llvm-project/llvm/test/CodeGen/X86/mul-i256.ll

444 lines
18 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i386-unknown | FileCheck %s --check-prefix=X32
; RUN: llc < %s -mtriple=x86_64-unknown | FileCheck %s --check-prefix=X64
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @test(i256* %a, i256* %b, i256* %out) #0 {
; X32-LABEL: test:
; X32: # %bb.0: # %entry
; X32-NEXT: pushl %ebp
; X32-NEXT: .cfi_def_cfa_offset 8
; X32-NEXT: pushl %ebx
; X32-NEXT: .cfi_def_cfa_offset 12
; X32-NEXT: pushl %edi
; X32-NEXT: .cfi_def_cfa_offset 16
; X32-NEXT: pushl %esi
; X32-NEXT: .cfi_def_cfa_offset 20
; X32-NEXT: subl $88, %esp
; X32-NEXT: .cfi_def_cfa_offset 108
; X32-NEXT: .cfi_offset %esi, -20
; X32-NEXT: .cfi_offset %edi, -16
; X32-NEXT: .cfi_offset %ebx, -12
; X32-NEXT: .cfi_offset %ebp, -8
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl 12(%ecx), %ebp
; X32-NEXT: movl 8(%ecx), %edi
; X32-NEXT: movl %edi, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl (%eax), %ebx
; X32-NEXT: movl %ebx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %edi, %eax
; X32-NEXT: mull %ebx
; X32-NEXT: movl %edx, %ecx
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %ebp, %eax
; X32-NEXT: movl %ebp, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: mull %ebx
; X32-NEXT: movl %edx, %esi
; X32-NEXT: movl %eax, %ebx
; X32-NEXT: addl %ecx, %ebx
; X32-NEXT: adcl $0, %esi
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
; X32-NEXT: movl 4(%eax), %ecx
; X32-NEXT: movl %edi, %eax
; X32-NEXT: mull %ecx
; X32-NEXT: movl %ecx, %edi
; X32-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %edx, %ecx
; X32-NEXT: addl %ebx, %eax
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl %esi, %ecx
; X32-NEXT: setb {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Folded Spill
; X32-NEXT: movl %ebp, %eax
; X32-NEXT: mull %edi
; X32-NEXT: movl %edx, %ebx
; X32-NEXT: movl %eax, %edi
; X32-NEXT: addl %ecx, %edi
; X32-NEXT: movzbl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 1-byte Folded Reload
; X32-NEXT: adcl %eax, %ebx
; X32-NEXT: xorl %edx, %edx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: movl %ecx, %eax
; X32-NEXT: mull %edx
; X32-NEXT: movl %edx, %ebp
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %eax, %esi
; X32-NEXT: movl %eax, (%esp) # 4-byte Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: xorl %edx, %edx
; X32-NEXT: mull %edx
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: addl %esi, %eax
; X32-NEXT: adcl %ebp, %edx
; X32-NEXT: addl %edi, %eax
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl %ebx, %edx
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
; X32-NEXT: movl (%esi), %ebp
; X32-NEXT: movl %ebp, %eax
; X32-NEXT: movl %ebp, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: mull %ecx
; X32-NEXT: movl %ecx, %edi
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %edx, %ecx
; X32-NEXT: movl 4(%esi), %esi
; X32-NEXT: movl %esi, %eax
; X32-NEXT: movl %esi, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: mull %edi
; X32-NEXT: movl %edx, %edi
; X32-NEXT: movl %eax, %ebx
; X32-NEXT: addl %ecx, %ebx
; X32-NEXT: adcl $0, %edi
; X32-NEXT: movl %ebp, %eax
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ebp # 4-byte Reload
; X32-NEXT: mull %ebp
; X32-NEXT: movl %edx, %ecx
; X32-NEXT: addl %ebx, %eax
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl %edi, %ecx
; X32-NEXT: setb %bl
; X32-NEXT: movl %esi, %eax
; X32-NEXT: mull %ebp
; X32-NEXT: movl %edx, %edi
; X32-NEXT: movl %eax, %ebp
; X32-NEXT: addl %ecx, %ebp
; X32-NEXT: movzbl %bl, %eax
; X32-NEXT: adcl %eax, %edi
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Reload
; X32-NEXT: movl %esi, %eax
; X32-NEXT: xorl %edx, %edx
; X32-NEXT: mull %edx
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl (%esp), %ecx # 4-byte Reload
