llvm-project/llvm/lib/IR/Globals.cpp

554 lines
20 KiB
C++
Raw Normal View History

//===-- Globals.cpp - Implement the GlobalValue & GlobalVariable class ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GlobalValue & GlobalVariable classes for the IR
// library.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// GlobalValue Class
//===----------------------------------------------------------------------===//
// GlobalValue should be a Constant, plus a type, a module, some flags, and an
// intrinsic ID. Add an assert to prevent people from accidentally growing
// GlobalValue while adding flags.
static_assert(sizeof(GlobalValue) ==
sizeof(Constant) + 2 * sizeof(void *) + 2 * sizeof(unsigned),
"unexpected GlobalValue size growth");
// GlobalObject adds a comdat.
static_assert(sizeof(GlobalObject) == sizeof(GlobalValue) + sizeof(void *),
"unexpected GlobalObject size growth");
bool GlobalValue::isMaterializable() const {
if (const Function *F = dyn_cast<Function>(this))
return F->isMaterializable();
return false;
}
Error GlobalValue::materialize() {
return getParent()->materialize(this);
}
/// Override destroyConstantImpl to make sure it doesn't get called on
/// GlobalValue's because they shouldn't be treated like other constants.
void GlobalValue::destroyConstantImpl() {
llvm_unreachable("You can't GV->destroyConstantImpl()!");
}
Value *GlobalValue::handleOperandChangeImpl(Value *From, Value *To) {
llvm_unreachable("Unsupported class for handleOperandChange()!");
}
/// copyAttributesFrom - copy all additional attributes (those not needed to
/// create a GlobalValue) from the GlobalValue Src to this one.
void GlobalValue::copyAttributesFrom(const GlobalValue *Src) {
setVisibility(Src->getVisibility());
IR: Introduce local_unnamed_addr attribute. If a local_unnamed_addr attribute is attached to a global, the address is known to be insignificant within the module. It is distinct from the existing unnamed_addr attribute in that it only describes a local property of the module rather than a global property of the symbol. This attribute is intended to be used by the code generator and LTO to allow the linker to decide whether the global needs to be in the symbol table. It is possible to exclude a global from the symbol table if three things are true: - This attribute is present on every instance of the global (which means that the normal rule that the global must have a unique address can be broken without being observable by the program by performing comparisons against the global's address) - The global has linkonce_odr linkage (which means that each linkage unit must have its own copy of the global if it requires one, and the copy in each linkage unit must be the same) - It is a constant or a function (which means that the program cannot observe that the unique-address rule has been broken by writing to the global) Although this attribute could in principle be computed from the module contents, LTO clients (i.e. linkers) will normally need to be able to compute this property as part of symbol resolution, and it would be inefficient to materialize every module just to compute it. See: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html for earlier discussion. Part of the fix for PR27553. Differential Revision: http://reviews.llvm.org/D20348 llvm-svn: 272709
2016-06-15 05:01:22 +08:00
setUnnamedAddr(Src->getUnnamedAddr());
setDLLStorageClass(Src->getDLLStorageClass());
Represent runtime preemption in the IR. Currently we do not represent runtime preemption in the IR, which has several drawbacks: 1) The semantics of GlobalValues differ depending on the object file format you are targeting (as well as the relocation-model and -fPIE value). 2) We have no way of disabling inlining of run time interposable functions, since in the IR we only know if a function is link-time interposable. Because of this llvm cannot support elf-interposition semantics. 3) In LTO builds of executables we will have extra knowledge that a symbol resolved to a local definition and can't be preemptable, but have no way to propagate that knowledge through the compiler. This patch adds preemptability specifiers to the IR with the following meaning: dso_local --> means the compiler may assume the symbol will resolve to a definition within the current linkage unit and the symbol may be accessed directly even if the definition is not within this compilation unit. dso_preemptable --> means that the compiler must assume the GlobalValue may be replaced with a definition from outside the current linkage unit at runtime. To ease transitioning dso_preemptable is treated as a 'default' in that low-level codegen will still do the same checks it did previously to see if a symbol should be accessed indirectly. Eventually when IR producers emit the specifiers on all Globalvalues we can change dso_preemptable to mean 'always access indirectly', and remove the current logic. Differential Revision: https://reviews.llvm.org/D20217 llvm-svn: 316668
2017-10-26 23:00:26 +08:00
setDSOLocal(Src->isDSOLocal());
setPartition(Src->getPartition());
}
void GlobalValue::removeFromParent() {
switch (getValueID()) {
#define HANDLE_GLOBAL_VALUE(NAME) \
case Value::NAME##Val: \
return static_cast<NAME *>(this)->removeFromParent();
#include "llvm/IR/Value.def"
default:
break;
}
llvm_unreachable("not a global");
}
void GlobalValue::eraseFromParent() {
switch (getValueID()) {
#define HANDLE_GLOBAL_VALUE(NAME) \
case Value::NAME##Val: \
return static_cast<NAME *>(this)->eraseFromParent();
#include "llvm/IR/Value.def"
default:
break;
}
llvm_unreachable("not a global");
}
unsigned GlobalValue::getAlignment() const {
if (auto *GA = dyn_cast<GlobalAlias>(this)) {
// In general we cannot compute this at the IR level, but we try.
