llvm-project/clang/test/OpenMP/irbuilder_for_iterator.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

167 lines
11 KiB
C++
Raw Normal View History

[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py UTC_ARGS: --function-signature --include-generated-funcs
// RUN: %clang_cc1 -fopenmp-enable-irbuilder -verify -fopenmp -fopenmp-version=50 -x c++ -triple x86_64-unknown-unknown -emit-llvm %s -o - | FileCheck %s
// expected-no-diagnostics
#ifndef HEADER
#define HEADER
struct MyIterator {
MyIterator(unsigned pos);
MyIterator(const MyIterator &other);
const MyIterator &operator=(const MyIterator &that);
MyIterator &operator++();
int operator-(const MyIterator &that) const;
MyIterator &operator+=(unsigned a);
MyIterator operator+(unsigned a) const;
bool operator==(const MyIterator &that) const;
bool operator!=(const MyIterator &that) const;
unsigned operator*() const;
};
extern "C" void workshareloop_iterator(float *a, float *b, float *c) {
#pragma omp for
for (MyIterator it = MyIterator(7); it != MyIterator(41); ++it) {
unsigned i = *it;
a[i] = b[i] * c[i];
}
}
#endif // HEADER
// CHECK-LABEL: define {{[^@]+}}@workshareloop_iterator
[OpenMP] Overhaul `declare target` handling This patch fixes various issues with our prior `declare target` handling and extends it to support `omp begin declare target` as well. This started with PR49649 in mind, trying to provide a way for users to avoid the "ref" global use introduced for globals with internal linkage. From there it went down the rabbit hole, e.g., all variables, even `nohost` ones, were emitted into the device code so it was impossible to determine if "ref" was needed late in the game (based on the name only). To make it really useful, `begin declare target` was needed as it can carry the `device_type`. Not emitting variables eagerly had a ripple effect. Finally, the precedence of the (explicit) declare target list items needed to be taken into account, that meant we cannot just look for any declare target attribute to make a decision. This caused the handling of functions to require fixup as well. I tried to clean up things while I was at it, e.g., we should not "parse declarations and defintions" as part of OpenMP parsing, this will always break at some point. Instead, we keep track what region we are in and act on definitions and declarations instead, this is what we do for declare variant and other begin/end directives already. Highlights: - new diagnosis for restrictions specificed in the standard, - delayed emission of globals not mentioned in an explicit list of a declare target, - omission of `nohost` globals on the host and `host` globals on the device, - no explicit parsing of declarations in-between `omp [begin] declare variant` and the corresponding end anymore, regular parsing instead, - precedence for explicit mentions in `declare target` lists over implicit mentions in the declaration-definition-seq, and - `omp allocate` declarations will now replace an earlier emitted global, if necessary. --- Notes: The patch is larger than I hoped but it turns out that most changes do on their own lead to "inconsistent states", which seem less desirable overall. After working through this I feel the standard should remove the explicit declare target forms as the delayed emission is horrible. That said, while we delay things anyway, it seems to me we check too often for the current status even though that is often not sufficient to act upon. There seems to be a lot of duplication that can probably be trimmed down. Eagerly emitting some things seems pretty weak as an argument to keep so much logic around. --- Reviewed By: ABataev Differential Revision: https://reviews.llvm.org/D101030
