llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

534 lines
23 KiB
C
Raw Normal View History

//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
#include "PPCRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#define GET_INSTRINFO_HEADER
#include "PPCGenInstrInfo.inc"
namespace llvm {
/// PPCII - This namespace holds all of the PowerPC target-specific
/// per-instruction flags. These must match the corresponding definitions in
/// PPC.td and PPCInstrFormats.td.
namespace PPCII {
enum {
// PPC970 Instruction Flags. These flags describe the characteristics of the
// PowerPC 970 (aka G5) dispatch groups and how they are formed out of
// raw machine instructions.
/// PPC970_First - This instruction starts a new dispatch group, so it will
/// always be the first one in the group.
PPC970_First = 0x1,
2010-12-24 12:28:06 +08:00
/// PPC970_Single - This instruction starts a new dispatch group and
/// terminates it, so it will be the sole instruction in the group.
PPC970_Single = 0x2,
/// PPC970_Cracked - This instruction is cracked into two pieces, requiring
/// two dispatch pipes to be available to issue.
PPC970_Cracked = 0x4,
2010-12-24 12:28:06 +08:00
/// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
/// an instruction is issued to.
PPC970_Shift = 3,
PPC970_Mask = 0x07 << PPC970_Shift
};
enum PPC970_Unit {
/// These are the various PPC970 execution unit pipelines. Each instruction
/// is one of these.
PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
PPC970_BRU = 7 << PPC970_Shift // Branch Unit
};
enum {
/// Shift count to bypass PPC970 flags
NewDef_Shift = 6,
/// This instruction is an X-Form memory operation.
XFormMemOp = 0x1 << NewDef_Shift,
/// This instruction is prefixed.
Prefixed = 0x1 << (NewDef_Shift+1)
};
} // end namespace PPCII
2010-12-24 12:28:06 +08:00
// Instructions that have an immediate form might be convertible to that
// form if the correct input is a result of a load immediate. In order to
// know whether the transformation is special, we might need to know some
// of the details of the two forms.
struct ImmInstrInfo {
// Is the immediate field in the immediate form signed or unsigned?
uint64_t SignedImm : 1;
// Does the immediate need to be a multiple of some value?
uint64_t ImmMustBeMultipleOf : 5;
// Is R0/X0 treated specially by the original r+r instruction?
// If so, in which operand?
uint64_t ZeroIsSpecialOrig : 3;
// Is R0/X0 treated specially by the new r+i instruction?
// If so, in which operand?
uint64_t ZeroIsSpecialNew : 3;
// Is the operation commutative?
uint64_t IsCommutative : 1;
// The operand number to check for add-immediate def.
uint64_t OpNoForForwarding : 3;
// The operand number for the immediate.
uint64_t ImmOpNo : 3;
// The opcode of the new instruction.
uint64_t ImmOpcode : 16;
// The size of the immediate.
uint64_t ImmWidth : 5;
// The immediate should be truncated to N bits.
uint64_t TruncateImmTo : 5;
// Is the instruction summing the operand
uint64_t IsSummingOperands : 1;
};
// Information required to convert an instruction to just a materialized
// immediate.
struct LoadImmediateInfo {
unsigned Imm : 16;
unsigned Is64Bit : 1;
unsigned SetCR : 1;
};
class PPCSubtarget;
class PPCInstrInfo : public PPCGenInstrInfo {
PPCSubtarget &Subtarget;
const PPCRegisterInfo RI;
void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
int FrameIdx, const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr *> &NewMIs) const;
void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr *> &NewMIs) const;
// If the inst has imm-form and one of its operand is produced by a LI,
// put the imm into the inst directly and remove the LI if possible.
bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
unsigned ConstantOpNo, MachineInstr &DefMI,
int64_t Imm) const;
// If the inst has imm-form and one of its operand is produced by an
// add-immediate, try to transform it when possible.
bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
unsigned ConstantOpNo, MachineInstr &DefMI,
bool KillDefMI) const;
// Try to find that, if the instruction 'MI' contains any operand that
// could be forwarded from some inst that feeds it. If yes, return the
// Def of that operand. And OpNoForForwarding is the operand index in
// the 'MI' for that 'Def'. If we see another use of this Def between
// the Def and the MI, SeenIntermediateUse becomes 'true'.
