFrag Op>
: PatFrag<Op.Operands, !head(Op.Fragments), [{
if (hasOneUse(N)){
// Check if Op1 is an immediate operand.
SDValue Op1 = N->getOperand(1);
return !dyn_cast<ConstantSDNode>(Op1);
}
return false;}],
Op.OperandTransform>;
class Su<PatFrag Op>
[TableGen] Support multi-alternative pattern fragments A TableGen instruction record usually contains a DAG pattern that will describe the SelectionDAG operation that can be implemented by this instruction. However, there will be cases where several different DAG patterns can all be implemented by the same instruction. The way to represent this today is to write additional patterns in the Pattern (or usually Pat) class that map those extra DAG patterns to the instruction. This usually also works fine. However, I've noticed cases where the current setup seems to require quite a bit of extra (and duplicated) text in the target .td files. For example, in the SystemZ back-end, there are quite a number of instructions that can implement an "add-with-overflow" operation. The same instructions also need to be used to implement just plain addition (simply ignoring the extra overflow output). The current solution requires creating extra Pat pattern for every instruction, duplicating the information about which particular add operands map best to which particular instruction. This patch enhances TableGen to support a new PatFrags class, which can be used to encapsulate multiple alternative patterns that may all match to the same instruction. It operates the same way as the existing PatFrag class, except that it accepts a list of DAG patterns to match instead of just a single one. As an example, we can now define a PatFrags to match either an "add-with-overflow" or a regular add operation: def z_sadd : PatFrags<(ops node:$src1, node:$src2), [(z_saddo node:$src1, node:$src2), (add node:$src1, node:$src2)]>; and then use this in the add instruction pattern: defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; These SystemZ target changes are implemented here as well. Note that PatFrag is now defined as a subclass of PatFrags, which means that some users of internals of PatFrag need to be updated. (E.g. instead of using PatFrag.Fragment you now need to use !head(PatFrag.Fragments).) The implementation is based on the following main ideas: - InlinePatternFragments may now replace each original pattern with several result patterns, not just one. - parseInstructionPattern delays calling InlinePatternFragments and InferAllTypes. Instead, it extracts a single DAG match pattern from the main instruction pattern. - Processing of the DAG match pattern part of the main instruction pattern now shares most code with processing match patterns from the Pattern class. - Direct use of main instruction patterns in InferFromPattern and EmitResultInstructionAsOperand is removed; everything now operates solely on DAG match patterns. Reviewed by: hfinkel Differential Revision: https://reviews.llvm.org/D48545 llvm-svn: 336999
2018-07-13 21:18:00 +08:00
: PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
Op.OperandTransform>;
// Main selection macros.
class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
: Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
PatFrag RegPred, PatFrag ImmPred>
: Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
(MI RegPred:$Rs, imm:$I)>;
class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
PatFrag RsPred, PatFrag RtPred = RsPred>
: Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
(MI RsPred:$Rs, RtPred:$Rt)>;
class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
PatFrag RegPred, PatFrag ImmPred>
: Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
(MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
: Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
(MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
InstHexagon InstA, InstHexagon InstB> {
def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
(InstA Val:$A, Val:$B)>;
def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
(InstB Val:$A, Val:$B)>;
}
// Frags for commonly used SDNodes.
def Add: pf2<add>; def And: pf2<and>; def Sra: pf2<sra>;
def Sub: pf2<sub>; def Or: pf2<or>; def Srl: pf2<srl>;
def Mul: pf2<mul>; def Xor: pf2<xor>; def Shl: pf2<shl>;
def Rol: pf2<rotl>;
// --(1) Immediate -------------------------------------------------------
//
def SDTHexagonCONST32
: SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
def HexagonJT: SDNode<"HexagonISD::JT", SDTIntUnaryOp>;
def HexagonCP: SDNode<"HexagonISD::CP", SDTIntUnaryOp>;
def HexagonCONST32: SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
def HexagonCONST32_GP: SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
def TruncI64ToI32: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;
def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
def: Pat<(HexagonCONST32 tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32 bbl:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32 tglobaladdr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tblockaddress:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCONST32_GP tglobaladdr:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonJT tjumptable:$A), (A2_tfrsi imm:$A)>;
def: Pat<(HexagonCP tconstpool:$A), (A2_tfrsi imm:$A)>;
// The HVX load patterns also match CP directly. Make sure that if
// the selection of this opcode changes, it's updated in all places.
def: Pat<(i1 0), (PS_false)>;
def: Pat<(i1 1), (PS_true)>;
def: Pat<(i64 imm:$v), (CONST64 imm:$v)>;
def ftoi : SDNodeXForm<fpimm, [{
APInt I = N->getValueAPF().bitcastToAPInt();
return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
MVT::getIntegerVT(I.getBitWidth()));
}]>;
def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
def: Pat<(f64ImmPred:$f), (CONST64 (ftoi $f))>;
def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
// --(2) Type cast -------------------------------------------------------
//
let Predicates = [HasV5] in {
def: OpR_R_pat<F2_conv_sf2df, pf1<fpextend>, f64, F32>;
def: OpR_R_pat<F2_conv_df2sf, pf1<fpround>, f32, F64>;
def: OpR_R_pat<F2_conv_w2sf, pf1<sint_to_fp>, f32, I32>;
def: OpR_R_pat<F2_conv_d2sf, pf1<sint_to_fp>, f32, I64>;
def: OpR_R_pat<F2_conv_w2df, pf1<sint_to_fp>, f64, I32>;
def: OpR_R_pat<F2_conv_d2df, pf1<sint_to_fp>, f64, I64>;
def: OpR_R_pat<F2_conv_uw2sf, pf1<uint_to_fp>, f32, I32>;
def: OpR_R_pat<F2_conv_ud2sf, pf1<uint_to_fp>, f32, I64>;
def: OpR_R_pat<F2_conv_uw2df, pf1<uint_to_fp>, f64, I32>;
def: OpR_R_pat<F2_conv_ud2df, pf1<uint_to_fp>, f64, I64>;
def: OpR_R_pat<F2_conv_sf2w_chop, pf1<fp_to_sint>, i32, F32>;
def: OpR_R_pat<F2_conv_df2w_chop, pf1<fp_to_sint>, i32, F64>;
def: OpR_R_pat<F2_conv_sf2d_chop, pf1<fp_to_sint>, i64, F32>;
def: OpR_R_pat<F2_conv_df2d_chop, pf1<fp_to_sint>, i64, F64>;
def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
}
// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
let Predicates = [HasV5] in {
def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
}
multiclass Cast_pat<ValueType Ta, ValueType Tb, RegisterClass RC> {
def: Pat<(Tb (bitconvert (Ta RC:$Rs))), (Tb RC:$Rs)>;
def: Pat<(Ta (bitconvert (Tb RC:$Rs))), (Ta RC:$Rs)>;
}
// Bit convert vector types to integers.
defm: Cast_pat<v4i8, i32, IntRegs>;
defm: Cast_pat<v2i16, i32, IntRegs>;
defm: Cast_pat<v8i8, i64, DoubleRegs>;
defm: Cast_pat<v4i16, i64, DoubleRegs>;
defm: Cast_pat<v2i32, i64, DoubleRegs>;
// --(3) Extend/truncate -------------------------------------------------
//
def: Pat<(sext_inreg I32:$Rs, i8), (A2_sxtb I32:$Rs)>;
def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
def: Pat<(sext_inreg I64:$Rs, i8), (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
def: Pat<(i64 (sext I1:$Pu)),
(Combinew (C2_muxii PredRegs:$Pu, -1, 0),
(C2_muxii PredRegs:$Pu, -1, 0))>;
def: Pat<(i32 (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
def: Pat<(i32 (zext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (zext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
def: Pat<(v4i8 (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
def: Pat<(v8i8 (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;
def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
def: Pat<(Zext64 I32:$Rs), (ToZext64 $Rs)>;
def: Pat<(Aext64 I32:$Rs), (ToZext64 $Rs)>;
def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
def: Pat<(i1 (trunc I64:$Rs)), (C2_tfrrp (LoReg $Rs))>;
let AddedComplexity = 20 in {
def: Pat<(and I32:$Rs, 255), (A2_zxtb I32:$Rs)>;
def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
}
def: Pat<(i32 (anyext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
def: Pat<(i64 (anyext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
def Vsplatpi: OutPatFrag<(ops node:$V),
(Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;
def: Pat<(v8i8 (zext V8I1:$Pu)),
(A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;
def: Pat<(v4i16 (zext V4I1:$Pu)),
(A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
def: Pat<(v2i32 (zext V2I1:$Pu)),
(A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
def: Pat<(v4i8 (zext V4I1:$Pu)),
(A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
def: Pat<(v2i16 (zext V2I1:$Pu)),
(A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
def: Pat<(v4i16 (zext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (zext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (anyext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (sext V4I8:$Rs)), (S2_vsxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (sext V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
(Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
(Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
// Truncate: from vector B copy all 'E'ven 'B'yte elements:
// A[0] = B[0]; A[1] = B[2]; A[2] = B[4]; A[3] = B[6];
def: Pat<(v4i8 (trunc V4I16:$Rs)),
(S2_vtrunehb V4I16:$Rs)>;
// Truncate: from vector B copy all 'O'dd 'B'yte elements:
// A[0] = B[1]; A[1] = B[3]; A[2] = B[5]; A[3] = B[7];
// S2_vtrunohb
// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
// A[0] = B[0]; A[1] = B[2]; A[2] = C[0]; A[3] = C[2];
// S2_vtruneh
def: Pat<(v2i16 (trunc V2I32:$Rs)),
(A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;
// --(4) Logical ---------------------------------------------------------
//
def: Pat<(not I1:$Ps), (C2_not I1:$Ps)>;
def: Pat<(not V8I1:$Ps), (C2_not V8I1:$Ps)>;
def: Pat<(add I1:$Ps, -1), (C2_not I1:$Ps)>;
multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> {
def: OpR_RR_pat<MI, Op, i1, I1>;
def: OpR_RR_pat<MI, Op, v2i1, V2I1>;
def: OpR_RR_pat<MI, Op, v4i1, V4I1>;
def: OpR_RR_pat<MI, Op, v8i1, V8I1>;
}
multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> {
def: AccRRR_pat<MI, AccOp, Op, I1, I1, I1>;
def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>;
def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>;
def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>;
}
defm: BoolOpR_RR_pat<C2_and, And>;
defm: BoolOpR_RR_pat<C2_or, Or>;
defm: BoolOpR_RR_pat<C2_xor, Xor>;
defm: BoolOpR_RR_pat<C2_andn, Not2<And>>;
defm: BoolOpR_RR_pat<C2_orn, Not2<Or>>;
// op(Ps, op(Pt, Pu))
defm: BoolAccRRR_pat<C4_and_and, And, Su<And>>;
defm: BoolAccRRR_pat<C4_and_or, And, Su<Or>>;
defm: BoolAccRRR_pat<C4_or_and, Or, Su<And>>;
defm: BoolAccRRR_pat<C4_or_or, Or, Su<Or>>;
// op(Ps, op(Pt, ~Pu))
defm: BoolAccRRR_pat<C4_and_andn, And, Su<Not2<And>>>;
defm: BoolAccRRR_pat<C4_and_orn, And, Su<Not2<Or>>>;
defm: BoolAccRRR_pat<C4_or_andn, Or, Su<Not2<And>>>;
defm: BoolAccRRR_pat<C4_or_orn, Or, Su<Not2<Or>>>;
// --(5) Compare ---------------------------------------------------------
//
// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
def: OpR_RI_pat<C2_cmpeqi, seteq, i1, I32, anyimm>;
def: OpR_RI_pat<C2_cmpgti, setgt, i1, I32, anyimm>;
def: OpR_RI_pat<C2_cmpgtui, setugt, i1, I32, anyimm>;
def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
(C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
(C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
(C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
(C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
// that reverse the order of the operands.