2021-04-22 13:57:28 +08:00
// CHECK-SAME: (float* [[A:%.*]], float* [[B:%.*]], float* [[C:%.*]]) #[[ATTR0:[0-9]+]] {
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: entry:
// CHECK-NEXT: [[A_ADDR:%.*]] = alloca float*, align 8
// CHECK-NEXT: [[B_ADDR:%.*]] = alloca float*, align 8
// CHECK-NEXT: [[C_ADDR:%.*]] = alloca float*, align 8
// CHECK-NEXT: [[IT:%.*]] = alloca [[STRUCT_MYITERATOR:%.*]], align 1
// CHECK-NEXT: [[AGG_CAPTURED:%.*]] = alloca [[STRUCT_ANON:%.*]], align 8
// CHECK-NEXT: [[AGG_CAPTURED1:%.*]] = alloca [[STRUCT_ANON_0:%.*]], align 1
// CHECK-NEXT: [[DOTCOUNT_ADDR:%.*]] = alloca i64, align 8
// CHECK-NEXT: [[I:%.*]] = alloca i32, align 4
// CHECK-NEXT: [[P_LASTITER:%.*]] = alloca i32, align 4
// CHECK-NEXT: [[P_LOWERBOUND:%.*]] = alloca i64, align 8
// CHECK-NEXT: [[P_UPPERBOUND:%.*]] = alloca i64, align 8
// CHECK-NEXT: [[P_STRIDE:%.*]] = alloca i64, align 8
// CHECK-NEXT: store float* [[A]], float** [[A_ADDR]], align 8
// CHECK-NEXT: store float* [[B]], float** [[B_ADDR]], align 8
// CHECK-NEXT: store float* [[C]], float** [[C_ADDR]], align 8
// CHECK-NEXT: call void @_ZN10MyIteratorC1Ej(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[IT]], i32 7)
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: [[TMP0:%.*]] = getelementptr inbounds [[STRUCT_ANON]], %struct.anon* [[AGG_CAPTURED]], i32 0, i32 0
// CHECK-NEXT: store %struct.MyIterator* [[IT]], %struct.MyIterator** [[TMP0]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds [[STRUCT_ANON_0]], %struct.anon.0* [[AGG_CAPTURED1]], i32 0, i32 0
// CHECK-NEXT: call void @_ZN10MyIteratorC1ERKS_(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[TMP1]], %struct.MyIterator* nonnull align 1 dereferenceable(1) [[IT]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: call void @__captured_stmt(i64* [[DOTCOUNT_ADDR]], %struct.anon* [[AGG_CAPTURED]])
// CHECK-NEXT: [[DOTCOUNT:%.*]] = load i64, i64* [[DOTCOUNT_ADDR]], align 8
// CHECK-NEXT: br label [[OMP_LOOP_PREHEADER:%.*]]
// CHECK: omp_loop.preheader:
// CHECK-NEXT: store i64 0, i64* [[P_LOWERBOUND]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = sub i64 [[DOTCOUNT]], 1
// CHECK-NEXT: store i64 [[TMP2]], i64* [[P_UPPERBOUND]], align 8
// CHECK-NEXT: store i64 1, i64* [[P_STRIDE]], align 8
[OpenMP] Overhaul `declare target` handling This patch fixes various issues with our prior `declare target` handling and extends it to support `omp begin declare target` as well. This started with PR49649 in mind, trying to provide a way for users to avoid the "ref" global use introduced for globals with internal linkage. From there it went down the rabbit hole, e.g., all variables, even `nohost` ones, were emitted into the device code so it was impossible to determine if "ref" was needed late in the game (based on the name only). To make it really useful, `begin declare target` was needed as it can carry the `device_type`. Not emitting variables eagerly had a ripple effect. Finally, the precedence of the (explicit) declare target list items needed to be taken into account, that meant we cannot just look for any declare target attribute to make a decision. This caused the handling of functions to require fixup as well. I tried to clean up things while I was at it, e.g., we should not "parse declarations and defintions" as part of OpenMP parsing, this will always break at some point. Instead, we keep track what region we are in and act on definitions and declarations instead, this is what we do for declare variant and