llvm-project/llvm/lib/Support/Windows/Process.inc

380 lines
12 KiB
PHP
Raw Normal View History

//===- Win32/Process.cpp - Win32 Process Implementation ------- -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides the Win32 specific implementation of the Process class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
#include <malloc.h>
// The Windows.h header must be after LLVM and standard headers.
#include "WindowsSupport.h"
#include <direct.h>
#include <io.h>
#include <psapi.h>
#include <shellapi.h>
#ifdef __MINGW32__
#if (HAVE_LIBPSAPI != 1)
#error "libpsapi.a should be present"
#endif
#if (HAVE_LIBSHELL32 != 1)
#error "libshell32.a should be present"
#endif
#else
#pragma comment(lib, "psapi.lib")
#pragma comment(lib, "shell32.lib")
#endif
//===----------------------------------------------------------------------===//
//=== WARNING: Implementation here must contain only Win32 specific code
//=== and must not be UNIX code
//===----------------------------------------------------------------------===//
#ifdef __MINGW32__
// This ban should be lifted when MinGW 1.0+ has defined this value.
# define _HEAPOK (-2)
#endif
using namespace llvm;
using namespace sys;
process::id_type self_process::get_id() {
return GetCurrentProcessId();
}
Add time getters to the process interface for requesting the elapsed wall time, user time, and system time since a process started. For walltime, we currently use TimeValue's interface and a global initializer to compute a close approximation of total process runtime. For user time, this adds support for an somewhat more precise timing mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock selected. For system time, we have to do a full getrusage call to extract the system time from the OS. This is expensive but unavoidable. In passing, clean up the implementation of the old APIs and fix some latent bugs in the Windows code. This might have manifested on Windows ARM systems or other systems with strange 64-bit integer behavior. The old API for this both user time and system time simultaneously from a single getrusage call. While this results in fewer system calls, it also results in a lower precision user time and if only user time is desired, it introduces a higher overhead. It may be worthwhile to switch some of the pass timers to not track system time and directly track user and wall time. The old API also tracked walltime in a confusing way -- it just set it to the current walltime rather than providing any measure of wall time since the process started the way buth user and system time are tracked. The new API is more consistent here. The plan is to eventually implement these methods for a *child* process by using the wait3(2) system call to populate an rusage struct representing the whole subprocess execution. That way, after waiting on a child process its stats will become accurate and cheap to query. llvm-svn: 171551
2013-01-05 07:19:55 +08:00
static TimeValue getTimeValueFromFILETIME(FILETIME Time) {
ULARGE_INTEGER TimeInteger;
TimeInteger.LowPart = Time.dwLowDateTime;
TimeInteger.HighPart = Time.dwHighDateTime;
// FILETIME's are # of 100 nanosecond ticks (1/10th of a microsecond)
return TimeValue(
static_cast<TimeValue::SecondsType>(TimeInteger.QuadPart / 10000000),
static_cast<TimeValue::NanoSecondsType>(
(TimeInteger.QuadPart % 10000000) * 100));
}
TimeValue self_process::get_user_time() const {
FILETIME ProcCreate, ProcExit, KernelTime, UserTime;
if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime,
&UserTime) == 0)
return TimeValue();
return getTimeValueFromFILETIME(UserTime);
}
TimeValue self_process::get_system_time() const {
FILETIME ProcCreate, ProcExit, KernelTime, UserTime;
if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime,
&UserTime) == 0)
return TimeValue();
return getTimeValueFromFILETIME(KernelTime);
}
// This function retrieves the page size using GetNativeSystemInfo() and is
// present solely so it can be called once to initialize the self_process member
// below.
static unsigned getPageSize() {
// GetNativeSystemInfo() provides the physical page size which may differ
// from GetSystemInfo() in 32-bit applications running under WOW64.