if (const GlobalObject *GO = GA->getBaseObject())
return GO->getAlignment();
// FIXME: we should also be able to handle:
// Alias = Global + Offset
// Alias = Absolute
return 0;
}
return cast<GlobalObject>(this)->getAlignment();
}
unsigned GlobalValue::getAddressSpace() const {
PointerType *PtrTy = getType();
return PtrTy->getAddressSpace();
}
void GlobalObject::setAlignment(unsigned Align) {
setAlignment(MaybeAlign(Align));
}
void GlobalObject::setAlignment(MaybeAlign Align) {
assert(!Align || Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
unsigned AlignmentData = encode(Align);
unsigned OldData = getGlobalValueSubClassData();
setGlobalValueSubClassData((OldData & ~AlignmentMask) | AlignmentData);
assert(MaybeAlign(getAlignment()) == Align &&
"Alignment representation error!");
}
void GlobalObject::copyAttributesFrom(const GlobalObject *Src) {
GlobalValue::copyAttributesFrom(Src);
setAlignment(Src->getAlignment());
setSection(Src->getSection());
}
std::string GlobalValue::getGlobalIdentifier(StringRef Name,
GlobalValue::LinkageTypes Linkage,
StringRef FileName) {
// Value names may be prefixed with a binary '1' to indicate
// that the backend should not modify the symbols due to any platform
// naming convention. Do not include that '1' in the PGO profile name.
if (Name[0] == '\1')
Name = Name.substr(1);
std::string NewName = Name;
if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
// For local symbols, prepend the main file name to distinguish them.
// Do not include the full path in the file name since there's no guarantee
// that it will stay the same, e.g., if the files are checked out from
// version control in different locations.
if (FileName.empty())
NewName = NewName.insert(0, "<unknown>:");
else
NewName = NewName.insert(0, FileName.str() + ":");
}
return NewName;
}
std::string GlobalValue::getGlobalIdentifier() const {
return getGlobalIdentifier(getName(), getLinkage(),
getParent()->getSourceFileName());
}
StringRef GlobalValue::getSection() const {
if (auto *GA = dyn_cast<GlobalAlias>(this)) {
// In general we cannot compute this at the IR level, but we try.
if (const GlobalObject *GO = GA->getBaseObject())
return GO->getSection();
return "";
}
return cast<GlobalObject>(this)->getSection();
}
const Comdat *GlobalValue::getComdat() const {
if (auto *GA = dyn_cast<GlobalAlias>(this)) {
// In general we cannot compute this at the IR level, but we try.
if (const GlobalObject *GO = GA->getBaseObject())
return const_cast<GlobalObject *>(GO)->getComdat();
return nullptr;
}
// ifunc and its resolver are separate things so don't use resolver comdat.
if (isa<GlobalIFunc>(this))
return nullptr;
return cast<GlobalObject>(this)->getComdat();
}
StringRef GlobalValue::getPartition() const {
if (!hasPartition())
return "";
return getContext().pImpl->GlobalValuePartitions[this];
}
void GlobalValue::setPartition(StringRef S) {
// Do nothing if we're clearing the partition and it is already empty.
if (!hasPartition() && S.empty())
return;
// Get or create a stable partition name string and put it in the table in the
// context.
if (!S.empty())
S = getContext().pImpl->Saver.save(S);
getContext().pImpl->GlobalValuePartitions[this] = S;
// Update the HasPartition field. Setting the partition to the empty string
// means this global no longer has a partition.
