llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.h

84 lines
2.9 KiB
C
Raw Normal View History

[AMDGPU] Disassembler: Added basic disassembler for AMDGPU target Changes: - Added disassembler project - Fixed all decoding conflicts in .td files - Added DecoderMethod=“NONE” option to Target.td that allows to disable decoder generation for an instruction. - Created decoding functions for VS_32 and VReg_32 register classes. - Added stubs for decoding all register classes. - Added several tests for disassembler Disassembler only supports: - VI subtarget - VOP1 instruction encoding - 32-bit register operands and inline constants [Valery] One of the point that requires to pay attention to is how decoder conflicts were resolved: - Groups of target instructions were separated by using different DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate approach. - There were conflicts in IMAGE_<> instructions caused by two different reasons: 1. dmask wasn’t specified for the output (fixed) 2. There are image instructions that differ only by the number of the address components but have the same encoding by the HW spec. The actual number of address components is determined by the HW at runtime using image resource descriptor starting from the VGPR encoded in an IMAGE instruction. This means that we should choose only one instruction from conflicting group to be the rule for decoder. I didn’t find the way to disable decoder generation for an arbitrary instruction and therefore made a onelinear fix to tablegen generator that would suppress decoder generation when DecoderMethod is set to “NONE”. This is a change that should be reviewed and submitted first. Otherwise I would need to specify different DecoderNamespace for every instruction in the conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not used in other targets. 3. IMAGE_GATHER decoder generation is for now disabled and to be done later. [/Valery] Patch By: Sam Kolton Differential Revision: http://reviews.llvm.org/D16723 llvm-svn: 261185
2016-02-18 11:42:32 +08:00
//===-- AMDGPUDisassembler.hpp - Disassembler for AMDGPU ISA ---*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file contains declaration for AMDGPU ISA disassembler
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_DISASSEMBLER_AMDGPUDISASSEMBLER_H
#define LLVM_LIB_TARGET_AMDGPU_DISASSEMBLER_AMDGPUDISASSEMBLER_H
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
namespace llvm {
class MCContext;
class MCInst;
class MCOperand;
[AMDGPU] Disassembler: Added basic disassembler for AMDGPU target Changes: - Added disassembler project - Fixed all decoding conflicts in .td files - Added DecoderMethod=“NONE” option to Target.td that allows to disable decoder generation for an instruction. - Created decoding functions for VS_32 and VReg_32 register classes. - Added stubs for decoding all register classes. - Added several tests for disassembler Disassembler only supports: - VI subtarget - VOP1 instruction encoding - 32-bit register operands and inline constants [Valery] One of the point that requires to pay attention to is how decoder conflicts were resolved: - Groups of target instructions were separated by using different DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate approach. - There were conflicts in IMAGE_<> instructions caused by two different reasons: 1. dmask wasn’t specified for the output (fixed) 2. There are image instructions that differ only by the number of the address components but have the same encoding by the HW spec. The actual number of address components is determined by the HW at runtime using image resource descriptor starting from the VGPR encoded in an IMAGE instruction. This means that we should choose only one instruction from conflicting group to be the rule for decoder. I didn’t find the way to disable decoder generation for an arbitrary instruction and therefore made a onelinear fix to tablegen generator that would suppress decoder generation when DecoderMethod is set to “NONE”. This is a change that should be reviewed and submitted first. Otherwise I would need to specify different DecoderNamespace for every instruction in the conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not used in other targets. 3. IMAGE_GATHER decoder generation is for now disabled and to be done later. [/Valery] Patch By: Sam Kolton Differential Revision: http://reviews.llvm.org/D16723 llvm-svn: 261185
2016-02-18 11:42:32 +08:00
class MCSubtargetInfo;
class Twine;