SYSTEM_INFO info;
GetNativeSystemInfo(&info);
// FIXME: FileOffset in MapViewOfFile() should be aligned to not dwPageSize,
// but dwAllocationGranularity.
return static_cast<unsigned>(info.dwPageSize);
}
// This constructor guaranteed to be run exactly once on a single thread, and
// sets up various process invariants that can be queried cheaply from then on.
self_process::self_process() : PageSize(getPageSize()) {
}
size_t
Process::GetMallocUsage()
{
_HEAPINFO hinfo;
hinfo._pentry = NULL;
size_t size = 0;
while (_heapwalk(&hinfo) == _HEAPOK)
size += hinfo._size;
return size;
}
Add time getters to the process interface for requesting the elapsed wall time, user time, and system time since a process started. For walltime, we currently use TimeValue's interface and a global initializer to compute a close approximation of total process runtime. For user time, this adds support for an somewhat more precise timing mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock selected. For system time, we have to do a full getrusage call to extract the system time from the OS. This is expensive but unavoidable. In passing, clean up the implementation of the old APIs and fix some latent bugs in the Windows code. This might have manifested on Windows ARM systems or other systems with strange 64-bit integer behavior. The old API for this both user time and system time simultaneously from a single getrusage call. While this results in fewer system calls, it also results in a lower precision user time and if only user time is desired, it introduces a higher overhead. It may be worthwhile to switch some of the pass timers to not track system time and directly track user and wall time. The old API also tracked walltime in a confusing way -- it just set it to the current walltime rather than providing any measure of wall time since the process started the way buth user and system time are tracked. The new API is more consistent here. The plan is to eventually implement these methods for a *child* process by using the wait3(2) system call to populate an rusage struct representing the whole subprocess execution. That way, after waiting on a child process its stats will become accurate and cheap to query. llvm-svn: 171551
2013-01-05 07:19:55 +08:00
void Process::GetTimeUsage(TimeValue &elapsed, TimeValue &user_time,
TimeValue &sys_time) {
elapsed = TimeValue::now();
Add time getters to the process interface for requesting the elapsed wall time, user time, and system time since a process started. For walltime, we currently use TimeValue's interface and a global initializer to compute a close approximation of total process runtime. For user time, this adds support for an somewhat more precise timing mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock selected. For system time, we have to do a full getrusage call to extract the system time from the OS. This is expensive but unavoidable. In passing, clean up the implementation of the old APIs and fix some latent bugs in the Windows code. This might have manifested on Windows ARM systems or other systems with strange 64-bit integer behavior. The old API for this both user time and system time simultaneously from a single getrusage call. While this results in fewer system calls, it also results in a lower precision user time and if only user time is desired, it introduces a higher overhead. It may be worthwhile to switch some of the pass timers to not track system time and directly track user and wall time. The old API also tracked walltime in a confusing way -- it just set it to the current walltime rather than providing any measure of wall time since the process started the way buth user and system time are tracked. The new API is more consistent here. The plan is to eventually implement these methods for a *child* process by using the wait3(2) system call to populate an rusage struct representing the whole subprocess execution. That way, after waiting on a child process its stats will become accurate and cheap to query. llvm-svn: 171551
2013-01-05 07:19:55 +08:00
FILETIME ProcCreate, ProcExit, KernelTime, UserTime;
if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime,
&UserTime) == 0)
return;
Add time getters to the process interface for requesting the elapsed wall time, user time, and system time since a process started. For walltime, we currently use TimeValue's interface and a global initializer to compute a close approximation of total process runtime. For user time, this adds support for an somewhat more precise timing mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock selected. For system time, we have to do a full getrusage call to extract the system time from the OS. This is expensive but unavoidable. In passing, clean up the implementation of the old APIs and fix some latent bugs in the Windows code. This might have manifested on Windows ARM systems or other systems with strange 64-bit integer behavior. The old API for this both user time and system time simultaneously from a single getrusage call. While this results in fewer system calls, it also results in a lower precision user time and if only user time is desired, it introduces a higher overhead. It may be worthwhile to switch some of the pass timers to not track system time and directly track user and wall time. The old API also tracked walltime in a confusing way -- it just set it to the current walltime rather than providing any measure of wall time since the process started the way buth user and system time are tracked. The new API is more consistent here. The plan is to eventually implement these methods for a *child* process by using the wait3(2) system call to populate an rusage struct representing the whole subprocess execution. That way, after waiting on a child process its stats will become accurate and cheap to query. llvm-svn: 171551
2013-01-05 07:19:55 +08:00
user_time = getTimeValueFromFILETIME(UserTime);
sys_time = getTimeValueFromFILETIME(KernelTime);
}
// Some LLVM programs such as bugpoint produce core files as a normal part of
// their operation. To prevent the disk from filling up, this configuration
// item does what's necessary to prevent their generation.
void Process::PreventCoreFiles() {
// Windows does have the concept of core files, called minidumps. However,
// disabling minidumps for a particular application extends past the lifetime
// of that application, which is the incorrect behavior for this API.
