llvm-project/llvm/test/CodeGen/X86/cmp.ll

486 lines
15 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -show-mc-encoding | FileCheck %s
@d = global i8 0, align 1
2010-10-08 13:02:29 +08:00
define i32 @test1(i32 %X, i32* %y) nounwind {
; CHECK-LABEL: test1:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: cmpl $0, (%rsi) # encoding: [0x83,0x3e,0x00]
; CHECK-NEXT: je .LBB0_2 # encoding: [0x74,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB0_2-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.1: # %cond_true
; CHECK-NEXT: movl $1, %eax # encoding: [0xb8,0x01,0x00,0x00,0x00]
; CHECK-NEXT: retq # encoding: [0xc3]
; CHECK-NEXT: .LBB0_2: # %ReturnBlock
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%tmp = load i32, i32* %y
%tmp.upgrd.1 = icmp eq i32 %tmp, 0
br i1 %tmp.upgrd.1, label %ReturnBlock, label %cond_true
cond_true:
ret i32 1
ReturnBlock:
ret i32 0
}
2010-10-08 13:02:29 +08:00
define i32 @test2(i32 %X, i32* %y) nounwind {
; CHECK-LABEL: test2:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: testl $536870911, (%rsi) # encoding: [0xf7,0x06,0xff,0xff,0xff,0x1f]
; CHECK-NEXT: # imm = 0x1FFFFFFF
; CHECK-NEXT: je .LBB1_2 # encoding: [0x74,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB1_2-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.1: # %cond_true
; CHECK-NEXT: movl $1, %eax # encoding: [0xb8,0x01,0x00,0x00,0x00]
; CHECK-NEXT: retq # encoding: [0xc3]
; CHECK-NEXT: .LBB1_2: # %ReturnBlock
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%tmp = load i32, i32* %y
%tmp1 = shl i32 %tmp, 3
%tmp1.upgrd.2 = icmp eq i32 %tmp1, 0
br i1 %tmp1.upgrd.2, label %ReturnBlock, label %cond_true
cond_true:
ret i32 1
ReturnBlock:
ret i32 0
}
define i8 @test2b(i8 %X, i8* %y) nounwind {
; CHECK-LABEL: test2b:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: testb $31, (%rsi) # encoding: [0xf6,0x06,0x1f]
; CHECK-NEXT: je .LBB2_2 # encoding: [0x74,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB2_2-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.1: # %cond_true
; CHECK-NEXT: movb $1, %al # encoding: [0xb0,0x01]
; CHECK-NEXT: retq # encoding: [0xc3]
; CHECK-NEXT: .LBB2_2: # %ReturnBlock
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%tmp = load i8, i8* %y
%tmp1 = shl i8 %tmp, 3
%tmp1.upgrd.2 = icmp eq i8 %tmp1, 0
br i1 %tmp1.upgrd.2, label %ReturnBlock, label %cond_true
cond_true:
ret i8 1
ReturnBlock:
ret i8 0
}
2010-10-08 13:04:58 +08:00
define i64 @test3(i64 %x) nounwind {
; CHECK-LABEL: test3:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: testq %rdi, %rdi # encoding: [0x48,0x85,0xff]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
2010-10-08 13:04:58 +08:00
%t = icmp eq i64 %x, 0
%r = zext i1 %t to i64
ret i64 %r
}
define i64 @test4(i64 %x) nounwind {
; CHECK-LABEL: test4:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: testq %rdi, %rdi # encoding: [0x48,0x85,0xff]
; CHECK-NEXT: setle %al # encoding: [0x0f,0x9e,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
2010-10-08 13:04:58 +08:00
%t = icmp slt i64 %x, 1
%r = zext i1 %t to i64
ret i64 %r
}
define i32 @test5(double %A) nounwind {
; CHECK-LABEL: test5:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: ucomisd {{.*}}(%rip), %xmm0 # encoding: [0x66,0x0f,0x2e,0x05,A,A,A,A]
; CHECK-NEXT: # fixup A - offset: 4, value: {{\.LCPI.*}}-4, kind: reloc_riprel_4byte
; CHECK-NEXT: ja .LBB5_3 # encoding: [0x77,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB5_3-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.1: # %entry
; CHECK-NEXT: ucomisd {{.*}}(%rip), %xmm0 # encoding: [0x66,0x0f,0x2e,0x05,A,A,A,A]
; CHECK-NEXT: # fixup A - offset: 4, value: {{\.LCPI.*}}-4, kind: reloc_riprel_4byte
; CHECK-NEXT: jb .LBB5_3 # encoding: [0x72,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB5_3-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.2: # %bb12
; CHECK-NEXT: movl $32, %eax # encoding: [0xb8,0x20,0x00,0x00,0x00]
; CHECK-NEXT: retq # encoding: [0xc3]
; CHECK-NEXT: .LBB5_3: # %bb8
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: jmp foo # TAILCALL
; CHECK-NEXT: # encoding: [0xeb,A]
; CHECK-NEXT: # fixup A - offset: 1, value: foo-1, kind: FK_PCRel_1
entry:
%tmp2 = fcmp ogt double %A, 1.500000e+02
%tmp5 = fcmp ult double %A, 7.500000e+01
%bothcond = or i1 %tmp2, %tmp5
br i1 %bothcond, label %bb8, label %bb12
2010-10-08 13:04:58 +08:00
bb8:
%tmp9 = tail call i32 (...) @foo() nounwind
ret i32 %tmp9
2010-10-08 13:04:58 +08:00
bb12:
ret i32 32
2010-10-08 13:04:58 +08:00
}
declare i32 @foo(...)