[AMDGPU] Disassembler: Added basic disassembler for AMDGPU target Changes: - Added disassembler project - Fixed all decoding conflicts in .td files - Added DecoderMethod=“NONE” option to Target.td that allows to disable decoder generation for an instruction. - Created decoding functions for VS_32 and VReg_32 register classes. - Added stubs for decoding all register classes. - Added several tests for disassembler Disassembler only supports: - VI subtarget - VOP1 instruction encoding - 32-bit register operands and inline constants [Valery] One of the point that requires to pay attention to is how decoder conflicts were resolved: - Groups of target instructions were separated by using different DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate approach. - There were conflicts in IMAGE_<> instructions caused by two different reasons: 1. dmask wasn’t specified for the output (fixed) 2. There are image instructions that differ only by the number of the address components but have the same encoding by the HW spec. The actual number of address components is determined by the HW at runtime using image resource descriptor starting from the VGPR encoded in an IMAGE instruction. This means that we should choose only one instruction from conflicting group to be the rule for decoder. I didn’t find the way to disable decoder generation for an arbitrary instruction and therefore made a onelinear fix to tablegen generator that would suppress decoder generation when DecoderMethod is set to “NONE”. This is a change that should be reviewed and submitted first. Otherwise I would need to specify different DecoderNamespace for every instruction in the conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not used in other targets. 3. IMAGE_GATHER decoder generation is for now disabled and to be done later. [/Valery] Patch By: Sam Kolton Differential Revision: http://reviews.llvm.org/D16723 llvm-svn: 261185
2016-02-18 11:42:32 +08:00
class AMDGPUDisassembler : public MCDisassembler {
private:
mutable ArrayRef<uint8_t> Bytes;
[AMDGPU] Disassembler: Added basic disassembler for AMDGPU target Changes: - Added disassembler project - Fixed all decoding conflicts in .td files - Added DecoderMethod=“NONE” option to Target.td that allows to disable decoder generation for an instruction. - Created decoding functions for VS_32 and VReg_32 register classes. - Added stubs for decoding all register classes. - Added several tests for disassembler Disassembler only supports: - VI subtarget - VOP1 instruction encoding - 32-bit register operands and inline constants [Valery] One of the point that requires to pay attention to is how decoder conflicts were resolved: - Groups of target instructions were separated by using different DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate approach. - There were conflicts in IMAGE_<> instructions caused by two different reasons: 1. dmask wasn’t specified for the output (fixed) 2. There are image instructions that differ only by the number of the address components but have the same encoding by the HW spec. The actual number of address components is determined by the HW at runtime using image resource descriptor starting from the VGPR encoded in an IMAGE instruction. This means that we should choose only one instruction from conflicting group to be the rule for decoder. I didn’t find the way to disable decoder generation for an arbitrary instruction and therefore made a onelinear fix to tablegen generator that would suppress decoder generation when DecoderMethod is set to “NONE”. This is a change that should be reviewed and submitted first. Otherwise I would need to specify different DecoderNamespace for every instruction in the conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not used in other targets. 3. IMAGE_GATHER decoder generation is for now disabled and to be done later. [/Valery] Patch By: Sam Kolton Differential Revision: http://reviews.llvm.org/D16723 llvm-svn: 261185
2016-02-18 11:42:32 +08:00
public:
AMDGPUDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx) :
MCDisassembler(STI, Ctx) {}
[AMDGPU] Disassembler: Added basic disassembler for AMDGPU target Changes: - Added disassembler project - Fixed all decoding conflicts in .td files - Added DecoderMethod=“NONE” option to Target.td that allows to disable decoder generation for an instruction. - Created decoding functions for VS_32 and VReg_32 register classes. - Added stubs for decoding all register classes. - Added several tests for disassembler Disassembler only supports: - VI subtarget - VOP1 instruction encoding - 32-bit register operands and inline constants [Valery] One of the point that requires to pay attention to is how decoder conflicts were resolved: - Groups of target instructions were separated by using different DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate approach. - There were conflicts in IMAGE_<> instructions