// Additionally, the APIs require elevated privileges to disable and re-
// enable minidumps, which makes this untenable. For more information, see
// WerAddExcludedApplication and WerRemoveExcludedApplication (Vista and
// later).
//
// Windows also has modal pop-up message boxes. As this method is used by
// bugpoint, preventing these pop-ups is additionally important.
SetErrorMode(SEM_FAILCRITICALERRORS |
SEM_NOGPFAULTERRORBOX |
SEM_NOOPENFILEERRORBOX);
}
/// Returns the environment variable \arg Name's value as a string encoded in
/// UTF-8. \arg Name is assumed to be in UTF-8 encoding.
Optional<std::string> Process::GetEnv(StringRef Name) {
// Convert the argument to UTF-16 to pass it to _wgetenv().
SmallVector<wchar_t, 128> NameUTF16;
if (windows::UTF8ToUTF16(Name, NameUTF16))
return None;
// Environment variable can be encoded in non-UTF8 encoding, and there's no
// way to know what the encoding is. The only reliable way to look up
// multibyte environment variable is to use GetEnvironmentVariableW().
SmallVector<wchar_t, MAX_PATH> Buf;
size_t Size = MAX_PATH;
do {
Buf.reserve(Size);
Size =
GetEnvironmentVariableW(NameUTF16.data(), Buf.data(), Buf.capacity());
if (Size == 0)
return None;
// Try again with larger buffer.
} while (Size > Buf.capacity());
Buf.set_size(Size);
// Convert the result from UTF-16 to UTF-8.
SmallVector<char, MAX_PATH> Res;
if (windows::UTF16ToUTF8(Buf.data(), Size, Res))
return None;
return std::string(Res.data());
}
static error_code windows_error(DWORD E) {
return error_code(E, system_category());
}
error_code
Process::GetArgumentVector(SmallVectorImpl<const char *> &Args,
ArrayRef<const char *>,
SpecificBumpPtrAllocator<char> &ArgAllocator) {
int NewArgCount;
error_code ec;
wchar_t **UnicodeCommandLine = CommandLineToArgvW(GetCommandLineW(),
&NewArgCount);
if (!UnicodeCommandLine)
return windows_error(::GetLastError());
Args.reserve(NewArgCount);
for (int i = 0; i < NewArgCount; ++i) {
SmallVector<char, MAX_PATH> NewArgString;
ec = windows::UTF16ToUTF8(UnicodeCommandLine[i],
wcslen(UnicodeCommandLine[i]),
NewArgString);
if (ec)
break;
char *Buffer = ArgAllocator.Allocate(NewArgString.size() + 1);
::memcpy(Buffer, NewArgString.data(), NewArgString.size() + 1);
Args.push_back(Buffer);
}
LocalFree(UnicodeCommandLine);
if (ec)
return ec;
return error_code();
}
bool Process::StandardInIsUserInput() {
return FileDescriptorIsDisplayed(0);
}
bool Process::StandardOutIsDisplayed() {
return FileDescriptorIsDisplayed(1);
}
bool Process::StandardErrIsDisplayed() {
return FileDescriptorIsDisplayed(2);
}
bool Process::FileDescriptorIsDisplayed(int fd) {
2012-07-19 08:06:06 +08:00
DWORD Mode; // Unused
return (GetConsoleMode((HANDLE)_get_osfhandle(fd), &Mode) != 0);
}
unsigned Process::StandardOutColumns() {
unsigned Columns = 0;
CONSOLE_SCREEN_BUFFER_INFO csbi;
if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi))
Columns = csbi.dwSize.X;
return Columns;
}
unsigned Process::StandardErrColumns() {
unsigned Columns = 0;
CONSOLE_SCREEN_BUFFER_INFO csbi;
if (GetConsoleScreenBufferInfo(GetStdHandle(STD_ERROR_HANDLE), &csbi))
Columns = csbi.dwSize.X;
return Columns;
}
// The terminal always has colors.