HasPartition = !S.empty();
}
StringRef GlobalObject::getSectionImpl() const {
assert(hasSection());
return getContext().pImpl->GlobalObjectSections[this];
}
void GlobalObject::setSection(StringRef S) {
// Do nothing if we're clearing the section and it is already empty.
if (!hasSection() && S.empty())
return;
// Get or create a stable section name string and put it in the table in the
// context.
if (!S.empty())
S = getContext().pImpl->Saver.save(S);
getContext().pImpl->GlobalObjectSections[this] = S;
// Update the HasSectionHashEntryBit. Setting the section to the empty string
// means this global no longer has a section.
setGlobalObjectFlag(HasSectionHashEntryBit, !S.empty());
}
bool GlobalValue::isDeclaration() const {
2011-07-15 02:12:44 +08:00
// Globals are definitions if they have an initializer.
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this))
return GV->getNumOperands() == 0;
2011-07-15 02:12:44 +08:00
// Functions are definitions if they have a body.
if (const Function *F = dyn_cast<Function>(this))
return F->empty() && !F->isMaterializable();
2011-07-15 02:12:44 +08:00
// Aliases and ifuncs are always definitions.
assert(isa<GlobalIndirectSymbol>(this));
return false;
}
bool GlobalValue::canIncreaseAlignment() const {
// Firstly, can only increase the alignment of a global if it
// is a strong definition.
if (!isStrongDefinitionForLinker())
return false;
// It also has to either not have a section defined, or, not have
// alignment specified. (If it is assigned a section, the global
// could be densely packed with other objects in the section, and
// increasing the alignment could cause padding issues.)
if (hasSection() && getAlignment() > 0)
return false;
// On ELF platforms, we're further restricted in that we can't
// increase the alignment of any variable which might be emitted
// into a shared library, and which is exported. If the main
// executable accesses a variable found in a shared-lib, the main
// exe actually allocates memory for and exports the symbol ITSELF,
// overriding the symbol found in the library. That is, at link
// time, the observed alignment of the variable is copied into the
// executable binary. (A COPY relocation is also generated, to copy
// the initial data from the shadowed variable in the shared-lib
// into the location in the main binary, before running code.)
//
// And thus, even though you might think you are defining the
// global, and allocating the memory for the global in your object
// file, and thus should be able to set the alignment arbitrarily,
// that's not actually true. Doing so can cause an ABI breakage; an
// executable might have already been built with the previous
// alignment of the variable, and then assuming an increased
// alignment will be incorrect.
// Conservatively assume ELF if there's no parent pointer.
bool isELF =
(!Parent || Triple(Parent->getTargetTriple()).isOSBinFormatELF());
if (isELF && !isDSOLocal())
return false;
return true;
}
const GlobalObject *GlobalValue::getBaseObject() const {
if (auto *GO = dyn_cast<GlobalObject>(this))
return GO;
if (auto *GA = dyn_cast<GlobalIndirectSymbol>(this))
return GA->getBaseObject();
return nullptr;
}
bool GlobalValue::isAbsoluteSymbolRef() const {
auto *GO = dyn_cast<GlobalObject>(this);
if (!GO)
return false;
return GO->getMetadata(LLVMContext::MD_absolute_symbol);
}
Optional<ConstantRange> GlobalValue::getAbsoluteSymbolRange() const {
auto *GO = dyn_cast<GlobalObject>(this);
if (!GO)
return None;
MDNode *MD = GO->getMetadata(LLVMContext::MD_absolute_symbol);
if (!MD)
return None;
return getConstantRangeFromMetadata(*MD);
}
bool GlobalValue::canBeOmittedFromSymbolTable() const {
if (!hasLinkOnceODRLinkage())
return false;
// We assume that anyone who sets global unnamed_addr on a non-constant
// knows what they're doing.
if (hasGlobalUnnamedAddr())
return true;
// If it is a non constant variable, it needs to be uniqued across shared
// objects.