define i32 @test6() nounwind align 2 {
; CHECK-LABEL: test6:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: cmpq $0, -{{[0-9]+}}(%rsp) # encoding: [0x48,0x83,0x7c,0x24,0xf8,0x00]
; CHECK-NEXT: je .LBB6_1 # encoding: [0x74,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB6_1-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.2: # %F
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
; CHECK-NEXT: .LBB6_1: # %T
; CHECK-NEXT: movl $1, %eax # encoding: [0xb8,0x01,0x00,0x00,0x00]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%A = alloca { i64, i64 }, align 8
%B = getelementptr inbounds { i64, i64 }, { i64, i64 }* %A, i64 0, i32 1
%C = load i64, i64* %B
%D = icmp eq i64 %C, 0
br i1 %D, label %T, label %F
T:
ret i32 1
F:
ret i32 0
}
define i32 @test7(i64 %res) nounwind {
; CHECK-LABEL: test7:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: shrq $32, %rdi # encoding: [0x48,0xc1,0xef,0x20]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lnot = icmp ult i64 %res, 4294967296
%lnot.ext = zext i1 %lnot to i32
ret i32 %lnot.ext
}
define i32 @test8(i64 %res) nounwind {
; CHECK-LABEL: test8:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: shrq $32, %rdi # encoding: [0x48,0xc1,0xef,0x20]
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: cmpq $3, %rdi # encoding: [0x48,0x83,0xff,0x03]
; CHECK-NEXT: setb %al # encoding: [0x0f,0x92,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lnot = icmp ult i64 %res, 12884901888
%lnot.ext = zext i1 %lnot to i32
ret i32 %lnot.ext
}
define i32 @test9(i64 %res) nounwind {
; CHECK-LABEL: test9:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: shrq $33, %rdi # encoding: [0x48,0xc1,0xef,0x21]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lnot = icmp ult i64 %res, 8589934592
%lnot.ext = zext i1 %lnot to i32
ret i32 %lnot.ext
}
define i32 @test10(i64 %res) nounwind {
; CHECK-LABEL: test10:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: shrq $32, %rdi # encoding: [0x48,0xc1,0xef,0x20]
; CHECK-NEXT: setne %al # encoding: [0x0f,0x95,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lnot = icmp uge i64 %res, 4294967296
%lnot.ext = zext i1 %lnot to i32
ret i32 %lnot.ext
}
define i32 @test11(i64 %l) nounwind {
; CHECK-LABEL: test11:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: shrq $47, %rdi # encoding: [0x48,0xc1,0xef,0x2f]
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: cmpq $1, %rdi # encoding: [0x48,0x83,0xff,0x01]
; CHECK-NEXT: sete %al # encoding: [0x0f,0x94,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%shr.mask = and i64 %l, -140737488355328
%cmp = icmp eq i64 %shr.mask, 140737488355328
%conv = zext i1 %cmp to i32
ret i32 %conv
}
define i32 @test12() ssp uwtable {
; CHECK-LABEL: test12:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq %rax # encoding: [0x50]
; CHECK-NEXT: .cfi_def_cfa_offset 16
; CHECK-NEXT: callq test12b # encoding: [0xe8,A,A,A,A]
; CHECK-NEXT: # fixup A - offset: 1, value: test12b-4, kind: reloc_branch_4byte_pcrel
; CHECK-NEXT: testb %al, %al # encoding: [0x84,0xc0]
; CHECK-NEXT: je .LBB12_2 # encoding: [0x74,A]
; CHECK-NEXT: # fixup A - offset: 1, value: .LBB12_2-1, kind: FK_PCRel_1
; CHECK-NEXT: # %bb.1: # %T
; CHECK-NEXT: movl $1, %eax # encoding: [0xb8,0x01,0x00,0x00,0x00]
; CHECK-NEXT: popq %rcx # encoding: [0x59]
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq # encoding: [0xc3]