other begin/end directives already. Highlights: - new diagnosis for restrictions specificed in the standard, - delayed emission of globals not mentioned in an explicit list of a declare target, - omission of `nohost` globals on the host and `host` globals on the device, - no explicit parsing of declarations in-between `omp [begin] declare variant` and the corresponding end anymore, regular parsing instead, - precedence for explicit mentions in `declare target` lists over implicit mentions in the declaration-definition-seq, and - `omp allocate` declarations will now replace an earlier emitted global, if necessary. --- Notes: The patch is larger than I hoped but it turns out that most changes do on their own lead to "inconsistent states", which seem less desirable overall. After working through this I feel the standard should remove the explicit declare target forms as the delayed emission is horrible. That said, while we delay things anyway, it seems to me we check too often for the current status even though that is often not sufficient to act upon. There seems to be a lot of duplication that can probably be trimmed down. Eagerly emitting some things seems pretty weak as an argument to keep so much logic around. --- Reviewed By: ABataev Differential Revision: https://reviews.llvm.org/D101030
2021-04-22 13:57:28 +08:00
// CHECK-NEXT: [[OMP_GLOBAL_THREAD_NUM:%.*]] = call i32 @__kmpc_global_thread_num(%struct.ident_t* @[[GLOB1:[0-9]+]])
// CHECK-NEXT: call void @__kmpc_for_static_init_8u(%struct.ident_t* @[[GLOB1]], i32 [[OMP_GLOBAL_THREAD_NUM]], i32 34, i32* [[P_LASTITER]], i64* [[P_LOWERBOUND]], i64* [[P_UPPERBOUND]], i64* [[P_STRIDE]], i64 1, i64 1)
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: [[TMP3:%.*]] = load i64, i64* [[P_LOWERBOUND]], align 8
// CHECK-NEXT: [[TMP4:%.*]] = load i64, i64* [[P_UPPERBOUND]], align 8
// CHECK-NEXT: [[TMP5:%.*]] = sub i64 [[TMP4]], [[TMP3]]
// CHECK-NEXT: [[TMP6:%.*]] = add i64 [[TMP5]], 1
// CHECK-NEXT: br label [[OMP_LOOP_HEADER:%.*]]
// CHECK: omp_loop.header:
// CHECK-NEXT: [[OMP_LOOP_IV:%.*]] = phi i64 [ 0, [[OMP_LOOP_PREHEADER]] ], [ [[OMP_LOOP_NEXT:%.*]], [[OMP_LOOP_INC:%.*]] ]
// CHECK-NEXT: br label [[OMP_LOOP_COND:%.*]]
// CHECK: omp_loop.cond:
// CHECK-NEXT: [[OMP_LOOP_CMP:%.*]] = icmp ult i64 [[OMP_LOOP_IV]], [[TMP6]]
// CHECK-NEXT: br i1 [[OMP_LOOP_CMP]], label [[OMP_LOOP_BODY:%.*]], label [[OMP_LOOP_EXIT:%.*]]
// CHECK: omp_loop.body:
// CHECK-NEXT: [[TMP7:%.*]] = add i64 [[OMP_LOOP_IV]], [[TMP3]]
// CHECK-NEXT: call void @__captured_stmt.1(%struct.MyIterator* [[IT]], i64 [[TMP7]], %struct.anon.0* [[AGG_CAPTURED1]])
// CHECK-NEXT: [[CALL:%.*]] = call i32 @_ZNK10MyIteratordeEv(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[IT]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: store i32 [[CALL]], i32* [[I]], align 4
// CHECK-NEXT: [[TMP8:%.*]] = load float*, float** [[B_ADDR]], align 8
// CHECK-NEXT: [[TMP9:%.*]] = load i32, i32* [[I]], align 4
// CHECK-NEXT: [[IDXPROM:%.*]] = zext i32 [[TMP9]] to i64
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds float, float* [[TMP8]], i64 [[IDXPROM]]
// CHECK-NEXT: [[TMP10:%.*]] = load float, float* [[ARRAYIDX]], align 4
// CHECK-NEXT: [[TMP11:%.*]] = load float*, float** [[C_ADDR]], align 8
// CHECK-NEXT: [[TMP12:%.*]] = load i32, i32* [[I]], align 4
// CHECK-NEXT: [[IDXPROM2:%.*]] = zext i32 [[TMP12]] to i64
// CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds float, float* [[TMP11]], i64 [[IDXPROM2]]
// CHECK-NEXT: [[TMP13:%.*]] = load float, float* [[ARRAYIDX3]], align 4
// CHECK-NEXT: [[MUL:%.*]] = fmul float [[TMP10]], [[TMP13]]