MachineInstr *getForwardingDefMI(MachineInstr &MI,
unsigned &OpNoForForwarding,
bool &SeenIntermediateUse) const;
// Can the user MI have it's source at index \p OpNoForForwarding
// forwarded from an add-immediate that feeds it?
bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
unsigned OpNoForForwarding) const;
bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
const ImmInstrInfo &III,
MachineOperand *&ImmMO,
MachineOperand *&RegMO) const;
bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
const MachineInstr &DefMI,
const ImmInstrInfo &III,
int64_t &Imm) const;
bool isRegElgibleForForwarding(const MachineOperand &RegMO,
const MachineInstr &DefMI,
const MachineInstr &MI, bool KillDefMI,
bool &IsFwdFeederRegKilled) const;
const unsigned *getStoreOpcodesForSpillArray() const;
const unsigned *getLoadOpcodesForSpillArray() const;
virtual void anchor();
protected:
/// Commutes the operands in the given instruction.
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
///
/// Do not call this method for a non-commutable instruction or for
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
///
/// For example, we can commute rlwimi instructions, but only if the
/// rotate amt is zero. We also have to munge the immediates a bit.
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const override;
public:
explicit PPCInstrInfo(PPCSubtarget &STI);
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
/// always be able to get register info as well (through this method).
///
const PPCRegisterInfo &getRegisterInfo() const { return RI; }
bool isXFormMemOp(unsigned Opcode) const {
return get(Opcode).TSFlags & PPCII::XFormMemOp;
}
bool isPrefixed(unsigned Opcode) const {
return get(Opcode).TSFlags & PPCII::Prefixed;
}
static bool isSameClassPhysRegCopy(unsigned Opcode) {
unsigned CopyOpcodes[] =
{ PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf,
PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb,
PPC::CROR, PPC::EVOR, -1U };
for (int i = 0; CopyOpcodes[i] != -1U; i++)
if (Opcode == CopyOpcodes[i])
return true;
return false;
}
ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const override;
ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const override;
[PowerPC] Fix the PPCInstrInfo::getInstrLatency implementation PowerPC uses itineraries to describe processor pipelines (and dispatch-group restrictions for P7/P8 cores). Unfortunately, the target-independent implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that looks for the largest cycle count in the pipeline for any given instruction. This, however, yields the wrong answer for the PPC itineraries, because we don't encode the full pipeline. Because the functional units are fully pipelined, we only model the initial stages (there are no relevant hazards in the later stages to model), and so the technique employed by getStageLatency does not really work. Instead, we should take the maximum output operand latency, and that's what PPCInstrInfo::getInstrLatency now does. This caused some test-case churn, including two unfortunate side effects. First, the new arrangement of copies we get from function parameters now sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the test cases), and we have one significant test-suite regression: SingleSource/Benchmarks/BenchmarkGame/spectral-norm 56.4185% +/- 18.9398% In this benchmark we have a loop with a vectorized FP divide, and it with the new scheduling both divides end up in the same dispatch group (which in this case seems to cause a problem, although why is not exactly clear). The grouping structure is hard to predict from the bottom of the loop, and there may not be much we can do to fix this. Very few other test-suite performance effects were really significant, but almost all weakly favor this change. However, in light of the issues highlighted above, I've left the old behavior available via a command-line flag. llvm-svn: 242188
2015-07-15 04:02:02 +08:00
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