; CHECK-NEXT: .LBB12_2: # %F
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; CHECK-NEXT: .cfi_def_cfa_offset 16
; CHECK-NEXT: movl $2, %eax # encoding: [0xb8,0x02,0x00,0x00,0x00]
; CHECK-NEXT: popq %rcx # encoding: [0x59]
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; CHECK-NEXT: .cfi_def_cfa_offset 8
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%tmp1 = call zeroext i1 @test12b()
br i1 %tmp1, label %T, label %F
T:
ret i32 1
F:
ret i32 2
}
declare zeroext i1 @test12b()
define i32 @test13(i32 %mask, i32 %base, i32 %intra) {
; CHECK-LABEL: test13:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %esi, %eax # encoding: [0x89,0xf0]
; CHECK-NEXT: testb $8, %dil # encoding: [0x40,0xf6,0xc7,0x08]
; CHECK-NEXT: cmovnel %edx, %eax # encoding: [0x0f,0x45,0xc2]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%and = and i32 %mask, 8
%tobool = icmp ne i32 %and, 0
%cond = select i1 %tobool, i32 %intra, i32 %base
ret i32 %cond
}
define i32 @test14(i32 %mask, i32 %base, i32 %intra) {
; CHECK-LABEL: test14:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl %esi, %eax # encoding: [0x89,0xf0]
; CHECK-NEXT: shrl $7, %edi # encoding: [0xc1,0xef,0x07]
; CHECK-NEXT: cmovnsl %edx, %eax # encoding: [0x0f,0x49,0xc2]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%s = lshr i32 %mask, 7
%tobool = icmp sgt i32 %s, -1
%cond = select i1 %tobool, i32 %intra, i32 %base
ret i32 %cond
}
; PR19964
define zeroext i1 @test15(i32 %bf.load, i32 %n) {
; CHECK-LABEL: test15:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: shrl $16, %edi # encoding: [0xc1,0xef,0x10]
; CHECK-NEXT: sete %cl # encoding: [0x0f,0x94,0xc1]
; CHECK-NEXT: cmpl %esi, %edi # encoding: [0x39,0xf7]
; CHECK-NEXT: setae %al # encoding: [0x0f,0x93,0xc0]
; CHECK-NEXT: orb %cl, %al # encoding: [0x08,0xc8]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%bf.lshr = lshr i32 %bf.load, 16
%cmp2 = icmp eq i32 %bf.lshr, 0
%cmp5 = icmp uge i32 %bf.lshr, %n
%.cmp5 = or i1 %cmp2, %cmp5
ret i1 %.cmp5
}
define i8 @test16(i16 signext %L) {
; CHECK-LABEL: test16:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: testw %di, %di # encoding: [0x66,0x85,0xff]
; CHECK-NEXT: setns %al # encoding: [0x0f,0x99,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lshr = lshr i16 %L, 15
%trunc = trunc i16 %lshr to i8
%not = xor i8 %trunc, 1
ret i8 %not
}
define i8 @test17(i32 %L) {
; CHECK-LABEL: test17:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: testl %edi, %edi # encoding: [0x85,0xff]
; CHECK-NEXT: setns %al # encoding: [0x0f,0x99,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lshr = lshr i32 %L, 31
%trunc = trunc i32 %lshr to i8
%not = xor i8 %trunc, 1
ret i8 %not
}
define i8 @test18(i64 %L) {
; CHECK-LABEL: test18:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: testq %rdi, %rdi # encoding: [0x48,0x85,0xff]
; CHECK-NEXT: setns %al # encoding: [0x0f,0x99,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lshr = lshr i64 %L, 63
%trunc = trunc i64 %lshr to i8
%not = xor i8 %trunc, 1
ret i8 %not
}
define zeroext i1 @test19(i32 %L) {
; CHECK-LABEL: test19:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: testl %edi, %edi # encoding: [0x85,0xff]
; CHECK-NEXT: setns %al # encoding: [0x0f,0x99,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%lshr = lshr i32 %L, 31
%trunc = trunc i32 %lshr to i1
%not = xor i1 %trunc, true
ret i1 %not