// CHECK-NEXT: [[TMP14:%.*]] = load float*, float** [[A_ADDR]], align 8
// CHECK-NEXT: [[TMP15:%.*]] = load i32, i32* [[I]], align 4
// CHECK-NEXT: [[IDXPROM4:%.*]] = zext i32 [[TMP15]] to i64
// CHECK-NEXT: [[ARRAYIDX5:%.*]] = getelementptr inbounds float, float* [[TMP14]], i64 [[IDXPROM4]]
// CHECK-NEXT: store float [[MUL]], float* [[ARRAYIDX5]], align 4
// CHECK-NEXT: br label [[OMP_LOOP_INC]]
// CHECK: omp_loop.inc:
// CHECK-NEXT: [[OMP_LOOP_NEXT]] = add nuw i64 [[OMP_LOOP_IV]], 1
// CHECK-NEXT: br label [[OMP_LOOP_HEADER]]
// CHECK: omp_loop.exit:
[OpenMP] Overhaul `declare target` handling This patch fixes various issues with our prior `declare target` handling and extends it to support `omp begin declare target` as well. This started with PR49649 in mind, trying to provide a way for users to avoid the "ref" global use introduced for globals with internal linkage. From there it went down the rabbit hole, e.g., all variables, even `nohost` ones, were emitted into the device code so it was impossible to determine if "ref" was needed late in the game (based on the name only). To make it really useful, `begin declare target` was needed as it can carry the `device_type`. Not emitting variables eagerly had a ripple effect. Finally, the precedence of the (explicit) declare target list items needed to be taken into account, that meant we cannot just look for any declare target attribute to make a decision. This caused the handling of functions to require fixup as well. I tried to clean up things while I was at it, e.g., we should not "parse declarations and defintions" as part of OpenMP parsing, this will always break at some point. Instead, we keep track what region we are in and act on definitions and declarations instead, this is what we do for declare variant and other begin/end directives already. Highlights: - new diagnosis for restrictions specificed in the standard, - delayed emission of globals not mentioned in an explicit list of a declare target, - omission of `nohost` globals on the host and `host` globals on the device, - no explicit parsing of declarations in-between `omp [begin] declare variant` and the corresponding end anymore, regular parsing instead, - precedence for explicit mentions in `declare target` lists over implicit mentions in the declaration-definition-seq, and - `omp allocate` declarations will now replace an earlier emitted global, if necessary. --- Notes: The patch is larger than I hoped but it turns out that most changes do on their own lead to "inconsistent states", which seem less desirable overall. After working through this I feel the standard should remove the explicit declare target forms as the delayed emission is horrible. That said, while we delay things anyway, it seems to me we check too often for the current status even though that is often not sufficient to act upon. There seems to be a lot of duplication that can probably be trimmed down. Eagerly emitting some things seems pretty weak as an argument to keep so much logic around. --- Reviewed By: ABataev Differential Revision: https://reviews.llvm.org/D101030
2021-04-22 13:57:28 +08:00
// CHECK-NEXT: call void @__kmpc_for_static_fini(%struct.ident_t* @[[GLOB1]], i32 [[OMP_GLOBAL_THREAD_NUM]])
// CHECK-NEXT: [[OMP_GLOBAL_THREAD_NUM6:%.*]] = call i32 @__kmpc_global_thread_num(%struct.ident_t* @[[GLOB1]])
// CHECK-NEXT: call void @__kmpc_barrier(%struct.ident_t* @[[GLOB2:[0-9]+]], i32 [[OMP_GLOBAL_THREAD_NUM6]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: br label [[OMP_LOOP_AFTER:%.*]]
// CHECK: omp_loop.after:
// CHECK-NEXT: ret void