class RevCmp<PatFrag F>
[TableGen] Support multi-alternative pattern fragments A TableGen instruction record usually contains a DAG pattern that will describe the SelectionDAG operation that can be implemented by this instruction. However, there will be cases where several different DAG patterns can all be implemented by the same instruction. The way to represent this today is to write additional patterns in the Pattern (or usually Pat) class that map those extra DAG patterns to the instruction. This usually also works fine. However, I've noticed cases where the current setup seems to require quite a bit of extra (and duplicated) text in the target .td files. For example, in the SystemZ back-end, there are quite a number of instructions that can implement an "add-with-overflow" operation. The same instructions also need to be used to implement just plain addition (simply ignoring the extra overflow output). The current solution requires creating extra Pat pattern for every instruction, duplicating the information about which particular add operands map best to which particular instruction. This patch enhances TableGen to support a new PatFrags class, which can be used to encapsulate multiple alternative patterns that may all match to the same instruction. It operates the same way as the existing PatFrag class, except that it accepts a list of DAG patterns to match instead of just a single one. As an example, we can now define a PatFrags to match either an "add-with-overflow" or a regular add operation: def z_sadd : PatFrags<(ops node:$src1, node:$src2), [(z_saddo node:$src1, node:$src2), (add node:$src1, node:$src2)]>; and then use this in the add instruction pattern: defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; These SystemZ target changes are implemented here as well. Note that PatFrag is now defined as a subclass of PatFrags, which means that some users of internals of PatFrag need to be updated. (E.g. instead of using PatFrag.Fragment you now need to use !head(PatFrag.Fragments).) The implementation is based on the following main ideas: - InlinePatternFragments may now replace each original pattern with several result patterns, not just one. - parseInstructionPattern delays calling InlinePatternFragments and InferAllTypes. Instead, it extracts a single DAG match pattern from the main instruction pattern. - Processing of the DAG match pattern part of the main instruction pattern now shares most code with processing match patterns from the Pattern class. - Direct use of main instruction patterns in InferFromPattern and EmitResultInstructionAsOperand is removed; everything now operates solely on DAG match patterns. Reviewed by: hfinkel Differential Revision: https://reviews.llvm.org/D48545 llvm-svn: 336999
2018-07-13 21:18:00 +08:00
: PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
F.OperandTransform>;
def: OpR_RR_pat<C2_cmpeq, seteq, i1, I32>;
def: OpR_RR_pat<C2_cmpgt, setgt, i1, I32>;
def: OpR_RR_pat<C2_cmpgtu, setugt, i1, I32>;
def: OpR_RR_pat<C2_cmpgt, RevCmp<setlt>, i1, I32>;
def: OpR_RR_pat<C2_cmpgtu, RevCmp<setult>, i1, I32>;
def: OpR_RR_pat<C2_cmpeqp, seteq, i1, I64>;
def: OpR_RR_pat<C2_cmpgtp, setgt, i1, I64>;
def: OpR_RR_pat<C2_cmpgtup, setugt, i1, I64>;
def: OpR_RR_pat<C2_cmpgtp, RevCmp<setlt>, i1, I64>;
def: OpR_RR_pat<C2_cmpgtup, RevCmp<setult>, i1, I64>;
def: OpR_RR_pat<A2_vcmpbeq, seteq, i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbeq, seteq, v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, v8i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, setgt, i1, V8I8>;
def: OpR_RR_pat<A4_vcmpbgt, setgt, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, setugt, i1, V8I8>;
def: OpR_RR_pat<A2_vcmpbgtu, setugt, v8i1, V8I8>;
def: OpR_RR_pat<A2_vcmpheq, seteq, i1, V4I16>;
def: OpR_RR_pat<A2_vcmpheq, seteq, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, setgt, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgt, setgt, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, setugt, i1, V4I16>;
def: OpR_RR_pat<A2_vcmphgtu, setugt, v4i1, V4I16>;
def: OpR_RR_pat<A2_vcmpweq, seteq, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpweq, seteq, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, setgt, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgt, setgt, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, v2i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, setugt, i1, V2I32>;
def: OpR_RR_pat<A2_vcmpwgtu, setugt, v2i1, V2I32>;
let Predicates = [HasV5] in {
def: OpR_RR_pat<F2_sfcmpeq, seteq, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, setgt, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, setge, i1, F32>;
def: OpR_RR_pat<F2_sfcmpeq, setoeq, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, setogt, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, setoge, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setolt>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, RevCmp<setole>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setlt>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpge, RevCmp<setle>, i1, F32>;
def: OpR_RR_pat<F2_sfcmpuo, setuo, i1, F32>;
def: OpR_RR_pat<F2_dfcmpeq, seteq, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, setgt, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, setge, i1, F64>;
def: OpR_RR_pat<F2_dfcmpeq, setoeq, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, setogt, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, setoge, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setolt>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, RevCmp<setole>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setlt>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpge, RevCmp<setle>, i1, F64>;
def: OpR_RR_pat<F2_dfcmpuo, setuo, i1, F64>;
}
// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
(C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
(C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
(C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
PatFrag RsPred, PatFrag RtPred = RsPred>
: Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
(Output RsPred:$Rs, RtPred:$Rt)>;
class Outn<InstHexagon MI>
: OutPatFrag<(ops node:$Rs, node:$Rt),
(C2_not (MI $Rs, $Rt))>;
def: OpmR_RR_pat<Outn<C2_cmpeq>, setne, i1, I32>;
def: OpmR_RR_pat<Outn<C2_cmpgt>, setle, i1, I32>;
def: OpmR_RR_pat<Outn<C2_cmpgtu>, setule, i1, I32>;
def: OpmR_RR_pat<Outn<C2_cmpgt>, RevCmp<setge>, i1, I32>;
def: OpmR_RR_pat<Outn<C2_cmpgtu>, RevCmp<setuge>, i1, I32>;
def: OpmR_RR_pat<Outn<C2_cmpeqp>, setne, i1, I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtp>, setle, i1, I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtup>, setule, i1, I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtp>, RevCmp<setge>, i1, I64>;
def: OpmR_RR_pat<Outn<C2_cmpgtup>, RevCmp<setuge>, i1, I64>;
def: OpmR_RR_pat<Outn<A2_vcmpbeq>, setne, v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A4_vcmpbgt>, setle, v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule, v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A4_vcmpbgt>, RevCmp<setge>, v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
def: OpmR_RR_pat<Outn<A2_vcmpheq>, setne, v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgt>, setle, v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule, v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgt>, RevCmp<setge>, v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
def: OpmR_RR_pat<Outn<A2_vcmpweq>, setne, v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgt>, setle, v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule, v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgt>, RevCmp<setge>, v2i1, V2I32>;
def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;
let AddedComplexity = 100 in {
def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
(A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
(C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
(A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
(C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
}
// PatFrag for AsserZext which takes the original type as a parameter.
def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
PatLeaf ImmPred, int Mask> {
def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
(MI I32:$Rs, imm:$I)>;
def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
(MI I32:$Rs, imm:$I)>;
}
multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
PatLeaf ImmPred, int Mask> {
def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
(C2_not (MI I32:$Rs, imm:$I))>;
def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
(C2_not (MI I32:$Rs, imm:$I))>;
}
multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
PatLeaf ImmPred, int Mask> {
def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
(C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
(C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
}
let AddedComplexity = 200 in {
defm: Cmpb_pat <A4_cmpbeqi, seteq, AssertZext<i8>, IsUGT<8,31>, 255>;
defm: CmpbN_pat <A4_cmpbeqi, setne, AssertZext<i8>, IsUGT<8,31>, 255>;
defm: Cmpb_pat <A4_cmpbgtui, setugt, AssertZext<i8>, IsUGT<32,31>, 255>;
defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>, IsUGT<32,31>, 255>;
defm: Cmpb_pat <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>, IsUGT<32,32>, 255>;
defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
}
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
(A4_rcmpeq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
(A4_rcmpneq I32:$Rs, I32:$Rt)>;
def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
(A4_rcmpeqi I32:$Rs, imm:$s8)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
(A4_rcmpneqi I32:$Rs, imm:$s8)>;
def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
def: Pat<(i1 (setne I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>;
// Floating-point comparisons with checks for ordered/unordered status.
class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
: OutPatFrag<(ops node:$Rs, node:$Rt),
(MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
class Cmpuf<InstHexagon MI>: T3<C2_or, F2_sfcmpuo, MI>;
class Cmpud<InstHexagon MI>: T3<C2_or, F2_dfcmpuo, MI>;
class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
let Predicates = [HasV5] in {
def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>, setueq, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, setuge, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, setugt, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, RevCmp<setule>, i1, F32>;
def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, RevCmp<setult>, i1, F32>;
def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune, i1, F32>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>, setueq, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, setuge, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, setugt, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, RevCmp<setule>, i1, F64>;
def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, RevCmp<setult>, i1, F64>;
def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune, i1, F64>;
}
let Predicates = [HasV5] in {
def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne, i1, F32>;
def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne, i1, F64>;
def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto, i1, F32>;
def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto, i1, F64>;
}
// --(6) Select ----------------------------------------------------------
//
def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
(C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
(C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
(C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
(C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
(C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
(C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
(C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
(C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
(Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
(C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
let Predicates = [HasV5] in {
def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
(C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
(C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
(C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
(Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
(C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
(C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
(C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
(C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
(C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
}
def: Pat<(select I1:$Pu, V4I8:$Rs, V4I8:$Rt),
(LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(select I1:$Pu, V2I16:$Rs, V2I16:$Rt),
(LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(select I1:$Pu, V2I32:$Rs, V2I32:$Rt),
(Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
(C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
(C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
(C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
(C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
(C2_or (C2_and I1:$Pu, I1:$Pv),
(C2_andn I1:$Pw, I1:$Pu))>;
def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
return isPositiveHalfWord(N);
}]>;
multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
InstHexagon InstB> {
def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
(InstA IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
(InstB IntRegs:$Rs, IntRegs:$Rt)>;
}
let AddedComplexity = 200 in {
defm: SelMinMax16_pats<setge, A2_max, A2_min>;
defm: SelMinMax16_pats<setgt, A2_max, A2_min>;
defm: SelMinMax16_pats<setle, A2_min, A2_max>;
defm: SelMinMax16_pats<setlt, A2_min, A2_max>;
defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
}
let AddedComplexity = 200 in {
defm: SelMinMax_pats<setge, I32, A2_max, A2_min>;
defm: SelMinMax_pats<setgt, I32, A2_max, A2_min>;
defm: SelMinMax_pats<setle, I32, A2_min, A2_max>;
defm: SelMinMax_pats<setlt, I32, A2_min, A2_max>;
defm: SelMinMax_pats<setuge, I32, A2_maxu, A2_minu>;
defm: SelMinMax_pats<setugt, I32, A2_maxu, A2_minu>;
defm: SelMinMax_pats<setule, I32, A2_minu, A2_maxu>;
defm: SelMinMax_pats<setult, I32, A2_minu, A2_maxu>;
defm: SelMinMax_pats<setge, I64, A2_maxp, A2_minp>;
defm: SelMinMax_pats<setgt, I64, A2_maxp, A2_minp>;
defm: SelMinMax_pats<setle, I64, A2_minp, A2_maxp>;
defm: SelMinMax_pats<setlt, I64, A2_minp, A2_maxp>;
defm: SelMinMax_pats<setuge, I64, A2_maxup, A2_minup>;
defm: SelMinMax_pats<setugt, I64, A2_maxup, A2_minup>;
defm: SelMinMax_pats<setule, I64, A2_minup, A2_maxup>;
defm: SelMinMax_pats<setult, I64, A2_minup, A2_maxup>;
}
let AddedComplexity = 100, Predicates = [HasV5] in {
defm: SelMinMax_pats<setolt, F32, F2_sfmin, F2_sfmax>;
defm: SelMinMax_pats<setole, F32, F2_sfmin, F2_sfmax>;
defm: SelMinMax_pats<setogt, F32, F2_sfmax, F2_sfmin>;
defm: SelMinMax_pats<setoge, F32, F2_sfmax, F2_sfmin>;
}
// --(7) Insert/extract --------------------------------------------------
//
def SDTHexagonINSERT:
SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
def HexagonINSERT: SDNode<"HexagonISD::INSERT", SDTHexagonINSERT>;
let AddedComplexity = 10 in {
def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
(S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
(S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
}
def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
(S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
(S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;
def SDTHexagonEXTRACTU
: SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def HexagonEXTRACTU: SDNode<"HexagonISD::EXTRACTU", SDTHexagonEXTRACTU>;
let AddedComplexity = 10 in {
def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
(S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
(S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
}
def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
(S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
(S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;
def SDTHexagonVSPLAT:
SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;
def: Pat<(v4i8 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
(A2_combineii imm:$s8, imm:$s8)>;
def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
let AddedComplexity = 10 in
def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
Requires<[HasV62]>;
def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)),
(Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;
// --(8) Shift/permute ---------------------------------------------------
//
def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
[SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def HexagonCOMBINE: SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
// The complexity of the combines involving immediates should be greater
// than the complexity of the combine with two registers.