; X32-NEXT: addl %eax, %ecx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: adcl %edx, %eax
; X32-NEXT: addl %ebp, %ecx
; X32-NEXT: adcl %edi, %eax
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Folded Reload
; X32-NEXT: movl %ecx, (%esp) # 4-byte Spill
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl $0, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Spill
; X32-NEXT: adcl $0, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Spill
; X32-NEXT: movl {{[0-9]+}}(%esp), %edi
; X32-NEXT: movl 8(%edi), %ebx
; X32-NEXT: movl %esi, %eax
; X32-NEXT: movl %esi, %ecx
; X32-NEXT: mull %ebx
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: mull %ebx
; X32-NEXT: movl %edx, %ebp
; X32-NEXT: movl %eax, %esi
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Folded Reload
; X32-NEXT: adcl $0, %ebp
; X32-NEXT: movl 12(%edi), %edi
; X32-NEXT: movl %ecx, %eax
; X32-NEXT: mull %edi
; X32-NEXT: movl %edi, %ecx
; X32-NEXT: movl %edi, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %edx, %edi
; X32-NEXT: addl %esi, %eax
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl %ebp, %edi
; X32-NEXT: setb {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Folded Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: mull %ecx
; X32-NEXT: movl %edx, %esi
; X32-NEXT: movl %eax, %ebp
; X32-NEXT: addl %edi, %ebp
; X32-NEXT: movzbl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 1-byte Folded Reload
; X32-NEXT: adcl %eax, %esi
; X32-NEXT: movl %ebx, %edi
; X32-NEXT: movl %ebx, %eax
; X32-NEXT: xorl %ecx, %ecx
; X32-NEXT: mull %ecx
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ebx # 4-byte Reload
; X32-NEXT: addl %eax, %ebx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: adcl %edx, %eax
; X32-NEXT: addl %ebp, %ebx
; X32-NEXT: adcl %esi, %eax
; X32-NEXT: movl (%esp), %ecx # 4-byte Reload
; X32-NEXT: addl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: adcl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Spill
; X32-NEXT: adcl $0, %ebx
; X32-NEXT: adcl $0, %eax
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %ebx # 4-byte Folded Reload
; X32-NEXT: movl %ebx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: setb (%esp) # 1-byte Folded Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Reload
; X32-NEXT: movl %esi, %eax
; X32-NEXT: movl %edi, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: mull %edi
; X32-NEXT: movl %edx, %ebx
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: movl %ecx, %eax
; X32-NEXT: mull %edi
; X32-NEXT: movl %edx, %edi
; X32-NEXT: movl %eax, %ebp
; X32-NEXT: addl %ebx, %ebp
; X32-NEXT: adcl $0, %edi
; X32-NEXT: movl %esi, %eax
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ebx # 4-byte Reload
; X32-NEXT: mull %ebx
; X32-NEXT: movl %edx, %esi
; X32-NEXT: addl %ebp, %eax
; X32-NEXT: movl %eax, %ebp
; X32-NEXT: adcl %edi, %esi
; X32-NEXT: setb {{[-0-9]+}}(%e{{[sb]}}p) # 1-byte Folded Spill
; X32-NEXT: movl %ecx, %eax
; X32-NEXT: mull %ebx
; X32-NEXT: addl %esi, %eax
; X32-NEXT: movzbl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 1-byte Folded Reload
; X32-NEXT: adcl %esi, %edx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Reload
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Folded Reload
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Folded Reload
; X32-NEXT: addl %eax, %esi
; X32-NEXT: adcl %edx, %ecx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: addl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Folded Spill
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %ebp # 4-byte Folded Reload
; X32-NEXT: movl %ebp, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movzbl (%esp), %eax # 1-byte Folded Reload
; X32-NEXT: adcl %eax, %esi
; X32-NEXT: movl %esi, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl $0, %ecx