bool Process::FileDescriptorHasColors(int fd) {
return FileDescriptorIsDisplayed(fd);
}
bool Process::StandardOutHasColors() {
return FileDescriptorHasColors(1);
}
bool Process::StandardErrHasColors() {
return FileDescriptorHasColors(2);
}
2009-06-04 16:18:25 +08:00
static bool UseANSI = false;
void Process::UseANSIEscapeCodes(bool enable) {
UseANSI = enable;
}
namespace {
class DefaultColors
{
private:
WORD defaultColor;
public:
DefaultColors()
:defaultColor(GetCurrentColor()) {}
static unsigned GetCurrentColor() {
CONSOLE_SCREEN_BUFFER_INFO csbi;
if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi))
return csbi.wAttributes;
return 0;
}
WORD operator()() const { return defaultColor; }
};
DefaultColors defaultColors;
}
bool Process::ColorNeedsFlush() {
return !UseANSI;
}
const char *Process::OutputBold(bool bg) {
if (UseANSI) return "\033[1m";
WORD colors = DefaultColors::GetCurrentColor();
if (bg)
colors |= BACKGROUND_INTENSITY;
else
colors |= FOREGROUND_INTENSITY;
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors);
return 0;
}
const char *Process::OutputColor(char code, bool bold, bool bg) {
if (UseANSI) return colorcodes[bg?1:0][bold?1:0][code&7];
WORD colors;
if (bg) {
colors = ((code&1) ? BACKGROUND_RED : 0) |
((code&2) ? BACKGROUND_GREEN : 0 ) |
((code&4) ? BACKGROUND_BLUE : 0);
if (bold)
colors |= BACKGROUND_INTENSITY;
} else {
colors = ((code&1) ? FOREGROUND_RED : 0) |
((code&2) ? FOREGROUND_GREEN : 0 ) |
((code&4) ? FOREGROUND_BLUE : 0);
if (bold)
colors |= FOREGROUND_INTENSITY;
}
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors);
return 0;
}
static WORD GetConsoleTextAttribute(HANDLE hConsoleOutput) {
CONSOLE_SCREEN_BUFFER_INFO info;
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &info);
return info.wAttributes;
}
const char *Process::OutputReverse() {
if (UseANSI) return "\033[7m";
const WORD attributes
= GetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE));
const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN |
FOREGROUND_RED | FOREGROUND_INTENSITY;
const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN |
BACKGROUND_RED | BACKGROUND_INTENSITY;
const WORD color_mask = foreground_mask | background_mask;
WORD new_attributes =
((attributes & FOREGROUND_BLUE )?BACKGROUND_BLUE :0) |
((attributes & FOREGROUND_GREEN )?BACKGROUND_GREEN :0) |
((attributes & FOREGROUND_RED )?BACKGROUND_RED :0) |
((attributes & FOREGROUND_INTENSITY)?BACKGROUND_INTENSITY:0) |
((attributes & BACKGROUND_BLUE )?FOREGROUND_BLUE :0) |
((attributes & BACKGROUND_GREEN )?FOREGROUND_GREEN :0) |
((attributes & BACKGROUND_RED )?FOREGROUND_RED :0) |
((attributes & BACKGROUND_INTENSITY)?FOREGROUND_INTENSITY:0) |
0;
new_attributes = (attributes & ~color_mask) | (new_attributes & color_mask);
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), new_attributes);
return 0;
}
const char *Process::ResetColor() {
if (UseANSI) return "\033[0m";
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), defaultColors());
return 0;
}
unsigned Process::GetRandomNumber() {
HCRYPTPROV HCPC;
if (!::CryptAcquireContextW(&HCPC, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT))
report_fatal_error("Could not acquire a cryptographic context");
ScopedCryptContext CryptoProvider(HCPC);
unsigned Ret;
if (!::CryptGenRandom(CryptoProvider, sizeof(Ret),
reinterpret_cast<BYTE *>(&Ret)))
report_fatal_error("Could not generate a random number");
return Ret;
}