//
//
// CHECK-LABEL: define {{[^@]+}}@__captured_stmt
[OpenMP] Overhaul `declare target` handling This patch fixes various issues with our prior `declare target` handling and extends it to support `omp begin declare target` as well. This started with PR49649 in mind, trying to provide a way for users to avoid the "ref" global use introduced for globals with internal linkage. From there it went down the rabbit hole, e.g., all variables, even `nohost` ones, were emitted into the device code so it was impossible to determine if "ref" was needed late in the game (based on the name only). To make it really useful, `begin declare target` was needed as it can carry the `device_type`. Not emitting variables eagerly had a ripple effect. Finally, the precedence of the (explicit) declare target list items needed to be taken into account, that meant we cannot just look for any declare target attribute to make a decision. This caused the handling of functions to require fixup as well. I tried to clean up things while I was at it, e.g., we should not "parse declarations and defintions" as part of OpenMP parsing, this will always break at some point. Instead, we keep track what region we are in and act on definitions and declarations instead, this is what we do for declare variant and other begin/end directives already. Highlights: - new diagnosis for restrictions specificed in the standard, - delayed emission of globals not mentioned in an explicit list of a declare target, - omission of `nohost` globals on the host and `host` globals on the device, - no explicit parsing of declarations in-between `omp [begin] declare variant` and the corresponding end anymore, regular parsing instead, - precedence for explicit mentions in `declare target` lists over implicit mentions in the declaration-definition-seq, and - `omp allocate` declarations will now replace an earlier emitted global, if necessary. --- Notes: The patch is larger than I hoped but it turns out that most changes do on their own lead to "inconsistent states", which seem less desirable overall. After working through this I feel the standard should remove the explicit declare target forms as the delayed emission is horrible. That said, while we delay things anyway, it seems to me we check too often for the current status even though that is often not sufficient to act upon. There seems to be a lot of duplication that can probably be trimmed down. Eagerly emitting some things seems pretty weak as an argument to keep so much logic around. --- Reviewed By: ABataev Differential Revision: https://reviews.llvm.org/D101030
2021-04-22 13:57:28 +08:00
// CHECK-SAME: (i64* nonnull align 8 dereferenceable(8) [[DISTANCE:%.*]], %struct.anon* noalias [[__CONTEXT:%.*]]) #[[ATTR2:[0-9]+]] {
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: entry:
// CHECK-NEXT: [[DISTANCE_ADDR:%.*]] = alloca i64*, align 8
// CHECK-NEXT: [[__CONTEXT_ADDR:%.*]] = alloca %struct.anon*, align 8
// CHECK-NEXT: [[DOTSTART:%.*]] = alloca [[STRUCT_MYITERATOR:%.*]], align 1
// CHECK-NEXT: [[DOTSTOP:%.*]] = alloca [[STRUCT_MYITERATOR]], align 1
// CHECK-NEXT: [[DOTSTEP:%.*]] = alloca i64, align 8
// CHECK-NEXT: store i64* [[DISTANCE]], i64** [[DISTANCE_ADDR]], align 8
// CHECK-NEXT: store %struct.anon* [[__CONTEXT]], %struct.anon** [[__CONTEXT_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load %struct.anon*, %struct.anon** [[__CONTEXT_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds [[STRUCT_ANON:%.*]], %struct.anon* [[TMP0]], i32 0, i32 0
// CHECK-NEXT: [[TMP2:%.*]] = load %struct.MyIterator*, %struct.MyIterator** [[TMP1]], align 8
