AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
//===-- AMDGPULowerKernelArguments.cpp ------------------------------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
/// \file This pass replaces accesses to kernel arguments with loads from
|
|
|
|
/// offsets from the kernarg base pointer.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "AMDGPU.h"
|
|
|
|
#include "AMDGPUSubtarget.h"
|
|
|
|
#include "AMDGPUTargetMachine.h"
|
|
|
|
#include "llvm/ADT/StringRef.h"
|
|
|
|
#include "llvm/Analysis/Loads.h"
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
|
|
#include "llvm/IR/Attributes.h"
|
|
|
|
#include "llvm/IR/BasicBlock.h"
|
|
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include "llvm/IR/IRBuilder.h"
|
|
|
|
#include "llvm/IR/InstrTypes.h"
|
|
|
|
#include "llvm/IR/Instruction.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/LLVMContext.h"
|
|
|
|
#include "llvm/IR/MDBuilder.h"
|
|
|
|
#include "llvm/IR/Metadata.h"
|
|
|
|
#include "llvm/IR/Operator.h"
|
|
|
|
#include "llvm/IR/Type.h"
|
|
|
|
#include "llvm/IR/Value.h"
|
|
|
|
#include "llvm/Pass.h"
|
|
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "amdgpu-lower-kernel-arguments"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class AMDGPULowerKernelArguments : public FunctionPass{
|
|
|
|
public:
|
|
|
|
static char ID;
|
|
|
|
|
|
|
|
AMDGPULowerKernelArguments() : FunctionPass(ID) {}
|
|
|
|
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
AU.addRequired<TargetPassConfig>();
|
|
|
|
AU.setPreservesAll();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
|
|
bool AMDGPULowerKernelArguments::runOnFunction(Function &F) {
|
|
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
if (CC != CallingConv::AMDGPU_KERNEL || F.arg_empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
|
|
|
|
|
|
const TargetMachine &TM = TPC.getTM<TargetMachine>();
|
2018-07-12 04:59:01 +08:00
|
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
LLVMContext &Ctx = F.getParent()->getContext();
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
|
|
BasicBlock &EntryBlock = *F.begin();
|
|
|
|
IRBuilder<> Builder(&*EntryBlock.begin());
|
|
|
|
|
2018-06-30 01:31:42 +08:00
|
|
|
const unsigned KernArgBaseAlign = 16; // FIXME: Increase if necessary
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
const uint64_t BaseOffset = ST.getExplicitKernelArgOffset(F);
|
|
|
|
|
2018-07-20 17:05:08 +08:00
|
|
|
unsigned MaxAlign;
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
// FIXME: Alignment is broken broken with explicit arg offset.;
|
2018-07-20 17:05:08 +08:00
|
|
|
const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(F, MaxAlign);
|
2018-06-28 18:18:11 +08:00
|
|
|
if (TotalKernArgSize == 0)
|
|
|
|
return false;
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
|
|
|
|
CallInst *KernArgSegment =
|
2018-10-08 18:32:33 +08:00
|
|
|
Builder.CreateIntrinsic(Intrinsic::amdgcn_kernarg_segment_ptr, {}, {},
|
|
|
|
nullptr, F.getName() + ".kernarg.segment");
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
|
|
|
|
KernArgSegment->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
|
|
|
|
KernArgSegment->addAttribute(AttributeList::ReturnIndex,
|
|
|
|
Attribute::getWithDereferenceableBytes(Ctx, TotalKernArgSize));
|
|
|
|
|
|
|
|
unsigned AS = KernArgSegment->getType()->getPointerAddressSpace();
|
2018-06-30 01:31:42 +08:00
|
|
|
uint64_t ExplicitArgOffset = 0;
|
|
|
|
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
for (Argument &Arg : F.args()) {
|
2018-06-30 01:31:42 +08:00
|
|
|
Type *ArgTy = Arg.getType();
|
|
|
|
unsigned Align = DL.getABITypeAlignment(ArgTy);
|
|
|
|
unsigned Size = DL.getTypeSizeInBits(ArgTy);
|
|
|
|
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
|
|
|
|
|
|
|
|
uint64_t EltOffset = alignTo(ExplicitArgOffset, Align) + BaseOffset;
|
|
|
|
ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;
|
|
|
|
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
if (Arg.use_empty())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (PointerType *PT = dyn_cast<PointerType>(ArgTy)) {
|
|
|
|
// FIXME: Hack. We rely on AssertZext to be able to fold DS addressing
|
|
|
|
// modes on SI to know the high bits are 0 so pointer adds don't wrap. We
|
|
|
|
// can't represent this with range metadata because it's only allowed for
|
|
|
|
// integer types.