}
; This test failed due to incorrect handling of "shift + icmp" sequence
define void @test20(i32 %bf.load, i8 %x1, i8* %b_addr) {
; CHECK-LABEL: test20:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: testl $16777215, %edi # encoding: [0xf7,0xc7,0xff,0xff,0xff,0x00]
; CHECK-NEXT: # imm = 0xFFFFFF
; CHECK-NEXT: setne %al # encoding: [0x0f,0x95,0xc0]
; CHECK-NEXT: movzbl %sil, %ecx # encoding: [0x40,0x0f,0xb6,0xce]
; CHECK-NEXT: addl %eax, %ecx # encoding: [0x01,0xc1]
; CHECK-NEXT: setne (%rdx) # encoding: [0x0f,0x95,0x02]
; CHECK-NEXT: testl $16777215, %edi # encoding: [0xf7,0xc7,0xff,0xff,0xff,0x00]
; CHECK-NEXT: # imm = 0xFFFFFF
; CHECK-NEXT: setne {{.*}}(%rip) # encoding: [0x0f,0x95,0x05,A,A,A,A]
; CHECK-NEXT: # fixup A - offset: 3, value: d-4, kind: reloc_riprel_4byte
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%bf.shl = shl i32 %bf.load, 8
%bf.ashr = ashr exact i32 %bf.shl, 8
%tobool4 = icmp ne i32 %bf.ashr, 0
%conv = zext i1 %tobool4 to i32
%conv6 = zext i8 %x1 to i32
%add = add nuw nsw i32 %conv, %conv6
%tobool7 = icmp ne i32 %add, 0
%frombool = zext i1 %tobool7 to i8
store i8 %frombool, i8* %b_addr, align 1
%tobool14 = icmp ne i32 %bf.shl, 0
%frombool15 = zext i1 %tobool14 to i8
store i8 %frombool15, i8* @d, align 1
ret void
}
define i32 @test21(i64 %val) {
; CHECK-LABEL: test21:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: shrq $41, %rdi # encoding: [0x48,0xc1,0xef,0x29]
; CHECK-NEXT: setne %al # encoding: [0x0f,0x95,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%and = and i64 %val, -2199023255552
%cmp = icmp ne i64 %and, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; AND-to-SHR transformation is enabled for eq/ne condition codes only.
define i32 @test22(i64 %val) {
; CHECK-LABEL: test22:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%and = and i64 %val, -2199023255552
%cmp = icmp ult i64 %and, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define i32 @test23(i64 %val) {
; CHECK-LABEL: test23:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: testq $-1048576, %rdi # encoding: [0x48,0xf7,0xc7,0x00,0x00,0xf0,0xff]
; CHECK-NEXT: # imm = 0xFFF00000
; CHECK-NEXT: setne %al # encoding: [0x0f,0x95,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%and = and i64 %val, -1048576
%cmp = icmp ne i64 %and, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define i32 @test24(i64 %val) {
; CHECK-LABEL: test24:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: shlq $16, %rdi # encoding: [0x48,0xc1,0xe7,0x10]
; CHECK-NEXT: setne %al # encoding: [0x0f,0x95,0xc0]
; CHECK-NEXT: retq # encoding: [0xc3]
entry:
%and = and i64 %val, 281474976710655
%cmp = icmp ne i64 %and, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define { i64, i64 } @pr39968(i64, i64, i32) {
; CHECK-LABEL: pr39968:
; CHECK: # %bb.0:
; CHECK-NEXT: xorl %eax, %eax # encoding: [0x31,0xc0]
; CHECK-NEXT: testb $64, %dl # encoding: [0xf6,0xc2,0x40]
; CHECK-NEXT: cmovneq %rdi, %rsi # encoding: [0x48,0x0f,0x45,0xf7]
; CHECK-NEXT: cmovneq %rdi, %rax # encoding: [0x48,0x0f,0x45,0xc7]
; CHECK-NEXT: movq %rsi, %rdx # encoding: [0x48,0x89,0xf2]
; CHECK-NEXT: retq # encoding: [0xc3]
%4 = and i32 %2, 64
%5 = icmp ne i32 %4, 0
%6 = select i1 %5, i64 %0, i64 %1
%7 = select i1 %5, i64 %0, i64 0
%8 = insertvalue { i64, i64 } undef, i64 %7, 0
%9 = insertvalue { i64, i64 } %8, i64 %6, 1
ret { i64, i64 } %9
}