; X32-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl 16(%ecx), %esi
; X32-NEXT: imull %esi, %ebx
; X32-NEXT: movl %esi, %eax
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edi # 4-byte Reload
; X32-NEXT: mull %edi
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: addl %ebx, %edx
; X32-NEXT: movl 20(%ecx), %eax
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: imull %eax, %edi
; X32-NEXT: addl %edx, %edi
; X32-NEXT: movl %edi, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl 24(%ecx), %eax
; X32-NEXT: movl %ecx, %ebp
; X32-NEXT: movl %eax, %edi
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: imull %ecx, %edi
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ebx # 4-byte Reload
; X32-NEXT: mull %ebx
; X32-NEXT: movl %eax, (%esp) # 4-byte Spill
; X32-NEXT: addl %edi, %edx
; X32-NEXT: movl 28(%ebp), %ebp
; X32-NEXT: imull %ebx, %ebp
; X32-NEXT: addl %edx, %ebp
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edx # 4-byte Reload
; X32-NEXT: addl %edx, (%esp) # 4-byte Folded Spill
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %ebp # 4-byte Folded Reload
; X32-NEXT: movl %ebx, %eax
; X32-NEXT: mull %esi
; X32-NEXT: movl %edx, %ebx
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %ecx, %eax
; X32-NEXT: mull %esi
; X32-NEXT: movl %edx, %ecx
; X32-NEXT: movl %eax, %edi
; X32-NEXT: addl %ebx, %edi
; X32-NEXT: adcl $0, %ecx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ebx # 4-byte Reload
; X32-NEXT: mull %ebx
; X32-NEXT: movl %edx, %esi
; X32-NEXT: addl %edi, %eax
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl %ecx, %esi
; X32-NEXT: setb %cl
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: mull %ebx
; X32-NEXT: addl %esi, %eax
; X32-NEXT: movzbl %cl, %ecx
; X32-NEXT: adcl %ecx, %edx
; X32-NEXT: addl (%esp), %eax # 4-byte Folded Reload
; X32-NEXT: movl %eax, (%esp) # 4-byte Spill
; X32-NEXT: adcl %ebp, %edx
; X32-NEXT: movl %edx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl {{[0-9]+}}(%esp), %ebx
; X32-NEXT: movl 28(%ebx), %ecx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Reload
; X32-NEXT: imull %esi, %ecx
; X32-NEXT: movl 24(%ebx), %edi
; X32-NEXT: movl %esi, %eax
; X32-NEXT: mull %edi
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: addl %ecx, %edx
; X32-NEXT: imull {{[-0-9]+}}(%e{{[sb]}}p), %edi # 4-byte Folded Reload
; X32-NEXT: addl %edx, %edi
; X32-NEXT: movl 16(%ebx), %ebp
; X32-NEXT: movl 20(%ebx), %ebx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: movl %eax, %ecx
; X32-NEXT: imull %ebx, %ecx
; X32-NEXT: movl %ebx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: mull %ebp
; X32-NEXT: addl %ecx, %edx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: imull %ebp, %ecx
; X32-NEXT: addl %edx, %ecx
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: adcl %edi, %ecx
; X32-NEXT: movl %ecx, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %ebp, %eax
; X32-NEXT: mull %esi
; X32-NEXT: movl %edx, %edi
; X32-NEXT: movl %eax, {{[-0-9]+}}(%e{{[sb]}}p) # 4-byte Spill
; X32-NEXT: movl %ebx, %eax
; X32-NEXT: mull %esi
; X32-NEXT: movl %edx, %ecx
; X32-NEXT: movl %eax, %ebx
; X32-NEXT: addl %edi, %ebx
; X32-NEXT: adcl $0, %ecx
; X32-NEXT: movl %ebp, %eax
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ebp # 4-byte Reload
; X32-NEXT: mull %ebp
; X32-NEXT: movl %edx, %edi
; X32-NEXT: movl %eax, %esi
; X32-NEXT: addl %ebx, %esi
; X32-NEXT: adcl %ecx, %edi
; X32-NEXT: setb %cl
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Reload
; X32-NEXT: mull %ebp
; X32-NEXT: addl %edi, %eax
; X32-NEXT: movzbl %cl, %ecx
; X32-NEXT: adcl %ecx, %edx
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %edx # 4-byte Folded Reload
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Reload
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Folded Reload
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Folded Reload