|
|
|
|
if (PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
|
|
|
|
ST.getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// FIXME: We can replace this with equivalent alias.scope/noalias
|
|
|
|
// metadata, but this appears to be a lot of work.
|
|
|
|
if (Arg.hasNoAliasAttr())
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
VectorType *VT = dyn_cast<VectorType>(ArgTy);
|
|
|
|
bool IsV3 = VT && VT->getNumElements() == 3;
|
2018-12-08 06:12:17 +08:00
|
|
|
bool DoShiftOpt = Size < 32 && !ArgTy->isAggregateType();
|
|
|
|
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
VectorType *V4Ty = nullptr;
|
|
|
|
|
|
|
|
int64_t AlignDownOffset = alignDown(EltOffset, 4);
|
|
|
|
int64_t OffsetDiff = EltOffset - AlignDownOffset;
|
2018-12-08 06:12:17 +08:00
|
|
|
unsigned AdjustedAlign = MinAlign(DoShiftOpt ? AlignDownOffset : EltOffset,
|
|
|
|
KernArgBaseAlign);
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
|
|
|
|
Value *ArgPtr;
|
2018-12-08 06:12:17 +08:00
|
|
|
if (DoShiftOpt) { // FIXME: Handle aggregate types
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
// Since we don't have sub-dword scalar loads, avoid doing an extload by
|
|
|
|
// loading earlier than the argument address, and extracting the relevant
|
|
|
|
// bits.
|
|
|
|
//
|
|
|
|
// Additionally widen any sub-dword load to i32 even if suitably aligned,
|
|
|
|
// so that CSE between different argument loads works easily.
|
|
|
|
|
2018-06-30 01:31:42 +08:00
|
|
|
ArgPtr = Builder.CreateConstInBoundsGEP1_64(
|
|
|
|
KernArgSegment,
|
|
|
|
AlignDownOffset,
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
Arg.getName() + ".kernarg.offset.align.down");
|
2018-06-30 01:31:42 +08:00
|
|
|
ArgPtr = Builder.CreateBitCast(ArgPtr,
|
|
|
|
Builder.getInt32Ty()->getPointerTo(AS),
|
|
|
|
ArgPtr->getName() + ".cast");
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
} else {
|
2018-06-30 01:31:42 +08:00
|
|
|
ArgPtr = Builder.CreateConstInBoundsGEP1_64(
|
|
|
|
KernArgSegment,
|
2018-12-08 06:12:17 +08:00
|
|
|
EltOffset,
|
2018-06-30 01:31:42 +08:00
|
|
|
Arg.getName() + ".kernarg.offset");
|
|
|
|
ArgPtr = Builder.CreateBitCast(ArgPtr, ArgTy->getPointerTo(AS),
|
|
|
|
ArgPtr->getName() + ".cast");
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (IsV3 && Size >= 32) {
|
|
|
|
V4Ty = VectorType::get(VT->getVectorElementType(), 4);
|
|
|
|
// Use the hack that clang uses to avoid SelectionDAG ruining v3 loads
|
|
|
|
ArgPtr = Builder.CreateBitCast(ArgPtr, V4Ty->getPointerTo(AS));
|
|
|
|
}
|
|
|
|
|
|
|
|
LoadInst *Load = Builder.CreateAlignedLoad(ArgPtr, AdjustedAlign);
|
|
|
|
Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(Ctx, {}));
|
|
|
|
|
|
|
|
MDBuilder MDB(Ctx);
|
|
|
|
|
|
|
|