let AddedComplexity = 50 in {
def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
(A4_combineri IntRegs:$Rs, imm:$s8)>;
def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
(A4_combineir imm:$s8, IntRegs:$Rs)>;
}
// The complexity of the combine with two immediates should be greater than
// the complexity of a combine involving a register.
let AddedComplexity = 75 in {
def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
(A4_combineii imm:$s8, imm:$u6)>;
def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
(A2_combineii imm:$s8, imm:$S8)>;
}
def: Pat<(bswap I32:$Rs), (A2_swiz I32:$Rs)>;
def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
(A2_swiz (HiReg $Rss)))>;
def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt), (S4_lsli imm:$s6, I32:$Rt)>;
def: Pat<(shl I32:$Rs, (i32 16)), (A2_aslh I32:$Rs)>;
def: Pat<(sra I32:$Rs, (i32 16)), (A2_asrh I32:$Rs)>;
def: OpR_RI_pat<S2_asr_i_r, Sra, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_r, Srl, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_r, Shl, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_p, Sra, i64, I64, u6_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_p, Srl, i64, I64, u6_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_p, Shl, i64, I64, u6_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
let Predicates = [HasV60] in {
def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
}
def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
(S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
(S2_asr_i_p_rnd I64:$Rs, imm:$u6)>, Requires<[HasV5]>;
// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
let AddedComplexity = 120 in
def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
(S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
let AddedComplexity = 100 in {
def: AccRRI_pat<S2_asr_i_r_acc, Add, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_r_nac, Sub, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_r_and, And, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_r_or, Or, Su<Sra>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_acc, Add, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_nac, Sub, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_and, And, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asr_i_p_or, Or, Su<Sra>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_acc, Add, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_nac, Sub, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_and, And, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_or, Or, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_r_xacc, Xor, Su<Srl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_acc, Add, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_nac, Sub, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_and, And, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_or, Or, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_lsr_i_p_xacc, Xor, Su<Srl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_acc, Add, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_nac, Sub, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_and, And, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_or, Or, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_r_xacc, Xor, Su<Shl>, I32, u5_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_acc, Add, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_nac, Sub, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_and, And, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_or, Or, Su<Shl>, I64, u6_0ImmPred>;
def: AccRRI_pat<S2_asl_i_p_xacc, Xor, Su<Shl>, I64, u6_0ImmPred>;
let Predicates = [HasV60] in {
def: AccRRI_pat<S6_rol_i_r_acc, Add, Su<Rol>, I32, u5_0ImmPred>;
def: AccRRI_pat<S6_rol_i_r_nac, Sub, Su<Rol>, I32, u5_0ImmPred>;
def: AccRRI_pat<S6_rol_i_r_and, And, Su<Rol>, I32, u5_0ImmPred>;
def: AccRRI_pat<S6_rol_i_r_or, Or, Su<Rol>, I32, u5_0ImmPred>;
def: AccRRI_pat<S6_rol_i_r_xacc, Xor, Su<Rol>, I32, u5_0ImmPred>;
def: AccRRI_pat<S6_rol_i_p_acc, Add, Su<Rol>, I64, u6_0ImmPred>;
def: AccRRI_pat<S6_rol_i_p_nac, Sub, Su<Rol>, I64, u6_0ImmPred>;
def: AccRRI_pat<S6_rol_i_p_and, And, Su<Rol>, I64, u6_0ImmPred>;
def: AccRRI_pat<S6_rol_i_p_or, Or, Su<Rol>, I64, u6_0ImmPred>;
def: AccRRI_pat<S6_rol_i_p_xacc, Xor, Su<Rol>, I64, u6_0ImmPred>;
}
}
let AddedComplexity = 100 in {
def: AccRRR_pat<S2_asr_r_r_acc, Add, Su<Sra>, I32, I32, I32>;
def: AccRRR_pat<S2_asr_r_r_nac, Sub, Su<Sra>, I32, I32, I32>;
def: AccRRR_pat<S2_asr_r_r_and, And, Su<Sra>, I32, I32, I32>;
def: AccRRR_pat<S2_asr_r_r_or, Or, Su<Sra>, I32, I32, I32>;
def: AccRRR_pat<S2_asr_r_p_acc, Add, Su<Sra>, I64, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_nac, Sub, Su<Sra>, I64, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_and, And, Su<Sra>, I64, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_or, Or, Su<Sra>, I64, I64, I32>;
def: AccRRR_pat<S2_asr_r_p_xor, Xor, Su<Sra>, I64, I64, I32>;
def: AccRRR_pat<S2_lsr_r_r_acc, Add, Su<Srl>, I32, I32, I32>;
def: AccRRR_pat<S2_lsr_r_r_nac, Sub, Su<Srl>, I32, I32, I32>;
def: AccRRR_pat<S2_lsr_r_r_and, And, Su<Srl>, I32, I32, I32>;
def: AccRRR_pat<S2_lsr_r_r_or, Or, Su<Srl>, I32, I32, I32>;
def: AccRRR_pat<S2_lsr_r_p_acc, Add, Su<Srl>, I64, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_nac, Sub, Su<Srl>, I64, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_and, And, Su<Srl>, I64, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_or, Or, Su<Srl>, I64, I64, I32>;
def: AccRRR_pat<S2_lsr_r_p_xor, Xor, Su<Srl>, I64, I64, I32>;
def: AccRRR_pat<S2_asl_r_r_acc, Add, Su<Shl>, I32, I32, I32>;
def: AccRRR_pat<S2_asl_r_r_nac, Sub, Su<Shl>, I32, I32, I32>;
def: AccRRR_pat<S2_asl_r_r_and, And, Su<Shl>, I32, I32, I32>;
def: AccRRR_pat<S2_asl_r_r_or, Or, Su<Shl>, I32, I32, I32>;
def: AccRRR_pat<S2_asl_r_p_acc, Add, Su<Shl>, I64, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_nac, Sub, Su<Shl>, I64, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_and, And, Su<Shl>, I64, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_or, Or, Su<Shl>, I64, I64, I32>;
def: AccRRR_pat<S2_asl_r_p_xor, Xor, Su<Shl>, I64, I64, I32>;
}
class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
PatFrag RegPred, PatFrag ImmPred>
: Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
(MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
let AddedComplexity = 200 in {
def: OpshIRI_pat<S4_addi_asl_ri, Add, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_addi_lsr_ri, Add, Su<Srl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_subi_asl_ri, Sub, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_subi_lsr_ri, Sub, Su<Srl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_andi_asl_ri, And, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_andi_lsr_ri, And, Su<Srl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_ori_asl_ri, Or, Su<Shl>, I32, u5_0ImmPred>;
def: OpshIRI_pat<S4_ori_lsr_ri, Or, Su<Srl>, I32, u5_0ImmPred>;
}
// Prefer this pattern to S2_asl_i_p_or for the special case of joining
// two 32-bit words into a 64-bit word.
let AddedComplexity = 200 in
def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
(Combinew I32:$a, I32:$b)>;
def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
(Zext64 (and I32:$a, (i32 65535)))),
(shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
(shl (Aext64 I32:$d), (i32 48))),
(Combinew (A2_combine_ll I32:$d, I32:$c),
(A2_combine_ll I32:$b, I32:$a))>;
let AddedComplexity = 200 in {
def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
(A2_combine_ll I32:$Rt, I32:$Rs)>;
def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
(A2_combine_lh I32:$Rt, I32:$Rs)>;
def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
(A2_combine_hl I32:$Rt, I32:$Rs)>;
def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
(A2_combine_hh I32:$Rt, I32:$Rs)>;
}
def SDTHexagonVShift
: SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
(S2_asr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
(S2_lsr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
(S2_asl_i_vw V2I32:$b, imm:$c)>;
def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
(S2_asr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
(S2_lsr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
(S2_asl_i_vh V4I16:$b, imm:$c)>;
// --(9) Arithmetic/bitwise ----------------------------------------------
//
def: Pat<(abs I32:$Rs), (A2_abs I32:$Rs)>;
def: Pat<(abs I64:$Rs), (A2_absp I64:$Rs)>;
def: Pat<(not I32:$Rs), (A2_subri -1, I32:$Rs)>;
def: Pat<(not I64:$Rs), (A2_notp I64:$Rs)>;
def: Pat<(ineg I64:$Rs), (A2_negp I64:$Rs)>;
let Predicates = [HasV5] in {
def: Pat<(fabs F32:$Rs), (S2_clrbit_i F32:$Rs, 31)>;
def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
def: Pat<(fabs F64:$Rs),
(Combinew (S2_clrbit_i (HiReg $Rs), 31),
(i32 (LoReg $Rs)))>;
def: Pat<(fneg F64:$Rs),
(Combinew (S2_togglebit_i (HiReg $Rs), 31),
(i32 (LoReg $Rs)))>;
}
def: Pat<(add I32:$Rs, anyimm:$s16), (A2_addi I32:$Rs, imm:$s16)>;
def: Pat<(or I32:$Rs, anyimm:$s10), (A2_orir I32:$Rs, imm:$s10)>;
def: Pat<(and I32:$Rs, anyimm:$s10), (A2_andir I32:$Rs, imm:$s10)>;
def: Pat<(sub anyimm:$s10, I32:$Rs), (A2_subri imm:$s10, I32:$Rs)>;
def: OpR_RR_pat<A2_add, Add, i32, I32>;
def: OpR_RR_pat<A2_sub, Sub, i32, I32>;
def: OpR_RR_pat<A2_and, And, i32, I32>;
def: OpR_RR_pat<A2_or, Or, i32, I32>;
def: OpR_RR_pat<A2_xor, Xor, i32, I32>;
def: OpR_RR_pat<A2_addp, Add, i64, I64>;
def: OpR_RR_pat<A2_subp, Sub, i64, I64>;
def: OpR_RR_pat<A2_andp, And, i64, I64>;
def: OpR_RR_pat<A2_orp, Or, i64, I64>;
def: OpR_RR_pat<A2_xorp, Xor, i64, I64>;
def: OpR_RR_pat<A4_andnp, Not2<And>, i64, I64>;
def: OpR_RR_pat<A4_ornp, Not2<Or>, i64, I64>;
def: OpR_RR_pat<A2_svaddh, Add, v2i16, V2I16>;
def: OpR_RR_pat<A2_svsubh, Sub, v2i16, V2I16>;
def: OpR_RR_pat<A2_vaddub, Add, v8i8, V8I8>;
def: OpR_RR_pat<A2_vaddh, Add, v4i16, V4I16>;
def: OpR_RR_pat<A2_vaddw, Add, v2i32, V2I32>;
def: OpR_RR_pat<A2_vsubub, Sub, v8i8, V8I8>;
def: OpR_RR_pat<A2_vsubh, Sub, v4i16, V4I16>;
def: OpR_RR_pat<A2_vsubw, Sub, v2i32, V2I32>;
def: OpR_RR_pat<A2_and, And, v4i8, V4I8>;
def: OpR_RR_pat<A2_xor, Xor, v4i8, V4I8>;
def: OpR_RR_pat<A2_or, Or, v4i8, V4I8>;
def: OpR_RR_pat<A2_and, And, v2i16, V2I16>;
def: OpR_RR_pat<A2_xor, Xor, v2i16, V2I16>;
def: OpR_RR_pat<A2_or, Or, v2i16, V2I16>;
def: OpR_RR_pat<A2_andp, And, v8i8, V8I8>;
def: OpR_RR_pat<A2_orp, Or, v8i8, V8I8>;
def: OpR_RR_pat<A2_xorp, Xor, v8i8, V8I8>;
def: OpR_RR_pat<A2_andp, And, v4i16, V4I16>;
def: OpR_RR_pat<A2_orp, Or, v4i16, V4I16>;
def: OpR_RR_pat<A2_xorp, Xor, v4i16, V4I16>;
def: OpR_RR_pat<A2_andp, And, v2i32, V2I32>;
def: OpR_RR_pat<A2_orp, Or, v2i32, V2I32>;
def: OpR_RR_pat<A2_xorp, Xor, v2i32, V2I32>;
def: OpR_RR_pat<M2_mpyi, Mul, i32, I32>;
def: OpR_RR_pat<M2_mpy_up, pf2<mulhs>, i32, I32>;
def: OpR_RR_pat<M2_mpyu_up, pf2<mulhu>, i32, I32>;
def: OpR_RI_pat<M2_mpysip, Mul, i32, I32, u32_0ImmPred>;
def: OpR_RI_pat<M2_mpysmi, Mul, i32, I32, s32_0ImmPred>;
// Arithmetic on predicates.
