llvm-project/llvm/tools/analyze/analyze.cpp

250 lines
8.0 KiB
C++
Raw Normal View History

//===------------------------------------------------------------------------===
// LLVM 'Analyze' UTILITY
//
// This utility is designed to print out the results of running various analysis
// passes on a program. This is useful for understanding a program, or for
// debugging an analysis pass.
//
// analyze --help - Output information about command line switches
// analyze --quiet - Do not print analysis name before output
//
//===------------------------------------------------------------------------===
#include "llvm/Instruction.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/iPHINode.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/Analysis/InstForest.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
2001-11-08 05:16:29 +08:00
#include "llvm/Analysis/FindUnsafePointerTypes.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "Support/CommandLine.h"
#include <algorithm>
#include <iostream>
using std::cout;
using std::cerr;
using std::pair;
static void PrintMethod(Method *M) {
cout << M;
}
static void PrintIntervalPartition(Method *M) {
cout << cfg::IntervalPartition(M);
}
static void PrintClassifiedExprs(Method *M) {
cout << "Classified expressions for: " << M->getName() << "\n";
Method::inst_iterator I = M->inst_begin(), E = M->inst_end();
for (; I != E; ++I) {
cout << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
cout << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
WriteAsOperand(cout << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
WriteAsOperand(cout << "(", R.Var) << " )";
if (R.Offset == 0) break;
else cout << " +";
// fall through
case analysis::ExprType::Constant:
if (R.Offset) WriteAsOperand(cout, (Value*)R.Offset); else cout << " 0";
break;
}
cout << "\n\n";
}
}
static void PrintInductionVariables(Method *M) {
cfg::LoopInfo LI(M);
for (Method::inst_iterator I = M->inst_begin(), E = M->inst_end();
I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
InductionVariable IV(PN, &LI);
if (IV.InductionType != InductionVariable::Unknown)
cout << IV;
}
}
static void PrintInstForest(Method *M) {
cout << analysis::InstForest<char>(M);
}
static void PrintLoops(Method *M) {
cout << cfg::LoopInfo(M);
}
static void PrintCallGraph(Module *M) {
cout << cfg::CallGraph(M);
}
2001-11-08 05:16:29 +08:00
static void PrintUnsafePtrTypes(Module *M) {
FindUnsafePointerTypes FUPT;
FUPT.run(M);
FUPT.printResults(M, cout);
}
static void PrintUsedTypes(Module *M) {
FindUsedTypes FUT;
FUT.run(M);
FUT.printTypes(cout, M);
}
static void PrintDominatorSets(Method *M) {
cout << cfg::DominatorSet(M);
}
static void PrintImmediateDominators(Method *M) {
cout << cfg::ImmediateDominators(M);
}
static void PrintDominatorTree(Method *M) {
cout << cfg::DominatorTree(M);
}
static void PrintDominanceFrontier(Method *M) {
cout << cfg::DominanceFrontier(M);
}
static void PrintPostDominatorSets(Method *M) {
cout << cfg::DominatorSet(M, true);
}
static void PrintImmediatePostDoms(Method *M) {
cout << cfg::ImmediateDominators(cfg::DominatorSet(M, true));
}
static void PrintPostDomTree(Method *M) {
cout << cfg::DominatorTree(cfg::DominatorSet(M, true));
}
static void PrintPostDomFrontier(Method *M) {
cout << cfg::DominanceFrontier(cfg::DominatorSet(M, true));
}
enum Ans {
PassDone, // Unique Marker
print, intervals, exprclassify, instforest, loops, indvars, callgraph,
printusedtypes, unsafepointertypes,
domset, idom, domtree, domfrontier,
postdomset, postidom, postdomtree, postdomfrontier,
};