if (isa<PointerType>(ArgTy)) {
|
|
|
|
if (Arg.hasNonNullAttr())
|
|
|
|
Load->setMetadata(LLVMContext::MD_nonnull, MDNode::get(Ctx, {}));
|
|
|
|
|
|
|
|
uint64_t DerefBytes = Arg.getDereferenceableBytes();
|
|
|
|
if (DerefBytes != 0) {
|
|
|
|
Load->setMetadata(
|
|
|
|
LLVMContext::MD_dereferenceable,
|
|
|
|
MDNode::get(Ctx,
|
|
|
|
MDB.createConstant(
|
|
|
|
ConstantInt::get(Builder.getInt64Ty(), DerefBytes))));
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t DerefOrNullBytes = Arg.getDereferenceableOrNullBytes();
|
|
|
|
if (DerefOrNullBytes != 0) {
|
|
|
|
Load->setMetadata(
|
|
|
|
LLVMContext::MD_dereferenceable_or_null,
|
|
|
|
MDNode::get(Ctx,
|
|
|
|
MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(),
|
|
|
|
DerefOrNullBytes))));
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned ParamAlign = Arg.getParamAlignment();
|
|
|
|
if (ParamAlign != 0) {
|
|
|
|
Load->setMetadata(
|
|
|
|
LLVMContext::MD_align,
|
|
|
|
MDNode::get(Ctx,
|
|
|
|
MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(),
|
|
|
|
ParamAlign))));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: Convert noalias arg to !noalias
|
|
|
|
|
2018-12-08 06:12:17 +08:00
|
|
|
if (DoShiftOpt) {
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
Value *ExtractBits = OffsetDiff == 0 ?
|
|
|
|
Load : Builder.CreateLShr(Load, OffsetDiff * 8);
|
|
|
|
|
|
|
|
IntegerType *ArgIntTy = Builder.getIntNTy(Size);
|
|
|
|
Value *Trunc = Builder.CreateTrunc(ExtractBits, ArgIntTy);
|
|
|
|
Value *NewVal = Builder.CreateBitCast(Trunc, ArgTy,
|
|
|
|
Arg.getName() + ".load");
|
|
|
|
Arg.replaceAllUsesWith(NewVal);
|
|
|
|
} else if (IsV3) {
|
|
|
|
Value *Shuf = Builder.CreateShuffleVector(Load, UndefValue::get(V4Ty),
|
|
|
|
{0, 1, 2},
|
|
|
|
Arg.getName() + ".load");
|
|
|
|
Arg.replaceAllUsesWith(Shuf);
|
|
|
|
} else {
|
|
|
|
Load->setName(Arg.getName() + ".load");
|
|
|
|
Arg.replaceAllUsesWith(Load);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-06-30 01:31:42 +08:00
|
|
|
KernArgSegment->addAttribute(
|
|
|
|
AttributeList::ReturnIndex,
|
|
|
|
Attribute::getWithAlignment(Ctx, std::max(KernArgBaseAlign, MaxAlign)));
|
|
|
|
|
AMDGPU: Add pass to lower kernel arguments to loads
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
2018-06-27 03:10:00 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPULowerKernelArguments, DEBUG_TYPE,
|
|
|
|
"AMDGPU Lower Kernel Arguments", false, false)
|
|
|
|
INITIALIZE_PASS_END(AMDGPULowerKernelArguments, DEBUG_TYPE, "AMDGPU Lower Kernel Arguments",
|
|
|
|
false, false)
|
|
|
|
|
|
|
|
char AMDGPULowerKernelArguments::ID = 0;
|
|
|
|
|
|
|
|
FunctionPass *llvm::createAMDGPULowerKernelArgumentsPass() {
|
|
|
|
return new AMDGPULowerKernelArguments();
|
|
|
|
}
|