def: OpR_RR_pat<C2_xor, Add, i1, I1>;
def: OpR_RR_pat<C2_xor, Add, v2i1, V2I1>;
def: OpR_RR_pat<C2_xor, Add, v4i1, V4I1>;
def: OpR_RR_pat<C2_xor, Add, v8i1, V8I1>;
def: OpR_RR_pat<C2_xor, Sub, i1, I1>;
def: OpR_RR_pat<C2_xor, Sub, v2i1, V2I1>;
def: OpR_RR_pat<C2_xor, Sub, v4i1, V4I1>;
def: OpR_RR_pat<C2_xor, Sub, v8i1, V8I1>;
def: OpR_RR_pat<C2_and, Mul, i1, I1>;
def: OpR_RR_pat<C2_and, Mul, v2i1, V2I1>;
def: OpR_RR_pat<C2_and, Mul, v4i1, V4I1>;
def: OpR_RR_pat<C2_and, Mul, v8i1, V8I1>;
let Predicates = [HasV5] in {
def: OpR_RR_pat<F2_sfadd, pf2<fadd>, f32, F32>;
def: OpR_RR_pat<F2_sfsub, pf2<fsub>, f32, F32>;
def: OpR_RR_pat<F2_sfmpy, pf2<fmul>, f32, F32>;
def: OpR_RR_pat<F2_sfmin, pf2<fminnum>, f32, F32>;
def: OpR_RR_pat<F2_sfmax, pf2<fmaxnum>, f32, F32>;
}
// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
// over add-add with individual multiplies as inputs.
let AddedComplexity = 10 in {
def: AccRRI_pat<M2_macsip, Add, Su<Mul>, I32, u32_0ImmPred>;
def: AccRRI_pat<M2_macsin, Sub, Su<Mul>, I32, u32_0ImmPred>;
def: AccRRR_pat<M2_maci, Add, Su<Mul>, I32, I32, I32>;
}
def: AccRRI_pat<M2_naccii, Sub, Su<Add>, I32, s32_0ImmPred>;
def: AccRRI_pat<M2_accii, Add, Su<Add>, I32, s32_0ImmPred>;
def: AccRRR_pat<M2_acci, Add, Su<Add>, I32, I32, I32>;
// Mulh for vectors
//
def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
(Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
(M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;
def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)),
(Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)),
(M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>;
def Mulhub:
OutPatFrag<(ops node:$Rss, node:$Rtt),
(Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))),
(S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>;
// Equivalent of byte-wise arithmetic shift right by 7 in v8i8.
def Asr7:
OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>;
def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)),
(Mulhub $Rss, $Rtt)>;
def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)),
(A2_vsubub
(Mulhub $Rss, $Rtt),
(A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)),
(A2_andp V8I8:$Rtt, (Asr7 $Rss))))>;
def Mpysh:
OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
def Mpyshh:
OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>;
def Mpyshl:
OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>;
def Mulhsh:
OutPatFrag<(ops node:$Rss, node:$Rtt),
(Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)),
(LoReg (Mpyshh $Rss, $Rtt))),
(A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)),
(LoReg (Mpyshl $Rss, $Rtt))))>;
def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>;
def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
(A2_vaddh
(Mulhsh $Rss, $Rtt),
(A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
(A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;
def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
(M2_mpysin IntRegs:$Rs, imm:$u8)>;
def n8_0ImmPred: PatLeaf<(i32 imm), [{
int64_t V = N->getSExtValue();
return -255 <= V && V <= 0;
}]>;
// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
(M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
def: Pat<(add Sext64:$Rs, I64:$Rt),
(A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
def: AccRRR_pat<M4_and_and, And, Su_ni1<And>, I32, I32, I32>;
def: AccRRR_pat<M4_and_or, And, Su_ni1<Or>, I32, I32, I32>;
def: AccRRR_pat<M4_and_xor, And, Su<Xor>, I32, I32, I32>;
def: AccRRR_pat<M4_or_and, Or, Su_ni1<And>, I32, I32, I32>;
def: AccRRR_pat<M4_or_or, Or, Su_ni1<Or>, I32, I32, I32>;
def: AccRRR_pat<M4_or_xor, Or, Su<Xor>, I32, I32, I32>;
def: AccRRR_pat<M4_xor_and, Xor, Su_ni1<And>, I32, I32, I32>;
def: AccRRR_pat<M4_xor_or, Xor, Su_ni1<Or>, I32, I32, I32>;
def: AccRRR_pat<M2_xor_xacc, Xor, Su<Xor>, I32, I32, I32>;
def: AccRRR_pat<M4_xor_xacc, Xor, Su<Xor>, I64, I64, I64>;
// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
// one argument matches the patterns below, and with the other argument
// matches S2_asl_r_r_or, etc, prefer the patterns below.
let AddedComplexity = 110 in { // greater than S2_asl_r_r_and/or/xor.
def: AccRRR_pat<M4_and_andn, And, Su<Not2<And>>, I32, I32, I32>;
def: AccRRR_pat<M4_or_andn, Or, Su<Not2<And>>, I32, I32, I32>;
def: AccRRR_pat<M4_xor_andn, Xor, Su<Not2<And>>, I32, I32, I32>;
}
// S4_addaddi and S4_subaddi don't have tied operands, so give them
// a bit of preference.
let AddedComplexity = 30 in {
def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
(S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
(S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
(S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
(S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
(S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
}
def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
(S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
(S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
(S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
(M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
(M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
(M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
(M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
(M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
(M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
(M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
(M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
(M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
(M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
(M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
// Add halfword.
def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
(A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
(A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
(A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
// Subtract halfword.
def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
(A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
(A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
(A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
def: Pat<(mul I64:$Rss, I64:$Rtt),
(Combinew
(M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
(LoReg $Rss),
(HiReg $Rtt)),
(LoReg $Rtt),
(HiReg $Rss)),
(i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
(A2_addp
(M2_dpmpyuu_acc_s0
(S2_lsr_i_p
(A2_addp
(M2_dpmpyuu_acc_s0
(S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
(HiReg $Rss),
(LoReg $Rtt)),
(A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
32),
(HiReg $Rss),
(HiReg $Rtt)),
(S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
// Multiply 64-bit signed and use upper result.
//
// For two signed 64-bit integers A and B, let A' and B' denote A and B
// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
// sign bit of A (and identically for B). With this notation, the signed
// product A*B can be written as:
// AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
// = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
// = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
// = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
// Clear the sign bit in a 64-bit register.
def ClearSign : OutPatFrag<(ops node:$Rss),
(Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
def : Pat <(mulhs I64:$Rss, I64:$Rtt),
(A2_subp
(MulHU $Rss, $Rtt),
(A2_addp
(A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
(A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
// will put the immediate addend into a register, while these instructions will
// use it directly. Such a construct does not appear in the middle of a gep,
// where M2_macsip would be preferable.
let AddedComplexity = 20 in {
def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
(M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
(M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
}
// Keep these instructions less preferable to M2_macsip/M2_macsin.
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
(M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
(M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
(M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
let Predicates = [HasV5] in {
def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
(F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
(F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
(F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
}
def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
(PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
(PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
// we use the double add v8i8, and use only the low part of the result.
def: Pat<(add V4I8:$Rs, V4I8:$Rt),
(LoReg (A2_vaddub (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
(LoReg (A2_vsubub (ToZext64 $Rs), (ToZext64 $Rt)))>;
// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
// half-words, and saturates the result to a 32-bit value, except the
// saturation never happens (it can only occur with scaling).
def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
(LoReg (S2_vtrunewh (A2_combineii 0, 0),
(M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
(S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
(M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
// Multiplies two v4i8 vectors.
def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
(S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>,
Requires<[HasV5]>;
// Multiplies two v8i8 vectors.
def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
(Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
(S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>,
Requires<[HasV5]>;
// --(10) Bit ------------------------------------------------------------
//
// Count leading zeros.
def: Pat<(ctlz I32:$Rs), (S2_cl0 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>;
// Count trailing zeros.
def: Pat<(cttz I32:$Rs), (S2_ct0 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>;
// Count leading ones.
def: Pat<(ctlz (not I32:$Rs)), (S2_cl1 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
// Count trailing ones.
def: Pat<(cttz (not I32:$Rs)), (S2_ct1 I32:$Rs)>;
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
// Define leading/trailing patterns that require zero-extensions to 64 bits.
def: Pat<(i64 (ctlz I64:$Rss)), (ToZext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (cttz I64:$Rss)), (ToZext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (ctlz (not I64:$Rss))), (ToZext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (cttz (not I64:$Rss))), (ToZext64 (S2_ct1p I64:$Rss))>;
def: Pat<(i64 (ctpop I64:$Rss)), (ToZext64 (S5_popcountp I64:$Rss))>;
def: Pat<(i32 (ctpop I32:$Rs)), (S5_popcountp (A4_combineir 0, I32:$Rs))>;
def: Pat<(bitreverse I32:$Rs), (S2_brev I32:$Rs)>;
def: Pat<(bitreverse I64:$Rss), (S2_brevp I64:$Rss)>;
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
def: Pat<(and I32:$Rs, IsNPow2_32:$V),
(S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
def: Pat<(or I32:$Rs, IsPow2_32:$V),
(S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
def: Pat<(xor I32:$Rs, IsPow2_32:$V),
(S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
(S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
(S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
(S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
}
// Clr/set/toggle bit for 64-bit values with immediate bit index.
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
(Combinew (i32 (HiReg $Rss)),
(S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
(Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
(i32 (LoReg $Rss)))>;
def: Pat<(or I64:$Rss, IsPow2_64L:$V),
(Combinew (i32 (HiReg $Rss)),
(S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
def: Pat<(or I64:$Rss, IsPow2_64H:$V),
(Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
(i32 (LoReg $Rss)))>;
def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
(Combinew (i32 (HiReg $Rss)),
(S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
(Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
(i32 (LoReg $Rss)))>;
}
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
(S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
(S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(i1 (trunc I32:$Rs)),
(S2_tstbit_i IntRegs:$Rs, 0)>;
def: Pat<(i1 (trunc I64:$Rs)),
(S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
}
let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
(C2_bitsclri IntRegs:$Rs, imm:$u6)>;
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
(C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
}
let AddedComplexity = 10 in // Complexity greater than compare reg-reg.
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
(C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
def SDTTestBit:
SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;
def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
(S2_tstbit_i I32:$Rs, imm:$u5)>;
def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
(S2_tstbit_r I32:$Rs, I32:$Rt)>;
let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
def: Pat<(i1 (seteq (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
(S4_ntstbit_i I32:$Rs, imm:$u5)>;
def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
(S4_ntstbit_r I32:$Rs, I32:$Rt)>;
}
// Add extra complexity to prefer these instructions over bitsset/bitsclr.
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
// if ([!]tstbit(...)) jump ...
let AddedComplexity = 100 in
def: Pat<(i1 (setne (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
(S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
let AddedComplexity = 100 in
def: Pat<(i1 (seteq (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
(S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
// represented as a compare against "value & 0xFF", which is an exact match
// for cmpb (same for cmph). The patterns below do not contain any additional
// complexity that would make them preferable, and if they were actually used
// instead of cmpb/cmph, they would result in a compare against register that
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
(C4_nbitsclri I32:$Rs, imm:$u6)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
(C4_nbitsclr I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
(C4_nbitsset I32:$Rs, I32:$Rt)>;
// Special patterns to address certain cases where the "top-down" matching
// algorithm would cause suboptimal selection.
let AddedComplexity = 100 in {
// Avoid A4_rcmp[n]eqi in these cases:
def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
(I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
(I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
}
// --(11) PIC ------------------------------------------------------------
//
def SDT_HexagonAtGot
: SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def SDT_HexagonAtPcrel
: SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// AT_GOT address-of-GOT, address-of-global, offset-in-global
def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
// AT_PCREL address-of-global
def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
(L2_loadri_io I32:$got, imm:$addr)>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
(A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
def: Pat<(HexagonAtPcrel I32:$addr),
(C4_addipc imm:$addr)>;
// The HVX load patterns also match AT_PCREL directly. Make sure that
// if the selection of this opcode changes, it's updated in all places.