[PowerPC] Fix the PPCInstrInfo::getInstrLatency implementation PowerPC uses itineraries to describe processor pipelines (and dispatch-group restrictions for P7/P8 cores). Unfortunately, the target-independent implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that looks for the largest cycle count in the pipeline for any given instruction. This, however, yields the wrong answer for the PPC itineraries, because we don't encode the full pipeline. Because the functional units are fully pipelined, we only model the initial stages (there are no relevant hazards in the later stages to model), and so the technique employed by getStageLatency does not really work. Instead, we should take the maximum output operand latency, and that's what PPCInstrInfo::getInstrLatency now does. This caused some test-case churn, including two unfortunate side effects. First, the new arrangement of copies we get from function parameters now sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the test cases), and we have one significant test-suite regression: SingleSource/Benchmarks/BenchmarkGame/spectral-norm 56.4185% +/- 18.9398% In this benchmark we have a loop with a vectorized FP divide, and it with the new scheduling both divides end up in the same dispatch group (which in this case seems to cause a problem, although why is not exactly clear). The grouping structure is hard to predict from the bottom of the loop, and there may not be much we can do to fix this. Very few other test-suite performance effects were really significant, but almost all weakly favor this change. However, in light of the issues highlighted above, I've left the old behavior available via a command-line flag. llvm-svn: 242188
2015-07-15 04:02:02 +08:00
unsigned *PredCost = nullptr) const override;
Improve instruction scheduling for the PPC POWER7 Aside from a few minor latency corrections, the major change here is a new hazard recognizer which focuses on better dispatch-group formation on the POWER7. As with the PPC970's hazard recognizer, the most important thing it does is avoid load-after-store hazards within the same dispatch group. It uses the POWER7's special dispatch-group-terminating nop instruction (instead of inserting multiple regular nop instructions). This new hazard recognizer makes use of the scheduling dependency graph itself, built using AA information, to robustly detect the possibility of load-after-store hazards. significant test-suite performance changes (the error bars are 99.5% confidence intervals based on 5 test-suite runs both with and without the change -- speedups are negative): speedups: MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2 -0.55171% +/- 0.333168% MultiSource/Benchmarks/TSVC/CrossingThresholds-dbl/CrossingThresholds-dbl -17.5576% +/- 14.598% MultiSource/Benchmarks/TSVC/Reductions-dbl/Reductions-dbl -29.5708% +/- 7.09058% MultiSource/Benchmarks/TSVC/Reductions-flt/Reductions-flt -34.9471% +/- 11.4391% SingleSource/Benchmarks/BenchmarkGame/puzzle -25.1347% +/- 11.0104% SingleSource/Benchmarks/Misc/flops-8 -17.7297% +/- 9.79061% SingleSource/Benchmarks/Shootout-C++/ary3 -35.5018% +/- 23.9458% SingleSource/Regression/C/uint64_to_float -56.3165% +/- 25.4234% SingleSource/UnitTests/Vectorizer/gcc-loops -18.5309% +/- 6.8496% regressions: MultiSource/Benchmarks/ASCI_Purple/SMG2000/smg2000 18.351% +/- 12.156% SingleSource/Benchmarks/Shootout-C++/methcall 27.3086% +/- 14.4733% llvm-svn: 197099
2013-12-12 08:19:11 +08:00
int getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI, unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const override;
Improve instruction scheduling for the PPC POWER7 Aside from a few minor latency corrections, the major change here is a new hazard recognizer which focuses on better dispatch-group formation on the POWER7. As with the PPC970's hazard recognizer, the most important thing it does is avoid load-after-store hazards within the same dispatch group. It uses the POWER7's special dispatch-group-terminating nop instruction (instead of inserting multiple regular nop instructions). This new hazard recognizer makes use of the scheduling dependency graph itself, built using AA information, to robustly detect the possibility of load-after-store hazards. significant test-suite performance changes (the error