cl::String InputFilename ("", "Load <arg> file to analyze", cl::NoFlags, "-");
cl::Flag Quiet ("q", "Don't print analysis pass names");
cl::Alias QuietA ("quiet", "Alias for -q", cl::NoFlags, Quiet);
cl::EnumList<enum Ans> AnalysesList(cl::NoFlags,
clEnumVal(print , "Print each Method"),
clEnumVal(intervals , "Print Interval Partitions"),
clEnumVal(exprclassify , "Classify Expressions"),
clEnumVal(instforest , "Print Instruction Forest"),
clEnumVal(loops , "Print Loops"),
clEnumVal(indvars , "Print Induction Variables"),
clEnumVal(callgraph , "Print Call Graph"),
clEnumVal(printusedtypes , "Print Types Used by Module"),
2001-11-08 05:16:29 +08:00
clEnumVal(unsafepointertypes, "Print Unsafe Pointer Types"),
clEnumVal(domset , "Print Dominator Sets"),
clEnumVal(idom , "Print Immediate Dominators"),
clEnumVal(domtree , "Print Dominator Tree"),
clEnumVal(domfrontier , "Print Dominance Frontier"),
clEnumVal(postdomset , "Print Postdominator Sets"),
clEnumVal(postidom , "Print Immediate Postdominators"),
clEnumVal(postdomtree , "Print Post Dominator Tree"),
clEnumVal(postdomfrontier, "Print Postdominance Frontier"),
0);
struct {
enum Ans AnID;
void (*AnPtr)(Method *M);
} MethAnTable[] = {
{ print , PrintMethod },
{ intervals , PrintIntervalPartition },
{ exprclassify , PrintClassifiedExprs },
{ instforest , PrintInstForest },
{ loops , PrintLoops },
{ indvars , PrintInductionVariables },
{ domset , PrintDominatorSets },
{ idom , PrintImmediateDominators },
{ domtree , PrintDominatorTree },
{ domfrontier , PrintDominanceFrontier },
{ postdomset , PrintPostDominatorSets },
{ postidom , PrintImmediatePostDoms },
{ postdomtree , PrintPostDomTree },
{ postdomfrontier, PrintPostDomFrontier },
};
pair<enum Ans, void (*)(Module *)> ModAnTable[] = {
pair<enum Ans, void (*)(Module *)>(callgraph , PrintCallGraph),
pair<enum Ans, void (*)(Module *)>(printusedtypes , PrintUsedTypes),
2001-11-08 05:16:29 +08:00
pair<enum Ans, void (*)(Module *)>(unsafepointertypes, PrintUnsafePtrTypes),
};
int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv, " llvm analysis printer tool\n");
Module *C = ParseBytecodeFile(InputFilename);
if (!C && !(C = ParseAssemblyFile(InputFilename))) {
cerr << "Input file didn't read correctly.\n";
return 1;
}
// Loop over all of the analyses looking for module level analyses to run...
for (unsigned i = 0; i < AnalysesList.size(); ++i) {
enum Ans AnalysisPass = AnalysesList[i];
for (unsigned j = 0; j < sizeof(ModAnTable)/sizeof(ModAnTable[0]); ++j) {
if (ModAnTable[j].first == AnalysisPass) {
if (!Quiet)
cerr << "Running: " << AnalysesList.getArgDescription(AnalysisPass)
<< " analysis on module!\n";
ModAnTable[j].second(C);
AnalysesList[i] = PassDone; // Mark pass as complete so that we don't
break; // get an error later
}
}
}
// Loop over all of the methods in the module...
for (Module::iterator I = C->begin(), E = C->end(); I != E; ++I) {
Method *M = *I;
if (M->isExternal()) continue;
for (unsigned i = 0; i < AnalysesList.size(); ++i) {
enum Ans AnalysisPass = AnalysesList[i];
if (AnalysisPass == PassDone) continue; // Don't rerun module analyses
// Loop over all of the analyses to be run...
unsigned j;
for (j = 0; j < sizeof(MethAnTable)/sizeof(MethAnTable[0]); ++j) {
if (AnalysisPass == MethAnTable[j].AnID) {
if (!Quiet)
cerr << "Running: " << AnalysesList.getArgDescription(AnalysisPass)
<< " analysis on '" << ((Value*)M)->getName() << "'!\n";
MethAnTable[j].AnPtr(M);
break;
}
}
if (j == sizeof(MethAnTable)/sizeof(MethAnTable[0]))
cerr << "Analysis tables inconsistent!\n";
}
}
delete C;
return 0;
}