// --(12) Load -----------------------------------------------------------
//
def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;
def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;
def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
}]>;
def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
}]>;
// Patterns to select load-indexed: Rs + Off.
// - frameindex [+ imm],
multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
InstHexagon MI> {
def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (MI AddrFI:$fi, imm:$Off))>;
def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (MI AddrFI:$fi, imm:$Off))>;
def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
}
// Patterns to select load-indexed: Rs + Off.
// - base reg [+ imm]
multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
InstHexagon MI> {
def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
(VT (MI IntRegs:$Rs, imm:$Off))>;
def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
(VT (MI IntRegs:$Rs, imm:$Off))>;
def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
}
// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
InstHexagon MI> {
defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
}
// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - frameindex [+ imm]
multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
(VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
}
// Patterns to select load reg indexed: Rs + Off with a value modifier.
// - base reg [+ imm]
multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
(VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
(VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
}
// Patterns to select load reg indexed: Rs + Off with a value modifier.
// Combines Loadxfim + Loadxgim.
multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
PatLeaf ImmPred, InstHexagon MI> {
defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
}
// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
(VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
// Pattern to select load reg reg-indexed: Rs + Rt<<0.
class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
(VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
(VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
(VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
// Don't match for u2==0, instead use reg+imm for those cases.
class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
: Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
(VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
(VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
// Pattern to select load absolute.
class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
: Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
// Pattern to select load absolute with value modifier.
class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
InstHexagon MI>
: Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
let AddedComplexity = 20 in {
defm: Loadxi_pat<extloadi1, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<extloadi8, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<extloadi16, i32, anyimm1, L2_loadruh_io>;
defm: Loadxi_pat<extloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>;
defm: Loadxi_pat<extloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>;
defm: Loadxi_pat<sextloadi8, i32, anyimm0, L2_loadrb_io>;
defm: Loadxi_pat<sextloadi16, i32, anyimm1, L2_loadrh_io>;
defm: Loadxi_pat<sextloadv2i8, v2i16, anyimm1, L2_loadbsw2_io>;
defm: Loadxi_pat<sextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>;
defm: Loadxi_pat<zextloadi1, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<zextloadi8, i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<zextloadi16, i32, anyimm1, L2_loadruh_io>;
defm: Loadxi_pat<zextloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>;
defm: Loadxi_pat<zextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>;
defm: Loadxi_pat<load, i32, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<load, v2i16, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<load, v4i8, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<load, i64, anyimm3, L2_loadrd_io>;
defm: Loadxi_pat<load, v2i32, anyimm3, L2_loadrd_io>;
defm: Loadxi_pat<load, v4i16, anyimm3, L2_loadrd_io>;
defm: Loadxi_pat<load, v8i8, anyimm3, L2_loadrd_io>;
defm: Loadxi_pat<load, f32, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<load, f64, anyimm3, L2_loadrd_io>;
// No sextloadi1.
defm: Loadxi_pat<atomic_load_8 , i32, anyimm0, L2_loadrub_io>;
defm: Loadxi_pat<atomic_load_16, i32, anyimm1, L2_loadruh_io>;
defm: Loadxi_pat<atomic_load_32, i32, anyimm2, L2_loadri_io>;
defm: Loadxi_pat<atomic_load_64, i64, anyimm3, L2_loadrd_io>;
}
let AddedComplexity = 30 in {
defm: Loadxim_pat<extloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<extloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<extloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>;
defm: Loadxim_pat<extloadi32, i64, ToZext64, anyimm2, L2_loadri_io>;
defm: Loadxim_pat<zextloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<zextloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>;
defm: Loadxim_pat<zextloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>;
defm: Loadxim_pat<zextloadi32, i64, ToZext64, anyimm2, L2_loadri_io>;
defm: Loadxim_pat<sextloadi8, i64, ToSext64, anyimm0, L2_loadrb_io>;
defm: Loadxim_pat<sextloadi16, i64, ToSext64, anyimm1, L2_loadrh_io>;
defm: Loadxim_pat<sextloadi32, i64, ToSext64, anyimm2, L2_loadri_io>;
}
let AddedComplexity = 60 in {
def: Loadxu_pat<extloadi8, i32, anyimm0, L4_loadrub_ur>;
def: Loadxu_pat<extloadi16, i32, anyimm1, L4_loadruh_ur>;
def: Loadxu_pat<extloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
def: Loadxu_pat<extloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
def: Loadxu_pat<sextloadi8, i32, anyimm0, L4_loadrb_ur>;
def: Loadxu_pat<sextloadi16, i32, anyimm1, L4_loadrh_ur>;
def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
def: Loadxu_pat<zextloadi8, i32, anyimm0, L4_loadrub_ur>;
def: Loadxu_pat<zextloadi16, i32, anyimm1, L4_loadruh_ur>;
def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
def: Loadxu_pat<load, i32, anyimm2, L4_loadri_ur>;
def: Loadxu_pat<load, v2i16, anyimm2, L4_loadri_ur>;
def: Loadxu_pat<load, v4i8, anyimm2, L4_loadri_ur>;
def: Loadxu_pat<load, i64, anyimm3, L4_loadrd_ur>;
def: Loadxu_pat<load, v2i32, anyimm3, L4_loadrd_ur>;
def: Loadxu_pat<load, v4i16, anyimm3, L4_loadrd_ur>;
def: Loadxu_pat<load, v8i8, anyimm3, L4_loadrd_ur>;
def: Loadxu_pat<load, f32, anyimm2, L4_loadri_ur>;
def: Loadxu_pat<load, f64, anyimm3, L4_loadrd_ur>;
def: Loadxum_pat<sextloadi8, i64, anyimm0, ToSext64, L4_loadrb_ur>;
def: Loadxum_pat<zextloadi8, i64, anyimm0, ToZext64, L4_loadrub_ur>;
def: Loadxum_pat<extloadi8, i64, anyimm0, ToZext64, L4_loadrub_ur>;
def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
def: Loadxum_pat<extloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
def: Loadxum_pat<extloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
}
let AddedComplexity = 40 in {
def: Loadxr_shl_pat<extloadi8, i32, L4_loadrub_rr>;
def: Loadxr_shl_pat<zextloadi8, i32, L4_loadrub_rr>;
def: Loadxr_shl_pat<sextloadi8, i32, L4_loadrb_rr>;
def: Loadxr_shl_pat<extloadi16, i32, L4_loadruh_rr>;
def: Loadxr_shl_pat<zextloadi16, i32, L4_loadruh_rr>;
def: Loadxr_shl_pat<sextloadi16, i32, L4_loadrh_rr>;
def: Loadxr_shl_pat<load, i32, L4_loadri_rr>;
def: Loadxr_shl_pat<load, v2i16, L4_loadri_rr>;
def: Loadxr_shl_pat<load, v4i8, L4_loadri_rr>;
def: Loadxr_shl_pat<load, i64, L4_loadrd_rr>;
def: Loadxr_shl_pat<load, v2i32, L4_loadrd_rr>;
def: Loadxr_shl_pat<load, v4i16, L4_loadrd_rr>;
def: Loadxr_shl_pat<load, v8i8, L4_loadrd_rr>;
def: Loadxr_shl_pat<load, f32, L4_loadri_rr>;
def: Loadxr_shl_pat<load, f64, L4_loadrd_rr>;
}
let AddedComplexity = 20 in {
def: Loadxr_add_pat<extloadi8, i32, L4_loadrub_rr>;
def: Loadxr_add_pat<zextloadi8, i32, L4_loadrub_rr>;
def: Loadxr_add_pat<sextloadi8, i32, L4_loadrb_rr>;
def: Loadxr_add_pat<extloadi16, i32, L4_loadruh_rr>;
def: Loadxr_add_pat<zextloadi16, i32, L4_loadruh_rr>;
def: Loadxr_add_pat<sextloadi16, i32, L4_loadrh_rr>;
def: Loadxr_add_pat<load, i32, L4_loadri_rr>;
def: Loadxr_add_pat<load, v2i16, L4_loadri_rr>;
def: Loadxr_add_pat<load, v4i8, L4_loadri_rr>;
def: Loadxr_add_pat<load, i64, L4_loadrd_rr>;
def: Loadxr_add_pat<load, v2i32, L4_loadrd_rr>;
def: Loadxr_add_pat<load, v4i16, L4_loadrd_rr>;
def: Loadxr_add_pat<load, v8i8, L4_loadrd_rr>;
def: Loadxr_add_pat<load, f32, L4_loadri_rr>;
def: Loadxr_add_pat<load, f64, L4_loadrd_rr>;
}
let AddedComplexity = 40 in {
def: Loadxrm_shl_pat<extloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_shl_pat<zextloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_shl_pat<sextloadi8, i64, ToSext64, L4_loadrb_rr>;
def: Loadxrm_shl_pat<extloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_shl_pat<zextloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_shl_pat<sextloadi16, i64, ToSext64, L4_loadrh_rr>;
def: Loadxrm_shl_pat<extloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_shl_pat<zextloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_shl_pat<sextloadi32, i64, ToSext64, L4_loadri_rr>;
}
let AddedComplexity = 20 in {
def: Loadxrm_add_pat<extloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_add_pat<zextloadi8, i64, ToZext64, L4_loadrub_rr>;
def: Loadxrm_add_pat<sextloadi8, i64, ToSext64, L4_loadrb_rr>;
def: Loadxrm_add_pat<extloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_add_pat<zextloadi16, i64, ToZext64, L4_loadruh_rr>;
def: Loadxrm_add_pat<sextloadi16, i64, ToSext64, L4_loadrh_rr>;
def: Loadxrm_add_pat<extloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_add_pat<zextloadi32, i64, ToZext64, L4_loadri_rr>;
def: Loadxrm_add_pat<sextloadi32, i64, ToSext64, L4_loadri_rr>;
}
// Absolute address
let AddedComplexity = 60 in {
def: Loada_pat<zextloadi1, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<sextloadi8, i32, anyimm0, PS_loadrbabs>;
def: Loada_pat<extloadi8, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<zextloadi8, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<sextloadi16, i32, anyimm1, PS_loadrhabs>;
def: Loada_pat<extloadi16, i32, anyimm1, PS_loadruhabs>;
def: Loada_pat<zextloadi16, i32, anyimm1, PS_loadruhabs>;
def: Loada_pat<load, i32, anyimm2, PS_loadriabs>;
def: Loada_pat<load, v2i16, anyimm2, PS_loadriabs>;
def: Loada_pat<load, v4i8, anyimm2, PS_loadriabs>;
def: Loada_pat<load, i64, anyimm3, PS_loadrdabs>;
def: Loada_pat<load, v2i32, anyimm3, PS_loadrdabs>;
def: Loada_pat<load, v4i16, anyimm3, PS_loadrdabs>;
def: Loada_pat<load, v8i8, anyimm3, PS_loadrdabs>;
def: Loada_pat<load, f32, anyimm2, PS_loadriabs>;
def: Loada_pat<load, f64, anyimm3, PS_loadrdabs>;
def: Loada_pat<atomic_load_8, i32, anyimm0, PS_loadrubabs>;
def: Loada_pat<atomic_load_16, i32, anyimm1, PS_loadruhabs>;
def: Loada_pat<atomic_load_32, i32, anyimm2, PS_loadriabs>;
def: Loada_pat<atomic_load_64, i64, anyimm3, PS_loadrdabs>;
}
let AddedComplexity = 30 in {
def: Loadam_pat<extloadi8, i64, anyimm0, ToZext64, PS_loadrubabs>;
def: Loadam_pat<sextloadi8, i64, anyimm0, ToSext64, PS_loadrbabs>;
def: Loadam_pat<zextloadi8, i64, anyimm0, ToZext64, PS_loadrubabs>;
def: Loadam_pat<extloadi16, i64, anyimm1, ToZext64, PS_loadruhabs>;
def: Loadam_pat<sextloadi16, i64, anyimm1, ToSext64, PS_loadrhabs>;
def: Loadam_pat<zextloadi16, i64, anyimm1, ToZext64, PS_loadruhabs>;
def: Loadam_pat<extloadi32, i64, anyimm2, ToZext64, PS_loadriabs>;
def: Loadam_pat<sextloadi32, i64, anyimm2, ToSext64, PS_loadriabs>;
def: Loadam_pat<zextloadi32, i64, anyimm2, ToZext64, PS_loadriabs>;
def: Loadam_pat<load, i1, anyimm0, I32toI1, PS_loadrubabs>;
def: Loadam_pat<zextloadi1, i64, anyimm0, ToZext64, PS_loadrubabs>;
}
// GP-relative address
let AddedComplexity = 100 in {
def: Loada_pat<extloadi1, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<zextloadi1, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<extloadi8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<sextloadi8, i32, addrgp, L2_loadrbgp>;
def: Loada_pat<zextloadi8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<extloadi16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<sextloadi16, i32, addrgp, L2_loadrhgp>;
def: Loada_pat<zextloadi16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<load, i32, addrgp, L2_loadrigp>;
def: Loada_pat<load, v2i16, addrgp, L2_loadrigp>;
def: Loada_pat<load, v4i8, addrgp, L2_loadrigp>;
def: Loada_pat<load, i64, addrgp, L2_loadrdgp>;
def: Loada_pat<load, v2i32, addrgp, L2_loadrdgp>;
def: Loada_pat<load, v4i16, addrgp, L2_loadrdgp>;
def: Loada_pat<load, v8i8, addrgp, L2_loadrdgp>;
def: Loada_pat<load, f32, addrgp, L2_loadrigp>;
def: Loada_pat<load, f64, addrgp, L2_loadrdgp>;
def: Loada_pat<atomic_load_8, i32, addrgp, L2_loadrubgp>;
def: Loada_pat<atomic_load_16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<atomic_load_32, i32, addrgp, L2_loadrigp>;
def: Loada_pat<atomic_load_64, i64, addrgp, L2_loadrdgp>;
}
let AddedComplexity = 70 in {
def: Loadam_pat<extloadi8, i64, addrgp, ToZext64, L2_loadrubgp>;
def: Loadam_pat<sextloadi8, i64, addrgp, ToSext64, L2_loadrbgp>;
def: Loadam_pat<zextloadi8, i64, addrgp, ToZext64, L2_loadrubgp>;
def: Loadam_pat<extloadi16, i64, addrgp, ToZext64, L2_loadruhgp>;
def: Loadam_pat<sextloadi16, i64, addrgp, ToSext64, L2_loadrhgp>;
def: Loadam_pat<zextloadi16, i64, addrgp, ToZext64, L2_loadruhgp>;
def: Loadam_pat<extloadi32, i64, addrgp, ToZext64, L2_loadrigp>;
def: Loadam_pat<sextloadi32, i64, addrgp, ToSext64, L2_loadrigp>;
def: Loadam_pat<zextloadi32, i64, addrgp, ToZext64, L2_loadrigp>;
def: Loadam_pat<load, i1, addrgp, I32toI1, L2_loadrubgp>;
def: Loadam_pat<zextloadi1, i64, addrgp, ToZext64, L2_loadrubgp>;
}
// Sign-extending loads of i1 need to replicate the lowest bit throughout
// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
// do the trick.