// CHECK-NEXT: call void @_ZN10MyIteratorC1ERKS_(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[DOTSTART]], %struct.MyIterator* nonnull align 1 dereferenceable(1) [[TMP2]])
// CHECK-NEXT: call void @_ZN10MyIteratorC1Ej(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[DOTSTOP]], i32 41)
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: store i64 1, i64* [[DOTSTEP]], align 8
// CHECK-NEXT: [[TMP3:%.*]] = load i64, i64* [[DOTSTEP]], align 8
// CHECK-NEXT: [[CMP:%.*]] = icmp ult i64 [[TMP3]], 0
// CHECK-NEXT: br i1 [[CMP]], label [[COND_TRUE:%.*]], label [[COND_FALSE:%.*]]
// CHECK: cond.true:
// CHECK-NEXT: [[CALL:%.*]] = call i32 @_ZNK10MyIteratormiERKS_(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[DOTSTART]], %struct.MyIterator* nonnull align 1 dereferenceable(1) [[DOTSTOP]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: [[CONV:%.*]] = sext i32 [[CALL]] to i64
// CHECK-NEXT: [[TMP4:%.*]] = load i64, i64* [[DOTSTEP]], align 8
// CHECK-NEXT: [[SUB:%.*]] = sub i64 0, [[TMP4]]
// CHECK-NEXT: [[DIV:%.*]] = udiv i64 [[CONV]], [[SUB]]
// CHECK-NEXT: br label [[COND_END:%.*]]
// CHECK: cond.false:
// CHECK-NEXT: [[CALL1:%.*]] = call i32 @_ZNK10MyIteratormiERKS_(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[DOTSTOP]], %struct.MyIterator* nonnull align 1 dereferenceable(1) [[DOTSTART]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: [[CONV2:%.*]] = sext i32 [[CALL1]] to i64
// CHECK-NEXT: [[TMP5:%.*]] = load i64, i64* [[DOTSTEP]], align 8
// CHECK-NEXT: [[DIV3:%.*]] = udiv i64 [[CONV2]], [[TMP5]]
// CHECK-NEXT: br label [[COND_END]]
// CHECK: cond.end:
// CHECK-NEXT: [[COND:%.*]] = phi i64 [ [[DIV]], [[COND_TRUE]] ], [ [[DIV3]], [[COND_FALSE]] ]
// CHECK-NEXT: [[TMP6:%.*]] = load i64*, i64** [[DISTANCE_ADDR]], align 8
// CHECK-NEXT: store i64 [[COND]], i64* [[TMP6]], align 8
// CHECK-NEXT: ret void
//
//
// CHECK-LABEL: define {{[^@]+}}@__captured_stmt.1
[OpenMP] Overhaul `declare target` handling This patch fixes various issues with our prior `declare target` handling and extends it to support `omp begin declare target` as well. This started with PR49649 in mind, trying to provide a way for users to avoid the "ref" global use introduced for globals with internal linkage. From there it went down the rabbit hole, e.g., all variables, even `nohost` ones, were emitted into the device code so it was impossible to determine if "ref" was needed late in the game (based on the name only). To make it really useful, `begin declare target` was needed as it can carry the `device_type`. Not emitting variables eagerly had a ripple effect. Finally, the precedence of the (explicit) declare target list items needed to be taken into account, that meant we cannot just look for any declare target attribute to make a decision. This caused the handling of functions to require fixup as well. I tried to clean up things while I was at it, e.g., we should not "parse declarations and defintions" as part of OpenMP parsing, this will always break at some point. Instead, we keep track what region we are in and act on definitions and declarations instead, this is what we do for declare variant and other begin/end directives already. Highlights: - new diagnosis for restrictions specificed in the standard, - delayed emission of globals not mentioned in an explicit list of a declare target, - omission of `nohost` globals on the host and `host` globals on the device, - no explicit parsing of declarations in-between `omp [begin] declare variant` and the corresponding end anymore, regular parsing instead, - precedence