bars are 99.5% confidence intervals based on 5 test-suite runs both with and without the change -- speedups are negative): speedups: MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2 -0.55171% +/- 0.333168% MultiSource/Benchmarks/TSVC/CrossingThresholds-dbl/CrossingThresholds-dbl -17.5576% +/- 14.598% MultiSource/Benchmarks/TSVC/Reductions-dbl/Reductions-dbl -29.5708% +/- 7.09058% MultiSource/Benchmarks/TSVC/Reductions-flt/Reductions-flt -34.9471% +/- 11.4391% SingleSource/Benchmarks/BenchmarkGame/puzzle -25.1347% +/- 11.0104% SingleSource/Benchmarks/Misc/flops-8 -17.7297% +/- 9.79061% SingleSource/Benchmarks/Shootout-C++/ary3 -35.5018% +/- 23.9458% SingleSource/Regression/C/uint64_to_float -56.3165% +/- 25.4234% SingleSource/UnitTests/Vectorizer/gcc-loops -18.5309% +/- 6.8496% regressions: MultiSource/Benchmarks/ASCI_Purple/SMG2000/smg2000 18.351% +/- 12.156% SingleSource/Benchmarks/Shootout-C++/methcall 27.3086% +/- 14.4733% llvm-svn: 197099
2013-12-12 08:19:11 +08:00
int getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode, unsigned UseIdx) const override {
Improve instruction scheduling for the PPC POWER7 Aside from a few minor latency corrections, the major change here is a new hazard recognizer which focuses on better dispatch-group formation on the POWER7. As with the PPC970's hazard recognizer, the most important thing it does is avoid load-after-store hazards within the same dispatch group. It uses the POWER7's special dispatch-group-terminating nop instruction (instead of inserting multiple regular nop instructions). This new hazard recognizer makes use of the scheduling dependency graph itself, built using AA information, to robustly detect the possibility of load-after-store hazards. significant test-suite performance changes (the error bars are 99.5% confidence intervals based on 5 test-suite runs both with and without the change -- speedups are negative): speedups: MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2 -0.55171% +/- 0.333168% MultiSource/Benchmarks/TSVC/CrossingThresholds-dbl/CrossingThresholds-dbl -17.5576% +/- 14.598% MultiSource/Benchmarks/TSVC/Reductions-dbl/Reductions-dbl -29.5708% +/- 7.09058% MultiSource/Benchmarks/TSVC/Reductions-flt/Reductions-flt -34.9471% +/- 11.4391% SingleSource/Benchmarks/BenchmarkGame/puzzle -25.1347% +/- 11.0104% SingleSource/Benchmarks/Misc/flops-8 -17.7297% +/- 9.79061% SingleSource/Benchmarks/Shootout-C++/ary3 -35.5018% +/- 23.9458% SingleSource/Regression/C/uint64_to_float -56.3165% +/- 25.4234% SingleSource/UnitTests/Vectorizer/gcc-loops -18.5309% +/- 6.8496% regressions: MultiSource/Benchmarks/ASCI_Purple/SMG2000/smg2000 18.351% +/- 12.156% SingleSource/Benchmarks/Shootout-C++/methcall 27.3086% +/- 14.4733% llvm-svn: 197099
2013-12-12 08:19:11 +08:00
return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
UseNode, UseIdx);
}
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
const MachineInstr &DefMI,
unsigned DefIdx) const override {
// Machine LICM should hoist all instructions in low-register-pressure
// situations; none are sufficiently free to justify leaving in a loop
// body.
return false;
}
bool useMachineCombiner() const override {
return true;
}
/// Return true when there is potentially a faster code sequence
/// for an instruction chain ending in <Root>. All potential patterns are
/// output in the <Pattern> array.
bool getMachineCombinerPatterns(
MachineInstr &Root,
SmallVectorImpl<MachineCombinerPattern> &P) const override;
bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
bool isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const override;
unsigned isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
AAResults *AA) const override;
unsigned isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const override;
void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const override;
// Branch analysis.
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const override;
unsigned removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved = nullptr) const override;
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded = nullptr) const override;
// Select analysis.