let AddedComplexity = 20 in
def: Pat<(i32 (sextloadi1 I32:$Rs)),
(A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
// Patterns for loads of i1:
def: Pat<(i1 (load AddrFI:$fi)),
(C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
(C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
def: Pat<(i1 (load I32:$Rs)),
(C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
// --(13) Store ----------------------------------------------------------
//
class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
: Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
(MI I32:$Rx, imm:$s4, Value:$Rt)>;
def: Storepi_pat<post_truncsti8, I32, s4_0ImmPred, S2_storerb_pi>;
def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
def: Storepi_pat<post_store, I32, s4_2ImmPred, S2_storeri_pi>;
def: Storepi_pat<post_store, I64, s4_3ImmPred, S2_storerd_pi>;
// Patterns for generating stores, where the address takes different forms:
// - frameindex,
// - frameindex + offset,
// - base + offset,
// - simple (base address without offset).
// These would usually be used together (via Storexi_pat defined below), but
// in some cases one may want to apply different properties (such as
// AddedComplexity) to the individual patterns.
class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
InstHexagon MI> {
def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
}
multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
InstHexagon MI> {
def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
}
class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Rt, I32:$Rs),
(MI IntRegs:$Rs, 0, Value:$Rt)>;
// Patterns for generating stores, where the address takes different forms,
// and where the value being stored is transformed through the value modifier
// ValueMod. The address forms are same as above.
class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$Rs, AddrFI:$fi),
(MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
PatFrag ValueMod, InstHexagon MI> {
def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
(MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
}
multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
PatFrag ValueMod, InstHexagon MI> {
def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
}
class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$Rt, I32:$Rs),
(MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
InstHexagon MI> {
defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
def: Storexi_fi_pat <Store, Value, MI>;
defm: Storexi_add_pat <Store, Value, ImmPred, MI>;
}
multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
PatFrag ValueMod, InstHexagon MI> {
defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
def: Storexim_fi_pat <Store, Value, ValueMod, MI>;
defm: Storexim_add_pat <Store, Value, ImmPred, ValueMod, MI>;
}
// Reg<<S + Imm
class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
: Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
(MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
// Reg<<S + Reg
class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
(MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
// Reg + Reg
class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
(MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
: Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$val, Addr:$addr),
(MI Addr:$addr, (ValueMod Value:$val))>;
// Regular stores in the DAG have two operands: value and address.
// Atomic stores also have two, but they are reversed: address, value.
// To use atomic stores with the patterns, they need to have their operands
// swapped. This relies on the knowledge that the F.Fragment uses names
// "ptr" and "val".
class AtomSt<PatFrag F>
[TableGen] Support multi-alternative pattern fragments A TableGen instruction record usually contains a DAG pattern that will describe the SelectionDAG operation that can be implemented by this instruction. However, there will be cases where several different DAG patterns can all be implemented by the same instruction. The way to represent this today is to write additional patterns in the Pattern (or usually Pat) class that map those extra DAG patterns to the instruction. This usually also works fine. However, I've noticed cases where the current setup seems to require quite a bit of extra (and duplicated) text in the target .td files. For example, in the SystemZ back-end, there are quite a number of instructions that can implement an "add-with-overflow" operation. The same instructions also need to be used to implement just plain addition (simply ignoring the extra overflow output). The current solution requires creating extra Pat pattern for every instruction, duplicating the information about which particular add operands map best to which particular instruction. This patch enhances TableGen to support a new PatFrags class, which can be used to encapsulate multiple alternative patterns that may all match to the same instruction. It operates the same way as the existing PatFrag class, except that it accepts a list of DAG patterns to match instead of just a single one. As an example, we can now define a PatFrags to match either an "add-with-overflow" or a regular add operation: def z_sadd : PatFrags<(ops node:$src1, node:$src2), [(z_saddo node:$src1, node:$src2), (add node:$src1, node:$src2)]>; and then use this in the add instruction pattern: defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; These SystemZ target changes are implemented here as well. Note that PatFrag is now defined as a subclass of PatFrags, which means that some users of internals of PatFrag need to be updated. (E.g. instead of using PatFrag.Fragment you now need to use !head(PatFrag.Fragments).) The implementation is based on the following main ideas: - InlinePatternFragments may now replace each original pattern with several result patterns, not just one. - parseInstructionPattern delays calling InlinePatternFragments and InferAllTypes. Instead, it extracts a single DAG match pattern from the main instruction pattern. - Processing of the DAG match pattern part of the main instruction pattern now shares most code with processing match patterns from the Pattern class. - Direct use of main instruction patterns in InferFromPattern and EmitResultInstructionAsOperand is removed; everything now operates solely on DAG match patterns. Reviewed by: hfinkel Differential Revision: https://reviews.llvm.org/D48545 llvm-svn: 336999
2018-07-13 21:18:00 +08:00
: PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
F.OperandTransform> {
let IsAtomic = F.IsAtomic;
let MemoryVT = F.MemoryVT;
}
def IMM_BYTE : SDNodeXForm<imm, [{
// -1 can be represented as 255, etc.
// assigning to a byte restores our desired signed value.
int8_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def IMM_HALF : SDNodeXForm<imm, [{
// -1 can be represented as 65535, etc.
// assigning to a short restores our desired signed value.
int16_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def IMM_WORD : SDNodeXForm<imm, [{
// -1 can be represented as 4294967295, etc.
// Currently, it's not doing this. But some optimization
// might convert -1 to a large +ve number.
// assigning to a word restores our desired signed value.
int32_t imm = N->getSExtValue();
return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;
def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
// Even though the offset is not extendable in the store-immediate, we
// can still generate the fi# in the base address. If the final offset
// is not valid for the instruction, we will replace it with a scratch
// register.
class SmallStackStore<PatFrag Store>
: PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
return isSmallStackStore(cast<StoreSDNode>(N));
}]>;
// This is the complement of SmallStackStore.
class LargeStackStore<PatFrag Store>
: PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
return !isSmallStackStore(cast<StoreSDNode>(N));
}]>;
// Preferred addressing modes for various combinations of stored value
// and address computation.
// For stores where the address and value are both immediates, prefer
// store-immediate. The reason is that the constant-extender optimization
// can replace store-immediate with a store-register, but there is nothing
// to generate a store-immediate out of a store-register.
//
// C R F F+C R+C R+R R<<S+C R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C | imm | imm | imm | imm | imm | rr | ur | rr
// R | abs* | io | io | io | io | rr | ur | rr
//
// (*) Absolute or GP-relative.
//
// Note that any expression can be matched by Reg. In particular, an immediate
// can always be placed in a register, so patterns checking for Imm should
// have a higher priority than the ones involving Reg that could also match.
// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
// Reg alone.
//
// The order in which the different combinations are tried:
//
// C F R F+C R+C R+R R<<S+C R<<S+R
// --+-------+-----+-----+------+-----+-----+--------+--------
// C | 1 | 6 | - | 5 | 9 | - | - | -
// R | 2 | 8 | 12 | 7 | 10 | 11 | 3 | 4
// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
// a store where the offset Imm4 is a multiple of 4, but not of 8. This
// implies that Reg is also a proper multiple of 4. To still generate a
// doubleword store, add 4 to Reg, and subtract 4 from the offset.
