forked from OSchip/llvm-project
283 lines
11 KiB
C++
283 lines
11 KiB
C++
|
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
/// \file
|
||
|
/// This file defines the pass that looks through the machine instructions
|
||
|
/// late in the compilation, and finds byte or word instructions that
|
||
|
/// can be profitably replaced with 32 bit instructions that give equivalent
|
||
|
/// results for the bits of the results that are used. There are two possible
|
||
|
/// reasons to do this.
|
||
|
///
|
||
|
/// One reason is to avoid false-dependences on the upper portions
|
||
|
/// of the registers. Only instructions that have a destination register
|
||
|
/// which is not in any of the source registers can be affected by this.
|
||
|
/// Any instruction where one of the source registers is also the destination
|
||
|
/// register is unaffected, because it has a true dependence on the source
|
||
|
/// register already. So, this consideration primarily affects load
|
||
|
/// instructions and register-to-register moves. It would
|
||
|
/// seem like cmov(s) would also be affected, but because of the way cmov is
|
||
|
/// really implemented by most machines as reading both the destination and
|
||
|
/// and source regsters, and then "merging" the two based on a condition,
|
||
|
/// it really already should be considered as having a true dependence on the
|
||
|
/// destination register as well.
|
||
|
///
|
||
|
/// The other reason to do this is for potential code size savings. Word
|
||
|
/// operations need an extra override byte compared to their 32 bit
|
||
|
/// versions. So this can convert many word operations to their larger
|
||
|
/// size, saving a byte in encoding. This could introduce partial register
|
||
|
/// dependences where none existed however. As an example take:
|
||
|
/// orw ax, $0x1000
|
||
|
/// addw ax, $3
|
||
|
/// now if this were to get transformed into
|
||
|
/// orw ax, $1000
|
||
|
/// addl eax, $3
|
||
|
/// because the addl encodes shorter than the addw, this would introduce
|
||
|
/// a use of a register that was only partially written earlier. On older
|
||
|
/// Intel processors this can be quite a performance penalty, so this should
|
||
|
/// probably only be done when it can be proven that a new partial dependence
|
||
|
/// wouldn't be created, or when your know a newer processor is being
|
||
|
/// targeted, or when optimizing for minimum code size.
|
||
|
///
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "X86.h"
|
||
|
#include "X86InstrInfo.h"
|
||
|
#include "X86Subtarget.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/CodeGen/LiveVariables.h"
|
||
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
|
#include "llvm/CodeGen/Passes.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include "llvm/Target/TargetInstrInfo.h"
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "x86-fixup-bw-insts"
|
||
|
|
||
|
// Option to allow this optimization pass to have fine-grained control.
|
||
|
// This is turned off by default so as not to affect a large number of
|
||
|
// existing lit tests.
|
||
|
static cl::opt<bool>
|
||
|
FixupBWInsts("fixup-byte-word-insts",
|
||
|
cl::desc("Change byte and word instructions to larger sizes"),
|
||
|
cl::init(false), cl::Hidden);
|
||
|
|
||
|
namespace {
|
||
|
class FixupBWInstPass : public MachineFunctionPass {
|
||
|
static char ID;
|
||
|
|
||
|
const char *getPassName() const override {
|
||
|
return "X86 Byte/Word Instruction Fixup";
|
||
|
}
|
||
|
|
||
|
/// \brief Loop over all of the instructions in the basic block
|
||
|
/// replacing applicable byte or word instructions with better
|
||
|
/// alternatives.
|
||
|
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB) const;
|
||
|
|
||
|
/// \brief This sets the \p SuperDestReg to the 32 bit super reg
|
||
|
/// of the original destination register of the MachineInstr
|
||
|
/// passed in. It returns true if that super register is dead
|
||
|
/// just prior to \p OrigMI, and false if not.
|
||
|
/// \pre OrigDestSize must be 8 or 16.