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
unsigned, unsigned, unsigned, int &, int &,
int &) const override;
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const DebugLoc &DL, unsigned DstReg,
ArrayRef<MachineOperand> Cond, unsigned TrueReg,
unsigned FalseReg) const override;
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
2019-11-11 16:24:21 +08:00
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
bool KillSrc) const override;
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
Register SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
// Emits a register spill without updating the register class for vector
// registers. This ensures that when we spill a vector register the
// element order in the register is the same as it was in memory.
void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
Register DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
// Emits a register reload without updating the register class for vector
// registers. This ensures that when we reload a vector register the
// element order in the register is the same as it was in memory.
void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
unsigned getStoreOpcodeForSpill(unsigned Reg,
const TargetRegisterClass *RC = nullptr) const;
unsigned getLoadOpcodeForSpill(unsigned Reg,
const TargetRegisterClass *RC = nullptr) const;
bool
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
MachineRegisterInfo *MRI) const override;
// If conversion by predication (only supported by some branch instructions).
// All of the profitability checks always return true; it is always
// profitable to use the predicated branches.
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles, unsigned ExtraPredCycles,
BranchProbability Probability) const override {
return true;
}
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumT, unsigned ExtraT,
MachineBasicBlock &FMBB,
unsigned NumF, unsigned ExtraF,
BranchProbability Probability) const override;
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const override {
return true;
}
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const override {
return false;
}
// Predication support.
bool isPredicated(const MachineInstr &MI) const override;
bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
bool PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Pred) const override;
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const override;
bool DefinesPredicate(MachineInstr &MI,
std::vector<MachineOperand> &Pred) const override;
// Comparison optimization.
bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
unsigned &SrcReg2, int &Mask, int &Value) const override;
bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
unsigned SrcReg2, int Mask, int Value,
const MachineRegisterInfo *MRI) const override;
/// Return true if get the base operand, byte offset of an instruction and
/// the memory width. Width is the size of memory that is being
/// loaded/stored (e.g. 1, 2, 4, 8).
bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
const MachineOperand *&BaseOp,
int64_t &Offset, unsigned &Width,
const TargetRegisterInfo *TRI) const;
/// Return true if two MIs access different memory addresses and false
/// otherwise
bool
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
const MachineInstr &MIb) const override;
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
void getNoop(MCInst &NopInst) const override;
std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const override;
ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const override;
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
bool expandVSXMemPseudo(MachineInstr &MI) const;
// Lower pseudo instructions after register allocation.
bool expandPostRAPseudo(MachineInstr &MI) const override;
static bool isVFRegister(unsigned Reg) {
return Reg >= PPC::VF0 && Reg <= PPC::VF31;
}
static bool isVRRegister(unsigned Reg) {
return Reg >= PPC::V0 && Reg <= PPC::V31;
}
const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
static int getRecordFormOpcode(unsigned Opcode);
bool isTOCSaveMI(const MachineInstr &MI) const;
bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
const unsigned PhiDepth) const;
/// Return true if the output of the instruction is always a sign-extended,
/// i.e. 0 to 31-th bits are same as 32-th bit.
bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
return isSignOrZeroExtended(MI, true, depth);
}
/// Return true if the output of the instruction is always zero-extended,
/// i.e. 0 to 31-th bits are all zeros
bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
return isSignOrZeroExtended(MI, false, depth);
}
bool convertToImmediateForm(MachineInstr &MI,
MachineInstr **KilledDef = nullptr) const;
bool foldFrameOffset(MachineInstr &MI) const;
bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
unsigned &XFormOpcode,
int64_t &OffsetOfImmInstr,
ImmInstrInfo &III) const;
bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
MachineInstr *&ADDIMI, int64_t &OffsetAddi,
int64_t OffsetImm) const;
/// Fixup killed/dead flag for register \p RegNo between instructions [\p
/// StartMI, \p EndMI]. Some PostRA transformations may violate register
/// killed/dead flags semantics, this function can be called to fix up. Before
/// calling this function,
/// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
/// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
/// and possible definition for \p RegNo is \p StartMI or \p EndMI.