if (auto *Var = dyn_cast<GlobalVariable>(this))
if (!Var->isConstant())
return false;
return hasAtLeastLocalUnnamedAddr();
}
//===----------------------------------------------------------------------===//
// GlobalVariable Implementation
//===----------------------------------------------------------------------===//
GlobalVariable::GlobalVariable(Type *Ty, bool constant, LinkageTypes Link,
Constant *InitVal, const Twine &Name,
ThreadLocalMode TLMode, unsigned AddressSpace,
bool isExternallyInitialized)
: GlobalObject(Ty, Value::GlobalVariableVal,
OperandTraits<GlobalVariable>::op_begin(this),
InitVal != nullptr, Link, Name, AddressSpace),
isConstantGlobal(constant),
isExternallyInitializedConstant(isExternallyInitialized) {
assert(!Ty->isFunctionTy() && PointerType::isValidElementType(Ty) &&
"invalid type for global variable");
setThreadLocalMode(TLMode);
if (InitVal) {
assert(InitVal->getType() == Ty &&
"Initializer should be the same type as the GlobalVariable!");
Op<0>() = InitVal;
}
}
GlobalVariable::GlobalVariable(Module &M, Type *Ty, bool constant,
LinkageTypes Link, Constant *InitVal,
const Twine &Name, GlobalVariable *Before,
ThreadLocalMode TLMode, unsigned AddressSpace,
bool isExternallyInitialized)
: GlobalObject(Ty, Value::GlobalVariableVal,
OperandTraits<GlobalVariable>::op_begin(this),
InitVal != nullptr, Link, Name, AddressSpace),
isConstantGlobal(constant),
isExternallyInitializedConstant(isExternallyInitialized) {
assert(!Ty->isFunctionTy() && PointerType::isValidElementType(Ty) &&
"invalid type for global variable");
setThreadLocalMode(TLMode);
if (InitVal) {
assert(InitVal->getType() == Ty &&
"Initializer should be the same type as the GlobalVariable!");
Op<0>() = InitVal;
}
if (Before)
Before->getParent()->getGlobalList().insert(Before->getIterator(), this);
else
M.getGlobalList().push_back(this);
}
void GlobalVariable::removeFromParent() {
getParent()->getGlobalList().remove(getIterator());
}
void GlobalVariable::eraseFromParent() {
getParent()->getGlobalList().erase(getIterator());
}
void GlobalVariable::setInitializer(Constant *InitVal) {
if (!InitVal) {
if (hasInitializer()) {
// Note, the num operands is used to compute the offset of the operand, so
// the order here matters. Clearing the operand then clearing the num
// operands ensures we have the correct offset to the operand.
Op<0>().set(nullptr);
setGlobalVariableNumOperands(0);
}
} else {
assert(InitVal->getType() == getValueType() &&
"Initializer type must match GlobalVariable type");
// Note, the num operands is used to compute the offset of the operand, so
// the order here matters. We need to set num operands to 1 first so that
// we get the correct offset to the first operand when we set it.
if (!hasInitializer())
setGlobalVariableNumOperands(1);
Op<0>().set(InitVal);
}
}
/// Copy all additional attributes (those not needed to create a GlobalVariable)
/// from the GlobalVariable Src to this one.