|
||
|
bool getSuperRegDestIfDead(MachineInstr *OrigMI, unsigned OrigDestSize,
|
||
|
unsigned &SuperDestReg) const;
|
||
|
|
||
|
/// \brief Change the MachineInstr \p MI into the equivalent extending load
|
||
|
/// to 32 bit register if it is safe to do so. Return the replacement
|
||
|
/// instruction if OK, otherwise return nullptr.
|
||
|
/// \pre OrigDestSize must be 8 or 16.
|
||
|
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, unsigned OrigDestSize,
|
||
|
MachineInstr *MI) const;
|
||
|
|
||
|
public:
|
||
|
FixupBWInstPass() : MachineFunctionPass(ID) {}
|
||
|
|
||
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||
|
AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
|
||
|
// guide some heuristics.
|
||
|
MachineFunctionPass::getAnalysisUsage(AU);
|
||
|
}
|
||
|
|
||
|
/// \brief Loop over all of the basic blocks,
|
||
|
/// replacing byte and word instructions by equivalent 32 bit instructions
|
||
|
/// where performance or code size can be improved.
|
||
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
||
|
|
||
|
private:
|
||
|
MachineFunction *MF;
|
||
|
|
||
|
/// Machine instruction info used throughout the class.
|
||
|
const X86InstrInfo *TII;
|
||
|
|
||
|
/// Local member for function's OptForSize attribute.
|
||
|
bool OptForSize;
|
||
|
|
||
|
/// Machine loop info used for guiding some heruistics.
|
||
|
MachineLoopInfo *MLI;
|
||
|
};
|
||
|
char FixupBWInstPass::ID = 0;
|
||
|
}
|
||
|
|
||
|
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
|
||
|
|
||
|
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
|
||
|
if (!FixupBWInsts)
|
||
|
return false;
|
||
|
|
||
|
this->MF = &MF;
|
||
|
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
|
||
|
OptForSize = MF.getFunction()->optForSize();
|
||
|
MLI = &getAnalysis<MachineLoopInfo>();
|
||
|
|
||
|
DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
|
||
|
|
||
|
// Process all basic blocks.
|
||
|
for (auto &MBB : MF)
|
||
|
processBasicBlock(MF, MBB);
|
||
|
|
||
|
DEBUG(dbgs() << "End X86FixupBWInsts\n";);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// TODO: This method of analysis can miss some legal cases, because the
|
||
|
// super-register could be live into the address expression for a memory
|
||
|
// reference for the instruction, and still be killed/last used by the
|
||
|
// instruction. However, the existing query interfaces don't seem to
|
||
|
// easily allow that to be checked.
|
||
|
//
|
||
|
// What we'd really like to know is whether after OrigMI, the
|
||
|
// only portion of SuperDestReg that is alive is the portion that
|
||
|
// was the destination register of OrigMI.
|
||
|
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
|
||
|
unsigned OrigDestSize,
|
||
|
unsigned &SuperDestReg) const {
|
||
|
|
||
|
unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
|
||
|
SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
|
||
|
|
||
|
// Make sure that the sub-register that this instruction has as its
|
||
|
// destination is the lowest order sub-register of the super-register.
|
||
|
// If it isn't, then the register isn't really dead even if the
|
||
|
// super-register is considered dead.
|
||
|
// This test works because getX86SubSuperRegister returns the low portion
|
||
|
// register by default when getting a sub-register, so if that doesn't
|
||
|
// match the original destination register, then the original destination
|
||
|
// register must not have been the low register portion of that size.
|
||
|
if (getX86SubSuperRegister(SuperDestReg, OrigDestSize) != OrigDestReg)
|
||
|
return false;
|
||
|
|
||
|
MachineBasicBlock::LivenessQueryResult LQR =
|
||
|
OrigMI->getParent()->computeRegisterLiveness(&TII->getRegisterInfo(),
|
||
|
SuperDestReg, OrigMI);
|
||
|
|
||
|
if (LQR != MachineBasicBlock::LQR_Dead)
|
||
|
return false;
|
||
|
|
||
|
if (OrigDestSize == 8) {
|
||
|
// In the case of byte registers, we also have to check that the upper
|
||
|
// byte register is also dead. That is considered to be independent of
|
||
|
// whether the super-register is dead.