def s30_2ProperPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
}]>;
def RoundTo8 : SDNodeXForm<imm, [{
int32_t Imm = N->getSExtValue();
return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
}]>;
let AddedComplexity = 150 in
def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
(S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
: Pat<(Store Value:$val, anyimm:$addr),
(MI (ToI32 $addr), 0, Value:$val)>;
class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
InstHexagon MI>
: Pat<(Store Value:$val, anyimm:$addr),
(MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
let AddedComplexity = 140 in {
def: Storexim_abs_pat<truncstorei8, anyint, ToImmByte, S4_storeirb_io>;
def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
def: Storexim_abs_pat<store, anyint, ToImmWord, S4_storeiri_io>;
def: Storexi_abs_pat<truncstorei8, anyimm, S4_storeirb_io>;
def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
def: Storexi_abs_pat<store, anyimm, S4_storeiri_io>;
}
// GP-relative address
let AddedComplexity = 120 in {
def: Storea_pat<truncstorei8, I32, addrgp, S2_storerbgp>;
def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhgp>;
def: Storea_pat<store, I32, addrgp, S2_storerigp>;
def: Storea_pat<store, V4I8, addrgp, S2_storerigp>;
def: Storea_pat<store, V2I16, addrgp, S2_storerigp>;
def: Storea_pat<store, I64, addrgp, S2_storerdgp>;
def: Storea_pat<store, V8I8, addrgp, S2_storerdgp>;
def: Storea_pat<store, V4I16, addrgp, S2_storerdgp>;
def: Storea_pat<store, V2I32, addrgp, S2_storerdgp>;
def: Storea_pat<store, F32, addrgp, S2_storerigp>;
def: Storea_pat<store, F64, addrgp, S2_storerdgp>;
def: Storea_pat<AtomSt<atomic_store_8>, I32, addrgp, S2_storerbgp>;
def: Storea_pat<AtomSt<atomic_store_16>, I32, addrgp, S2_storerhgp>;
def: Storea_pat<AtomSt<atomic_store_32>, I32, addrgp, S2_storerigp>;
def: Storea_pat<AtomSt<atomic_store_32>, V4I8, addrgp, S2_storerigp>;
def: Storea_pat<AtomSt<atomic_store_32>, V2I16, addrgp, S2_storerigp>;
def: Storea_pat<AtomSt<atomic_store_64>, I64, addrgp, S2_storerdgp>;
def: Storea_pat<AtomSt<atomic_store_64>, V8I8, addrgp, S2_storerdgp>;
def: Storea_pat<AtomSt<atomic_store_64>, V4I16, addrgp, S2_storerdgp>;
def: Storea_pat<AtomSt<atomic_store_64>, V2I32, addrgp, S2_storerdgp>;
def: Stoream_pat<truncstorei8, I64, addrgp, LoReg, S2_storerbgp>;
def: Stoream_pat<truncstorei16, I64, addrgp, LoReg, S2_storerhgp>;
def: Stoream_pat<truncstorei32, I64, addrgp, LoReg, S2_storerigp>;
def: Stoream_pat<store, I1, addrgp, I1toI32, S2_storerbgp>;
}
// Absolute address
let AddedComplexity = 110 in {
def: Storea_pat<truncstorei8, I32, anyimm0, PS_storerbabs>;
def: Storea_pat<truncstorei16, I32, anyimm1, PS_storerhabs>;
def: Storea_pat<store, I32, anyimm2, PS_storeriabs>;
def: Storea_pat<store, V4I8, anyimm2, PS_storeriabs>;
def: Storea_pat<store, V2I16, anyimm2, PS_storeriabs>;
def: Storea_pat<store, I64, anyimm3, PS_storerdabs>;
def: Storea_pat<store, V8I8, anyimm3, PS_storerdabs>;
def: Storea_pat<store, V4I16, anyimm3, PS_storerdabs>;
def: Storea_pat<store, V2I32, anyimm3, PS_storerdabs>;
def: Storea_pat<store, F32, anyimm2, PS_storeriabs>;
def: Storea_pat<store, F64, anyimm3, PS_storerdabs>;
def: Storea_pat<AtomSt<atomic_store_8>, I32, anyimm0, PS_storerbabs>;
def: Storea_pat<AtomSt<atomic_store_16>, I32, anyimm1, PS_storerhabs>;
def: Storea_pat<AtomSt<atomic_store_32>, I32, anyimm2, PS_storeriabs>;
def: Storea_pat<AtomSt<atomic_store_32>, V4I8, anyimm2, PS_storeriabs>;
def: Storea_pat<AtomSt<atomic_store_32>, V2I16, anyimm2, PS_storeriabs>;
def: Storea_pat<AtomSt<atomic_store_64>, I64, anyimm3, PS_storerdabs>;
def: Storea_pat<AtomSt<atomic_store_64>, V8I8, anyimm3, PS_storerdabs>;
def: Storea_pat<AtomSt<atomic_store_64>, V4I16, anyimm3, PS_storerdabs>;
def: Storea_pat<AtomSt<atomic_store_64>, V2I32, anyimm3, PS_storerdabs>;
def: Stoream_pat<truncstorei8, I64, anyimm0, LoReg, PS_storerbabs>;
def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg, PS_storerhabs>;
def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg, PS_storeriabs>;
def: Stoream_pat<store, I1, anyimm0, I1toI32, PS_storerbabs>;
}
// Reg<<S + Imm
let AddedComplexity = 100 in {
def: Storexu_shl_pat<truncstorei8, I32, anyimm0, S4_storerb_ur>;
def: Storexu_shl_pat<truncstorei16, I32, anyimm1, S4_storerh_ur>;
def: Storexu_shl_pat<store, I32, anyimm2, S4_storeri_ur>;
def: Storexu_shl_pat<store, V4I8, anyimm2, S4_storeri_ur>;
def: Storexu_shl_pat<store, V2I16, anyimm2, S4_storeri_ur>;
def: Storexu_shl_pat<store, I64, anyimm3, S4_storerd_ur>;
def: Storexu_shl_pat<store, V8I8, anyimm3, S4_storerd_ur>;
def: Storexu_shl_pat<store, V4I16, anyimm3, S4_storerd_ur>;
def: Storexu_shl_pat<store, V2I32, anyimm3, S4_storerd_ur>;
def: Storexu_shl_pat<store, F32, anyimm2, S4_storeri_ur>;
def: Storexu_shl_pat<store, F64, anyimm3, S4_storerd_ur>;
def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
(S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
}
// Reg<<S + Reg
let AddedComplexity = 90 in {
def: Storexr_shl_pat<truncstorei8, I32, S4_storerb_rr>;
def: Storexr_shl_pat<truncstorei16, I32, S4_storerh_rr>;
def: Storexr_shl_pat<store, I32, S4_storeri_rr>;
def: Storexr_shl_pat<store, V4I8, S4_storeri_rr>;
def: Storexr_shl_pat<store, V2I16, S4_storeri_rr>;
def: Storexr_shl_pat<store, I64, S4_storerd_rr>;
def: Storexr_shl_pat<store, V8I8, S4_storerd_rr>;
def: Storexr_shl_pat<store, V4I16, S4_storerd_rr>;
def: Storexr_shl_pat<store, V2I32, S4_storerd_rr>;
def: Storexr_shl_pat<store, F32, S4_storeri_rr>;
def: Storexr_shl_pat<store, F64, S4_storerd_rr>;
def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
(S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
}
class SS_<PatFrag F> : SmallStackStore<F>;
class LS_<PatFrag F> : LargeStackStore<F>;
multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
defm: Storexim_fi_add_pat<S, V, O, M, I>;
}
multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
defm: Storexi_fi_add_pat<S, V, O, I>;
}
// Fi+Imm, store-immediate
let AddedComplexity = 80 in {
defm: IMFA_<SS_<truncstorei8>, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
defm: IMFA_<SS_<store>, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
defm: IFA_<SS_<truncstorei8>, anyimm, u6_0ImmPred, S4_storeirb_io>;
defm: IFA_<SS_<truncstorei16>, anyimm, u6_1ImmPred, S4_storeirh_io>;
defm: IFA_<SS_<store>, anyimm, u6_2ImmPred, S4_storeiri_io>;
// For large-stack stores, generate store-register (prefer explicit Fi
// in the address).
defm: IMFA_<LS_<truncstorei8>, anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
defm: IMFA_<LS_<truncstorei16>, anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
defm: IMFA_<LS_<store>, anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
}
// Fi, store-immediate
let AddedComplexity = 70 in {
def: Storexim_fi_pat<SS_<truncstorei8>, anyint, ToImmByte, S4_storeirb_io>;
def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
def: Storexim_fi_pat<SS_<store>, anyint, ToImmWord, S4_storeiri_io>;
def: Storexi_fi_pat<SS_<truncstorei8>, anyimm, S4_storeirb_io>;
def: Storexi_fi_pat<SS_<truncstorei16>, anyimm, S4_storeirh_io>;
def: Storexi_fi_pat<SS_<store>, anyimm, S4_storeiri_io>;
// For large-stack stores, generate store-register (prefer explicit Fi
// in the address).
def: Storexim_fi_pat<LS_<truncstorei8>, anyimm, ToI32, S2_storerb_io>;
def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
def: Storexim_fi_pat<LS_<store>, anyimm, ToI32, S2_storeri_io>;
}
// Fi+Imm, Fi, store-register
let AddedComplexity = 60 in {
defm: Storexi_fi_add_pat<truncstorei8, I32, anyimm, S2_storerb_io>;
defm: Storexi_fi_add_pat<truncstorei16, I32, anyimm, S2_storerh_io>;
defm: Storexi_fi_add_pat<store, I32, anyimm, S2_storeri_io>;
defm: Storexi_fi_add_pat<store, V4I8, anyimm, S2_storeri_io>;
defm: Storexi_fi_add_pat<store, V2I16, anyimm, S2_storeri_io>;
defm: Storexi_fi_add_pat<store, I64, anyimm, S2_storerd_io>;
defm: Storexi_fi_add_pat<store, V8I8, anyimm, S2_storerd_io>;
defm: Storexi_fi_add_pat<store, V4I16, anyimm, S2_storerd_io>;
defm: Storexi_fi_add_pat<store, V2I32, anyimm, S2_storerd_io>;
defm: Storexi_fi_add_pat<store, F32, anyimm, S2_storeri_io>;
defm: Storexi_fi_add_pat<store, F64, anyimm, S2_storerd_io>;
defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
def: Storexi_fi_pat<truncstorei8, I32, S2_storerb_io>;
def: Storexi_fi_pat<truncstorei16, I32, S2_storerh_io>;
def: Storexi_fi_pat<store, I32, S2_storeri_io>;
def: Storexi_fi_pat<store, V4I8, S2_storeri_io>;
def: Storexi_fi_pat<store, V2I16, S2_storeri_io>;
def: Storexi_fi_pat<store, I64, S2_storerd_io>;
def: Storexi_fi_pat<store, V8I8, S2_storerd_io>;
def: Storexi_fi_pat<store, V4I16, S2_storerd_io>;
def: Storexi_fi_pat<store, V2I32, S2_storerd_io>;
def: Storexi_fi_pat<store, F32, S2_storeri_io>;
def: Storexi_fi_pat<store, F64, S2_storerd_io>;
def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
}
multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
defm: Storexim_add_pat<S, V, O, M, I>;
}
multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
defm: Storexi_add_pat<S, V, O, I>;
}
// Reg+Imm, store-immediate
let AddedComplexity = 50 in {
defm: IMRA_<truncstorei8, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
defm: IMRA_<truncstorei16, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
defm: IMRA_<store, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
defm: IRA_<truncstorei8, anyimm, u6_0ImmPred, S4_storeirb_io>;
defm: IRA_<truncstorei16, anyimm, u6_1ImmPred, S4_storeirh_io>;
defm: IRA_<store, anyimm, u6_2ImmPred, S4_storeiri_io>;
}
// Reg+Imm, store-register
let AddedComplexity = 40 in {
defm: Storexi_pat<truncstorei8, I32, anyimm0, S2_storerb_io>;
defm: Storexi_pat<truncstorei16, I32, anyimm1, S2_storerh_io>;
defm: Storexi_pat<store, I32, anyimm2, S2_storeri_io>;
defm: Storexi_pat<store, V4I8, anyimm2, S2_storeri_io>;
defm: Storexi_pat<store, V2I16, anyimm2, S2_storeri_io>;
defm: Storexi_pat<store, I64, anyimm3, S2_storerd_io>;
defm: Storexi_pat<store, V8I8, anyimm3, S2_storerd_io>;
defm: Storexi_pat<store, V4I16, anyimm3, S2_storerd_io>;
defm: Storexi_pat<store, V2I32, anyimm3, S2_storerd_io>;
defm: Storexi_pat<store, F32, anyimm2, S2_storeri_io>;
defm: Storexi_pat<store, F64, anyimm3, S2_storerd_io>;
defm: Storexim_pat<truncstorei8, I64, anyimm0, LoReg, S2_storerb_io>;
defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg, S2_storerh_io>;
defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg, S2_storeri_io>;
defm: Storexim_pat<store, I1, anyimm0, I1toI32, S2_storerb_io>;
defm: Storexi_pat<AtomSt<atomic_store_8>, I32, anyimm0, S2_storerb_io>;
defm: Storexi_pat<AtomSt<atomic_store_16>, I32, anyimm1, S2_storerh_io>;
defm: Storexi_pat<AtomSt<atomic_store_32>, I32, anyimm2, S2_storeri_io>;
defm: Storexi_pat<AtomSt<atomic_store_32>, V4I8, anyimm2, S2_storeri_io>;
defm: Storexi_pat<AtomSt<atomic_store_32>, V2I16, anyimm2, S2_storeri_io>;
defm: Storexi_pat<AtomSt<atomic_store_64>, I64, anyimm3, S2_storerd_io>;
defm: Storexi_pat<AtomSt<atomic_store_64>, V8I8, anyimm3, S2_storerd_io>;
defm: Storexi_pat<AtomSt<atomic_store_64>, V4I16, anyimm3, S2_storerd_io>;
defm: Storexi_pat<AtomSt<atomic_store_64>, V2I32, anyimm3, S2_storerd_io>;
}
// Reg+Reg
let AddedComplexity = 30 in {
def: Storexr_add_pat<truncstorei8, I32, S4_storerb_rr>;
def: Storexr_add_pat<truncstorei16, I32, S4_storerh_rr>;
def: Storexr_add_pat<store, I32, S4_storeri_rr>;
def: Storexr_add_pat<store, V4I8, S4_storeri_rr>;
def: Storexr_add_pat<store, V2I16, S4_storeri_rr>;
def: Storexr_add_pat<store, I64, S4_storerd_rr>;
def: Storexr_add_pat<store, V8I8, S4_storerd_rr>;
def: Storexr_add_pat<store, V4I16, S4_storerd_rr>;
def: Storexr_add_pat<store, V2I32, S4_storerd_rr>;
def: Storexr_add_pat<store, F32, S4_storeri_rr>;
def: Storexr_add_pat<store, F64, S4_storerd_rr>;
def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
(S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
}
// Reg, store-immediate
let AddedComplexity = 20 in {
def: Storexim_base_pat<truncstorei8, anyint, ToImmByte, S4_storeirb_io>;
def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
def: Storexim_base_pat<store, anyint, ToImmWord, S4_storeiri_io>;
def: Storexi_base_pat<truncstorei8, anyimm, S4_storeirb_io>;
def: Storexi_base_pat<truncstorei16, anyimm, S4_storeirh_io>;
def: Storexi_base_pat<store, anyimm, S4_storeiri_io>;
}
// Reg, store-register
let AddedComplexity = 10 in {
def: Storexi_base_pat<truncstorei8, I32, S2_storerb_io>;
def: Storexi_base_pat<truncstorei16, I32, S2_storerh_io>;
def: Storexi_base_pat<store, I32, S2_storeri_io>;
def: Storexi_base_pat<store, V4I8, S2_storeri_io>;
def: Storexi_base_pat<store, V2I16, S2_storeri_io>;
def: Storexi_base_pat<store, I64, S2_storerd_io>;
def: Storexi_base_pat<store, V8I8, S2_storerd_io>;
def: Storexi_base_pat<store, V4I16, S2_storerd_io>;
def: Storexi_base_pat<store, V2I32, S2_storerd_io>;
def: Storexi_base_pat<store, F32, S2_storeri_io>;
def: Storexi_base_pat<store, F64, S2_storerd_io>;
def: Storexim_base_pat<truncstorei8, I64, LoReg, S2_storerb_io>;
def: Storexim_base_pat<truncstorei16, I64, LoReg, S2_storerh_io>;
def: Storexim_base_pat<truncstorei32, I64, LoReg, S2_storeri_io>;
def: Storexim_base_pat<store, I1, I1toI32, S2_storerb_io>;
def: Storexi_base_pat<AtomSt<atomic_store_8>, I32, S2_storerb_io>;
def: Storexi_base_pat<AtomSt<atomic_store_16>, I32, S2_storerh_io>;