void GlobalVariable::copyAttributesFrom(const GlobalVariable *Src) {
GlobalObject::copyAttributesFrom(Src);
setThreadLocalMode(Src->getThreadLocalMode());
setExternallyInitialized(Src->isExternallyInitialized());
setAttributes(Src->getAttributes());
}
void GlobalVariable::dropAllReferences() {
User::dropAllReferences();
clearMetadata();
}
//===----------------------------------------------------------------------===//
// GlobalIndirectSymbol Implementation
//===----------------------------------------------------------------------===//
GlobalIndirectSymbol::GlobalIndirectSymbol(Type *Ty, ValueTy VTy,
unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name,
Constant *Symbol)
: GlobalValue(Ty, VTy, &Op<0>(), 1, Linkage, Name, AddressSpace) {
Op<0>() = Symbol;
}
static const GlobalObject *
findBaseObject(const Constant *C, DenseSet<const GlobalAlias *> &Aliases) {
if (auto *GO = dyn_cast<GlobalObject>(C))
return GO;
if (auto *GA = dyn_cast<GlobalAlias>(C))
if (Aliases.insert(GA).second)
return findBaseObject(GA->getOperand(0), Aliases);
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::Add: {
auto *LHS = findBaseObject(CE->getOperand(0), Aliases);
auto *RHS = findBaseObject(CE->getOperand(1), Aliases);
if (LHS && RHS)
return nullptr;
return LHS ? LHS : RHS;
}
case Instruction::Sub: {
if (findBaseObject(CE->getOperand(1), Aliases))
return nullptr;
return findBaseObject(CE->getOperand(0), Aliases);
}
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::GetElementPtr:
return findBaseObject(CE->getOperand(0), Aliases);
default:
break;
}
}
return nullptr;
}
const GlobalObject *GlobalIndirectSymbol::getBaseObject() const {
DenseSet<const GlobalAlias *> Aliases;
return findBaseObject(getOperand(0), Aliases);
}
//===----------------------------------------------------------------------===//
// GlobalAlias Implementation
//===----------------------------------------------------------------------===//
GlobalAlias::GlobalAlias(Type *Ty, unsigned AddressSpace, LinkageTypes Link,
const Twine &Name, Constant *Aliasee,
Module *ParentModule)
: GlobalIndirectSymbol(Ty, Value::GlobalAliasVal, AddressSpace, Link, Name,
Aliasee) {
if (ParentModule)
ParentModule->getAliasList().push_back(this);
}
GlobalAlias *GlobalAlias::create(Type *Ty, unsigned AddressSpace,
LinkageTypes Link, const Twine &Name,
Constant *Aliasee, Module *ParentModule) {
return new GlobalAlias(Ty, AddressSpace, Link, Name, Aliasee, ParentModule);
}
GlobalAlias *GlobalAlias::create(Type *Ty, unsigned AddressSpace,
LinkageTypes Linkage, const Twine &Name,
Module *Parent) {
return create(Ty, AddressSpace, Linkage, Name, nullptr, Parent);
}
GlobalAlias *GlobalAlias::create(Type *Ty, unsigned AddressSpace,
LinkageTypes Linkage, const Twine &Name,
GlobalValue *Aliasee) {
return create(Ty, AddressSpace, Linkage, Name, Aliasee, Aliasee->getParent());
}
GlobalAlias *GlobalAlias::create(LinkageTypes Link, const Twine &Name,
GlobalValue *Aliasee) {
PointerType *PTy = Aliasee->getType();
return create(PTy->getElementType(), PTy->getAddressSpace(), Link, Name,
Aliasee);
}
GlobalAlias *GlobalAlias::create(const Twine &Name, GlobalValue *Aliasee) {
return create(Aliasee->getLinkage(), Name, Aliasee);
}
void GlobalAlias::removeFromParent() {
getParent()->getAliasList().remove(getIterator());
}
void GlobalAlias::eraseFromParent() {
getParent()->getAliasList().erase(getIterator());
}
void GlobalAlias::setAliasee(Constant *Aliasee) {
assert((!Aliasee || Aliasee->getType() == getType()) &&
"Alias and aliasee types should match!");
setIndirectSymbol(Aliasee);
}
//===----------------------------------------------------------------------===//
// GlobalIFunc Implementation
//===----------------------------------------------------------------------===//
GlobalIFunc::GlobalIFunc(Type *Ty, unsigned AddressSpace, LinkageTypes Link,
const Twine &Name, Constant *Resolver,
Module *ParentModule)
: GlobalIndirectSymbol(Ty, Value::GlobalIFuncVal, AddressSpace, Link, Name,
Resolver) {
if (ParentModule)
ParentModule->getIFuncList().push_back(this);
}
GlobalIFunc *GlobalIFunc::create(Type *Ty, unsigned AddressSpace,
LinkageTypes Link, const Twine &Name,
Constant *Resolver, Module *ParentModule) {
return new GlobalIFunc(Ty, AddressSpace, Link, Name, Resolver, ParentModule);
}
void GlobalIFunc::removeFromParent() {
getParent()->getIFuncList().remove(getIterator());
}
void GlobalIFunc::eraseFromParent() {
getParent()->getIFuncList().erase(getIterator());
}