|
||
|
unsigned UpperByteReg = getX86SubSuperRegister(SuperDestReg, 8, true);
|
||
|
|
||
|
LQR = OrigMI->getParent()->computeRegisterLiveness(&TII->getRegisterInfo(),
|
||
|
UpperByteReg, OrigMI);
|
||
|
if (LQR != MachineBasicBlock::LQR_Dead)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
|
||
|
unsigned OrigDestSize,
|
||
|
MachineInstr *MI) const {
|
||
|
unsigned NewDestReg;
|
||
|
|
||
|
// We are going to try to rewrite this load to a larger zero-extending
|
||
|
// load. This is safe if all portions of the 32 bit super-register
|
||
|
// of the original destination register, except for the original destination
|
||
|
// register are dead. getSuperRegDestIfDead checks that.
|
||
|
if (!getSuperRegDestIfDead(MI, OrigDestSize, NewDestReg))
|
||
|
return nullptr;
|
||
|
|
||
|
// Safe to change the instruction.
|
||
|
MachineInstrBuilder MIB =
|
||
|
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
|
||
|
|
||
|
unsigned NumArgs = MI->getNumOperands();
|
||
|
for (unsigned i = 1; i < NumArgs; ++i)
|
||
|
MIB.addOperand(MI->getOperand(i));
|
||
|
|
||
|
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
||
|
|
||
|
return MIB;
|
||
|
}
|
||
|
|
||
|
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
|
||
|
MachineBasicBlock &MBB) const {
|
||
|
|
||
|
// This algorithm doesn't delete the instructions it is replacing
|
||
|
// right away. By leaving the existing instructions in place, the
|
||
|
// register liveness information doesn't change, and this makes the
|
||
|
// analysis that goes on be better than if the replaced instructions
|
||
|
// were immediately removed.
|
||
|
//
|
||
|
// This algorithm always creates a replacement instruction
|
||
|
// and notes that and the original in a data structure, until the
|
||
|
// whole BB has been analyzed. This keeps the replacement instructions
|
||
|
// from making it seem as if the larger register might be live.
|
||
|
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
|
||
|
|
||
|
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
|
||
|
MachineInstr *NewMI = nullptr;
|
||
|
MachineInstr *MI = I;
|
||
|
|
||
|
// See if this is an instruction of the type we are currently looking for.
|
||
|
switch (MI->getOpcode()) {
|
||
|
|
||
|
case X86::MOV8rm:
|
||
|
// Only replace 8 bit loads with the zero extending versions if
|
||
|
// in an inner most loop and not optimizing for size. This takes
|
||
|
// an extra byte to encode, and provides limited performance upside.
|
||
|
if (MachineLoop *ML = MLI->getLoopFor(&MBB)) {
|
||
|
if (ML->begin() == ML->end() && !OptForSize)
|
||
|
NewMI = tryReplaceLoad(X86::MOVZX32rm8, 8, MI);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case X86::MOV16rm:
|
||
|
// Always try to replace 16 bit load with 32 bit zero extending.
|
||
|
// Code size is the same, and there is sometimes a perf advantage
|
||
|
// from eliminating a false dependence on the upper portion of
|
||
|
// the register.
|
||
|
NewMI = tryReplaceLoad(X86::MOVZX32rm16, 16, MI);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
// nothing to do here.
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (NewMI)
|
||
|
MIReplacements.push_back(std::make_pair(MI, NewMI));
|
||
|
}
|
||
|
|
||
|
while (!MIReplacements.empty()) {
|
||
|
MachineInstr *MI = MIReplacements.back().first;
|
||
|
MachineInstr *NewMI = MIReplacements.back().second;
|
||
|
MIReplacements.pop_back();
|
||
|
MBB.insert(MI, NewMI);
|
||
|
MBB.erase(MI);
|
||
|
}
|
||
|
}
|