def: Storexi_base_pat<AtomSt<atomic_store_32>, I32, S2_storeri_io>;
def: Storexi_base_pat<AtomSt<atomic_store_32>, V4I8, S2_storeri_io>;
def: Storexi_base_pat<AtomSt<atomic_store_32>, V2I16, S2_storeri_io>;
def: Storexi_base_pat<AtomSt<atomic_store_64>, I64, S2_storerd_io>;
def: Storexi_base_pat<AtomSt<atomic_store_64>, V8I8, S2_storerd_io>;
def: Storexi_base_pat<AtomSt<atomic_store_64>, V4I16, S2_storerd_io>;
def: Storexi_base_pat<AtomSt<atomic_store_64>, V2I32, S2_storerd_io>;
}
// --(14) Memop ----------------------------------------------------------
//
def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
int8_t V = N->getSExtValue();
return -32 < V && V <= -1;
}]>;
def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
int16_t V = N->getSExtValue();
return -32 < V && V <= -1;
}]>;
def m5_0ImmPred : PatLeaf<(i32 imm), [{
int64_t V = N->getSExtValue();
return -31 <= V && V <= -1;
}]>;
def IsNPow2_8 : PatLeaf<(i32 imm), [{
uint8_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def IsNPow2_16 : PatLeaf<(i32 imm), [{
uint16_t NV = ~N->getZExtValue();
return isPowerOf2_32(NV);
}]>;
def Log2_8 : SDNodeXForm<imm, [{
uint8_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def Log2_16 : SDNodeXForm<imm, [{
uint16_t V = N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;
def LogN2_8 : SDNodeXForm<imm, [{
uint8_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def LogN2_16 : SDNodeXForm<imm, [{
uint16_t NV = ~N->getZExtValue();
return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;
def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
(MI I32:$Rs, 0, I32:$A)>;
// Addr: fi
def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
(MI AddrFI:$Rs, 0, I32:$A)>;
}
multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
(add I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, I32:$A)>;
def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
(IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, I32:$A)>;
// Addr: fi
def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
(add AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, I32:$A)>;
def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
(IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, I32:$A)>;
}
multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, InstHexagon MI> {
let Predicates = [UseMEMOPS] in {
defm: Memopxr_base_pat <Load, Store, Oper, MI>;
defm: Memopxr_add_pat <Load, Store, ImmPred, Oper, MI>;
}
}
let AddedComplexity = 200 in {
// add reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
/*anyext*/ L4_add_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
/*sext*/ L4_add_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
/*zext*/ L4_add_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
/*anyext*/ L4_add_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
/*sext*/ L4_add_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
/*zext*/ L4_add_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
// sub reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
/*anyext*/ L4_sub_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
/*sext*/ L4_sub_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
/*zext*/ L4_sub_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
/*anyext*/ L4_sub_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
/*sext*/ L4_sub_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
/*zext*/ L4_sub_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
// and reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
/*anyext*/ L4_and_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
/*sext*/ L4_and_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
/*zext*/ L4_and_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
/*anyext*/ L4_and_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
/*sext*/ L4_and_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
/*zext*/ L4_and_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
// or reg
defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
/*anyext*/ L4_or_memopb_io>;
defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
/*sext*/ L4_or_memopb_io>;
defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
/*zext*/ L4_or_memopb_io>;
defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
/*anyext*/ L4_or_memoph_io>;
defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
/*sext*/ L4_or_memoph_io>;
defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
/*zext*/ L4_or_memoph_io>;
defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
}
multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
(MI I32:$Rs, 0, (ArgMod Arg:$A))>;
// Addr: fi
def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
(MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
}
multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
InstHexagon MI> {
// Addr: i32
def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
(add I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
(IsOrAdd I32:$Rs, ImmPred:$Off)),
(MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
// Addr: fi
def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
(add AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
(IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
(MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
}
multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
InstHexagon MI> {
let Predicates = [UseMEMOPS] in {
defm: Memopxi_base_pat <Load, Store, Oper, Arg, ArgMod, MI>;
defm: Memopxi_add_pat <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
}
}
let AddedComplexity = 220 in {
// add imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
/*anyext*/ IdImm, L4_iadd_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
/*sext*/ IdImm, L4_iadd_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
/*zext*/ IdImm, L4_iadd_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
/*anyext*/ IdImm, L4_iadd_memoph_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
/*sext*/ IdImm, L4_iadd_memoph_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
/*zext*/ IdImm, L4_iadd_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
L4_iadd_memopw_io>;
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
/*anyext*/ NegImm8, L4_iadd_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
/*sext*/ NegImm8, L4_iadd_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
/*zext*/ NegImm8, L4_iadd_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
/*anyext*/ NegImm16, L4_iadd_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
/*sext*/ NegImm16, L4_iadd_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
/*zext*/ NegImm16, L4_iadd_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
L4_iadd_memopw_io>;
// sub imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
/*anyext*/ IdImm, L4_isub_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
/*sext*/ IdImm, L4_isub_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
/*zext*/ IdImm, L4_isub_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
/*anyext*/ IdImm, L4_isub_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
/*sext*/ IdImm, L4_isub_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
/*zext*/ IdImm, L4_isub_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
L4_isub_memopw_io>;
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
/*anyext*/ NegImm8, L4_isub_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
/*sext*/ NegImm8, L4_isub_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
/*zext*/ NegImm8, L4_isub_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
/*anyext*/ NegImm16, L4_isub_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
/*sext*/ NegImm16, L4_isub_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
/*zext*/ NegImm16, L4_isub_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
L4_isub_memopw_io>;
// clrbit imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
/*anyext*/ LogN2_8, L4_iand_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
/*sext*/ LogN2_8, L4_iand_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
/*zext*/ LogN2_8, L4_iand_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
/*anyext*/ LogN2_16, L4_iand_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
/*sext*/ LogN2_16, L4_iand_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
/*zext*/ LogN2_16, L4_iand_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
LogN2_32, L4_iand_memopw_io>;
// setbit imm
defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
/*anyext*/ Log2_8, L4_ior_memopb_io>;
defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
/*sext*/ Log2_8, L4_ior_memopb_io>;
defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
/*zext*/ Log2_8, L4_ior_memopb_io>;
defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
/*anyext*/ Log2_16, L4_ior_memoph_io>;
defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
/*sext*/ Log2_16, L4_ior_memoph_io>;
defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
/*zext*/ Log2_16, L4_ior_memoph_io>;
defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
Log2_32, L4_ior_memopw_io>;
}
// --(15) Call -----------------------------------------------------------
//
// Pseudo instructions.
def SDT_SPCallSeqStart
: SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_SPCallSeqEnd
: SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end: SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def: Pat<(callseq_start timm:$amt, timm:$amt2),
(ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
def: Pat<(callseq_end timm:$amt1, timm:$amt2),
(ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
def: Pat<(HexagonTCRet tglobaladdr:$dst), (PS_tailcall_i tglobaladdr:$dst)>;
def: Pat<(HexagonTCRet texternalsym:$dst), (PS_tailcall_i texternalsym:$dst)>;
def: Pat<(HexagonTCRet I32:$dst), (PS_tailcall_r I32:$dst)>;
def: Pat<(callv3 I32:$dst), (J2_callr I32:$dst)>;
def: Pat<(callv3 tglobaladdr:$dst), (J2_call tglobaladdr:$dst)>;
def: Pat<(callv3 texternalsym:$dst), (J2_call texternalsym:$dst)>;
def: Pat<(callv3 tglobaltlsaddr:$dst), (J2_call tglobaltlsaddr:$dst)>;
def: Pat<(callv3nr I32:$dst), (PS_callr_nr I32:$dst)>;
def: Pat<(callv3nr tglobaladdr:$dst), (PS_call_nr tglobaladdr:$dst)>;
def: Pat<(callv3nr texternalsym:$dst), (PS_call_nr texternalsym:$dst)>;
def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
def: Pat<(retflag), (PS_jmpret (i32 R31))>;
def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
// --(16) Branch ---------------------------------------------------------
//
def: Pat<(br bb:$dst), (J2_jump b30_2Imm:$dst)>;
def: Pat<(brind I32:$dst), (J2_jumpr I32:$dst)>;
def: Pat<(brcond I1:$Pu, bb:$dst),
(J2_jumpt I1:$Pu, bb:$dst)>;
def: Pat<(brcond (not I1:$Pu), bb:$dst),
(J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
(J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
(J2_jumpf I1:$Pu, bb:$dst)>;
def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
(J2_jumpt I1:$Pu, bb:$dst)>;
// --(17) Misc -----------------------------------------------------------
// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
// biasing the expression by 48. We are depending on the representation of
// the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
//
// For the C code:
// retval = (c >= '0' && c <= '9') ? 1 : 0;
// The code is transformed upstream of llvm into
// retval = (c-48) < 10 ? 1 : 0;
def u7_0PosImmPred : ImmLeaf<i32, [{
// True if the immediate fits in an 7-bit unsigned field and is positive.
return Imm > 0 && isUInt<7>(Imm);
}]>;
let AddedComplexity = 139 in
def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
(C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
let AddedComplexity = 100 in
def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
(i32 (extloadi8 (add I32:$b, 3))),
24, 8),
(i32 16)),
(shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
(zextloadi8 I32:$b)),
(A2_swiz (L2_loadri_io I32:$b, 0))>;
// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
// We don't really want either one here.
def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
[SDNPHasChain]>;
def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
(Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
(Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def SDTHexagonALLOCA
: SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def HexagonALLOCA
: SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
(PS_alloca IntRegs:$Rs, imm:$A)>;
def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
def: Pat<(HexagonBARRIER), (Y2_barrier)>;
def: Pat<(trap), (J2_trap0 (i32 0))>;
// Read cycle counter.
def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
[SDNPHasChain]>;
def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;
// The declared return value of the store-locked intrinsics is i32, but
// the instructions actually define i1. To avoid register copies from
// IntRegs to PredRegs and back, fold the entire pattern checking the
// result against true/false.
let AddedComplexity = 100 in {
def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
(S2_storew_locked I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
(C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
(S4_stored_locked I32:$Rs, I64:$Rt)>;
def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
(C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
}