/// 3. Ensure that all instructions between [\p StartMI, \p EndMI] are in same
/// basic block.
void fixupIsDeadOrKill(MachineInstr &StartMI, MachineInstr &EndMI,
unsigned RegNo) const;
void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
int64_t Imm) const;
bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
bool PostRA) const;
// In PostRA phase, try to find instruction defines \p Reg before \p MI.
// \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
bool &SeenIntermediateUse) const;
/// getRegNumForOperand - some operands use different numbering schemes
/// for the same registers. For example, a VSX instruction may have any of
/// vs0-vs63 allocated whereas an Altivec instruction could only have
/// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
/// register number needed for the opcode/operand number combination.
/// The operand number argument will be useful when we need to extend this
/// to instructions that use both Altivec and VSX numbering (for different
/// operands).
static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
unsigned OpNo) {
int16_t regClass = Desc.OpInfo[OpNo].RegClass;
switch (regClass) {
// We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
// VSX32-VSX63 during encoding/disassembling
case PPC::VSSRCRegClassID:
case PPC::VSFRCRegClassID:
if (isVFRegister(Reg))
return PPC::VSX32 + (Reg - PPC::VF0);
break;
// We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
// VSX32-VSX63 during encoding/disassembling
case PPC::VSRCRegClassID:
if (isVRRegister(Reg))
return PPC::VSX32 + (Reg - PPC::V0);
break;
// Other RegClass doesn't need mapping
default:
break;
}
return Reg;
}
/// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
bool isBDNZ(unsigned Opcode) const;
/// Find the hardware loop instruction used to set-up the specified loop.
/// On PPC, we have two instructions used to set-up the hardware loop
/// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
/// instructions to indicate the end of a loop.
[MachinePipeliner] Improve the TargetInstrInfo API analyzeLoop/reduceLoopCount Recommit: fix asan errors. The way MachinePipeliner uses these target hooks is stateful - we reduce trip count by one per call to reduceLoopCount. It's a little overfit for hardware loops, where we don't have to worry about stitching a loop induction variable across prologs and epilogs (the induction variable is implicit). This patch introduces a new API: /// Analyze loop L, which must be a single-basic-block loop, and if the /// conditions can be understood enough produce a PipelinerLoopInfo object. virtual std::unique_ptr<PipelinerLoopInfo> analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const; The return value is expected to be an implementation of the abstract class: /// Object returned by analyzeLoopForPipelining. Allows software pipelining /// implementations to query attributes of the loop being pipelined. class PipelinerLoopInfo { public: virtual ~PipelinerLoopInfo(); /// Return true if the given instruction should not be pipelined and should /// be ignored. An example could be a loop comparison, or induction variable /// update with no users being pipelined. virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0; /// Create a condition to determine if the trip count of the loop is greater /// than TC. /// /// If the trip count is statically known to be greater than TC, return /// true. If the trip count is statically known to be not greater than TC, /// return false. Otherwise return nullopt and fill out Cond with the test /// condition. virtual Optional<bool> createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &Cond) = 0; /// Modify the loop such that the trip count is /// OriginalTC + TripCountAdjust. virtual void adjustTripCount(int TripCountAdjust) = 0; /// Called when the loop's preheader has been modified to NewPreheader. virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0; /// Called when the loop is being removed. virtual void disposed() = 0; }; The Pipeliner (ModuloSchedule.cpp) can use this object to modify the loop while allowing the target to hold its own state across all calls. This API, in particular the disjunction of creating a trip count check condition and adjusting the loop, improves the code quality in ModuloSchedule.cpp. llvm-svn: 372463
2019-09-21 16:19:41 +08:00
MachineInstr *
findLoopInstr(MachineBasicBlock &PreHeader,
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
/// Analyze loop L, which must be a single-basic-block loop, and if the
/// conditions can be understood enough produce a PipelinerLoopInfo object.
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
};
}
#endif