caused by two different reasons: 1. dmask wasn’t specified for the output (fixed) 2. There are image instructions that differ only by the number of the address components but have the same encoding by the HW spec. The actual number of address components is determined by the HW at runtime using image resource descriptor starting from the VGPR encoded in an IMAGE instruction. This means that we should choose only one instruction from conflicting group to be the rule for decoder. I didn’t find the way to disable decoder generation for an arbitrary instruction and therefore made a onelinear fix to tablegen generator that would suppress decoder generation when DecoderMethod is set to “NONE”. This is a change that should be reviewed and submitted first. Otherwise I would need to specify different DecoderNamespace for every instruction in the conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not used in other targets. 3. IMAGE_GATHER decoder generation is for now disabled and to be done later. [/Valery] Patch By: Sam Kolton Differential Revision: http://reviews.llvm.org/D16723 llvm-svn: 261185
2016-02-18 11:42:32 +08:00
~AMDGPUDisassembler() {}
DecodeStatus getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &WS, raw_ostream &CS) const override;
const char* getRegClassName(unsigned RegClassID) const;
MCOperand createRegOperand(unsigned int RegId) const;
MCOperand createRegOperand(unsigned RegClassID, unsigned Val) const;
MCOperand createSRegOperand(unsigned SRegClassID, unsigned Val) const;
MCOperand errOperand(unsigned V, const llvm::Twine& ErrMsg) const;
DecodeStatus tryDecodeInst(const uint8_t* Table,
MCInst &MI,
uint64_t Inst,
uint64_t Address) const;
MCOperand decodeOperand_VGPR_32(unsigned Val) const;
MCOperand decodeOperand_VS_32(unsigned Val) const;
MCOperand decodeOperand_VS_64(unsigned Val) const;
MCOperand decodeOperand_VReg_64(unsigned Val) const;
MCOperand decodeOperand_VReg_96(unsigned Val) const;
MCOperand decodeOperand_VReg_128(unsigned Val) const;
MCOperand decodeOperand_SGPR_32(unsigned Val) const;
MCOperand decodeOperand_SReg_32(unsigned Val) const;
MCOperand decodeOperand_SReg_64(unsigned Val) const;
MCOperand decodeOperand_SReg_128(unsigned Val) const;
MCOperand decodeOperand_SReg_256(unsigned Val) const;
MCOperand decodeOperand_SReg_512(unsigned Val) const;
enum { OP32 = true, OP64 = false };
static MCOperand decodeIntImmed(unsigned Imm);
static MCOperand decodeFPImmed(bool Is32, unsigned Imm);
MCOperand decodeLiteralConstant() const;
MCOperand decodeSrcOp(bool Is32, unsigned Val) const;
MCOperand decodeSpecialReg32(unsigned Val) const;
MCOperand decodeSpecialReg64(unsigned Val) const;
[AMDGPU] Disassembler: Added basic disassembler for AMDGPU target Changes: - Added disassembler project - Fixed all decoding conflicts in .td files - Added DecoderMethod=“NONE” option to Target.td that allows to disable decoder generation for an instruction. - Created decoding functions for VS_32 and VReg_32 register classes. - Added stubs for decoding all register classes. - Added several tests for disassembler Disassembler only supports: - VI subtarget - VOP1 instruction encoding - 32-bit register operands and inline constants [Valery] One of the point that requires to pay attention to is how decoder conflicts were resolved: - Groups of target instructions were separated by using different DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate approach. - There were conflicts in IMAGE_<> instructions caused by two different reasons: 1. dmask wasn’t specified for the output (fixed) 2. There are image instructions that differ only by the number of the address components but have the same encoding by the HW spec. The actual number of address components is determined by the HW at runtime using image resource descriptor starting from the VGPR encoded in an IMAGE instruction. This means that we should choose only one instruction from conflicting group to be the rule for decoder. I didn’t find the way to disable decoder generation for an arbitrary instruction and therefore made a onelinear fix to tablegen generator that would suppress decoder generation when DecoderMethod is set to “NONE”. This is a change that should be reviewed and submitted first. Otherwise I would need to specify different DecoderNamespace for every instruction in the conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not used in other targets. 3. IMAGE_GATHER decoder generation is for now disabled and to be done later. [/Valery] Patch By: Sam Kolton Differential Revision: http://reviews.llvm.org/D16723 llvm-svn: 261185
2016-02-18 11:42:32 +08:00
};
} // namespace llvm
#endif //LLVM_LIB_TARGET_AMDGPU_DISASSEMBLER_AMDGPUDISASSEMBLER_H