; X32-NEXT: adcl (%esp), %eax # 4-byte Folded Reload
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %edx # 4-byte Folded Reload
; X32-NEXT: addl {{[-0-9]+}}(%e{{[sb]}}p), %ecx # 4-byte Folded Reload
; X32-NEXT: movl %ecx, %ebx
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %esi # 4-byte Folded Reload
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %eax # 4-byte Folded Reload
; X32-NEXT: adcl {{[-0-9]+}}(%e{{[sb]}}p), %edx # 4-byte Folded Reload
; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edi # 4-byte Reload
; X32-NEXT: movl %edi, (%ecx)
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edi # 4-byte Reload
; X32-NEXT: movl %edi, 4(%ecx)
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edi # 4-byte Reload
; X32-NEXT: movl %edi, 8(%ecx)
; X32-NEXT: movl {{[-0-9]+}}(%e{{[sb]}}p), %edi # 4-byte Reload
; X32-NEXT: movl %edi, 12(%ecx)
; X32-NEXT: movl %ebx, 16(%ecx)
; X32-NEXT: movl %esi, 20(%ecx)
; X32-NEXT: movl %eax, 24(%ecx)
; X32-NEXT: movl %edx, 28(%ecx)
; X32-NEXT: addl $88, %esp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa_offset 20
; X32-NEXT: popl %esi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa_offset 16
; X32-NEXT: popl %edi
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa_offset 12
; X32-NEXT: popl %ebx
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa_offset 8
; X32-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X32-NEXT: .cfi_def_cfa_offset 4
; X32-NEXT: retl
;
; X64-LABEL: test:
; X64: # %bb.0: # %entry
; X64-NEXT: pushq %r15
; X64-NEXT: .cfi_def_cfa_offset 16
; X64-NEXT: pushq %r14
; X64-NEXT: .cfi_def_cfa_offset 24
; X64-NEXT: pushq %rbx
; X64-NEXT: .cfi_def_cfa_offset 32
; X64-NEXT: .cfi_offset %rbx, -32
; X64-NEXT: .cfi_offset %r14, -24
; X64-NEXT: .cfi_offset %r15, -16
; X64-NEXT: movq %rdx, %r9
; X64-NEXT: movq (%rdi), %r11
; X64-NEXT: movq 8(%rdi), %r8
; X64-NEXT: movq 16(%rdi), %rbx
; X64-NEXT: movq 16(%rsi), %r10
; X64-NEXT: movq (%rsi), %rcx
; X64-NEXT: movq 8(%rsi), %r15
; X64-NEXT: movq 24(%rdi), %rdi
; X64-NEXT: imulq %rcx, %rdi
; X64-NEXT: movq %rcx, %rax
; X64-NEXT: mulq %rbx
; X64-NEXT: movq %rax, %r14
; X64-NEXT: addq %rdi, %rdx
; X64-NEXT: imulq %r15, %rbx
; X64-NEXT: addq %rdx, %rbx
; X64-NEXT: movq %r10, %rdi
; X64-NEXT: imulq %r8, %rdi
; X64-NEXT: movq %r10, %rax
; X64-NEXT: mulq %r11
; X64-NEXT: movq %rax, %r10
; X64-NEXT: addq %rdi, %rdx
; X64-NEXT: movq 24(%rsi), %rdi
; X64-NEXT: imulq %r11, %rdi
; X64-NEXT: addq %rdx, %rdi
; X64-NEXT: addq %r14, %r10
; X64-NEXT: adcq %rbx, %rdi
; X64-NEXT: movq %r11, %rax
; X64-NEXT: mulq %rcx
; X64-NEXT: movq %rdx, %rsi
; X64-NEXT: movq %rax, %r14
; X64-NEXT: movq %r8, %rax
; X64-NEXT: mulq %rcx
; X64-NEXT: movq %rdx, %rcx
; X64-NEXT: movq %rax, %rbx
; X64-NEXT: addq %rsi, %rbx
; X64-NEXT: adcq $0, %rcx
; X64-NEXT: movq %r11, %rax
; X64-NEXT: mulq %r15
; X64-NEXT: movq %rdx, %rsi
; X64-NEXT: movq %rax, %r11
; X64-NEXT: addq %rbx, %r11
; X64-NEXT: adcq %rcx, %rsi
; X64-NEXT: setb %al
; X64-NEXT: movzbl %al, %ecx
; X64-NEXT: movq %r8, %rax
; X64-NEXT: mulq %r15
; X64-NEXT: addq %rsi, %rax
; X64-NEXT: adcq %rcx, %rdx
; X64-NEXT: addq %r10, %rax
; X64-NEXT: adcq %rdi, %rdx
; X64-NEXT: movq %r14, (%r9)
; X64-NEXT: movq %r11, 8(%r9)
; X64-NEXT: movq %rax, 16(%r9)
; X64-NEXT: movq %rdx, 24(%r9)
; X64-NEXT: popq %rbx
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X64-NEXT: .cfi_def_cfa_offset 24
; X64-NEXT: popq %r14
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X64-NEXT: .cfi_def_cfa_offset 16
; X64-NEXT: popq %r15
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; X64-NEXT: .cfi_def_cfa_offset 8
; X64-NEXT: retq
entry:
%av = load i256, i256* %a
%bv = load i256, i256* %b
%r = mul i256 %av, %bv
store i256 %r, i256* %out
ret void
}
attributes #0 = { norecurse nounwind uwtable }