for explicit mentions in `declare target` lists over implicit mentions in the declaration-definition-seq, and - `omp allocate` declarations will now replace an earlier emitted global, if necessary. --- Notes: The patch is larger than I hoped but it turns out that most changes do on their own lead to "inconsistent states", which seem less desirable overall. After working through this I feel the standard should remove the explicit declare target forms as the delayed emission is horrible. That said, while we delay things anyway, it seems to me we check too often for the current status even though that is often not sufficient to act upon. There seems to be a lot of duplication that can probably be trimmed down. Eagerly emitting some things seems pretty weak as an argument to keep so much logic around. --- Reviewed By: ABataev Differential Revision: https://reviews.llvm.org/D101030
2021-04-22 13:57:28 +08:00
// CHECK-SAME: (%struct.MyIterator* nonnull align 1 dereferenceable(1) [[LOOPVAR:%.*]], i64 [[LOGICAL:%.*]], %struct.anon.0* noalias [[__CONTEXT:%.*]]) #[[ATTR2]] {
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: entry:
// CHECK-NEXT: [[LOOPVAR_ADDR:%.*]] = alloca %struct.MyIterator*, align 8
// CHECK-NEXT: [[LOGICAL_ADDR:%.*]] = alloca i64, align 8
// CHECK-NEXT: [[__CONTEXT_ADDR:%.*]] = alloca %struct.anon.0*, align 8
// CHECK-NEXT: [[REF_TMP:%.*]] = alloca [[STRUCT_MYITERATOR:%.*]], align 1
// CHECK-NEXT: store %struct.MyIterator* [[LOOPVAR]], %struct.MyIterator** [[LOOPVAR_ADDR]], align 8
// CHECK-NEXT: store i64 [[LOGICAL]], i64* [[LOGICAL_ADDR]], align 8
// CHECK-NEXT: store %struct.anon.0* [[__CONTEXT]], %struct.anon.0** [[__CONTEXT_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load %struct.anon.0*, %struct.anon.0** [[__CONTEXT_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds [[STRUCT_ANON_0:%.*]], %struct.anon.0* [[TMP0]], i32 0, i32 0
// CHECK-NEXT: [[TMP2:%.*]] = load i64, i64* [[LOGICAL_ADDR]], align 8
// CHECK-NEXT: [[MUL:%.*]] = mul i64 1, [[TMP2]]
// CHECK-NEXT: [[CONV:%.*]] = trunc i64 [[MUL]] to i32
// CHECK-NEXT: call void @_ZNK10MyIteratorplEj(%struct.MyIterator* sret([[STRUCT_MYITERATOR]]) align 1 [[REF_TMP]], %struct.MyIterator* nonnull align 1 dereferenceable(1) [[TMP1]], i32 [[CONV]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: [[TMP3:%.*]] = load %struct.MyIterator*, %struct.MyIterator** [[LOOPVAR_ADDR]], align 8
// CHECK-NEXT: [[CALL:%.*]] = call nonnull align 1 dereferenceable(1) %struct.MyIterator* @_ZN10MyIteratoraSERKS_(%struct.MyIterator* nonnull align 1 dereferenceable(1) [[TMP3]], %struct.MyIterator* nonnull align 1 dereferenceable(1) [[REF_TMP]])
[clang][OpenMP] Use OpenMPIRBuilder for workshare loops. Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to: * Only the worksharing-loop directive. * Recognizes only the nowait clause. * No loop nests with more than one loop. * Untested with templates, exceptions. * Semantic checking left to the existing infrastructure. This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics: * The distance function: How many loop iterations there will be before entering the loop nest. * The loop variable function: Conversion from a logical iteration number to the loop variable. These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang. The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does. For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting. Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset. Reviewed By: jdenny Differential Revision: https://reviews.llvm.org/D94973
2021-03-04 07:15:32 +08:00
// CHECK-NEXT: ret void
//