llvm-project/llvm/test/Transforms/CodeGenPrepare/X86/catchpad-phi-cast.ll

118 lines
3.8 KiB
LLVM
Raw Normal View History

; RUN: opt -codegenprepare -S < %s | FileCheck %s
; The following target lines are needed for the test to exercise what it should.
; Without these lines, CodeGenPrepare does not try to sink the bitcasts.
target datalayout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc"
declare i32 @__CxxFrameHandler3(...)
declare void @f()
declare void @g(i8*)
declare void @llvm.dbg.value(metadata, i64, metadata, metadata) #2
; CodeGenPrepare will want to sink these bitcasts, but it selects the catchpad
; blocks as the place to which the bitcast should be sunk. Since catchpads
; do not allow non-phi instructions before the terminator, this isn't possible.
; CHECK-LABEL: @test(
define void @test(i32* %addr) personality i32 (...)* @__CxxFrameHandler3 {
entry:
%x = getelementptr i32, i32* %addr, i32 1
%p1 = bitcast i32* %x to i8*
invoke void @f()
to label %invoke.cont unwind label %catch1
; CHECK: invoke.cont:
; CHECK-NEXT: %y = getelementptr i32, i32* %addr, i32 2
invoke.cont:
%y = getelementptr i32, i32* %addr, i32 2
%p2 = bitcast i32* %y to i8*
invoke void @f()
to label %done unwind label %catch2
done:
ret void
catch1:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
%cs1 = catchswitch within none [label %handler1] unwind to caller
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
handler1:
%cp1 = catchpad within %cs1 []
br label %catch.shared
; CHECK: handler1:
; CHECK-NEXT: catchpad within %cs1
; CHECK: %[[p1:[0-9]+]] = bitcast i32* %x to i8*
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
catch2:
%cs2 = catchswitch within none [label %handler2] unwind to caller
handler2:
%cp2 = catchpad within %cs2 []
br label %catch.shared
; CHECK: handler2:
; CHECK: catchpad within %cs2
; CHECK: %[[p2:[0-9]+]] = bitcast i32* %y to i8*
; CHECK: catch.shared:
; CHECK-NEXT: %p = phi i8* [ %[[p1]], %handler1 ], [ %[[p2]], %handler2 ]
catch.shared:
%p = phi i8* [ %p1, %handler1 ], [ %p2, %handler2 ]
call void @g(i8* %p)
unreachable
}
; CodeGenPrepare will want to hoist these llvm.dbg.value calls to the phi, but
; there is no insertion point in a catchpad block.
; CHECK-LABEL: @test_dbg_value(
define void @test_dbg_value() personality i32 (...)* @__CxxFrameHandler3 {
entry:
%a = alloca i8
%b = alloca i8
invoke void @f() to label %next unwind label %catch.dispatch
next:
invoke void @f() to label %ret unwind label %catch.dispatch
ret:
ret void
catch.dispatch:
%p = phi i8* [%a, %entry], [%b, %next]
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
%cs1 = catchswitch within none [label %catch] unwind to caller
catch:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
%cp1 = catchpad within %cs1 []
tail call void @llvm.dbg.value(metadata i8* %p, i64 0, metadata !11, metadata !13), !dbg !14
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
call void @g(i8* %p)
catchret from %cp1 to label %ret
; CHECK: catch.dispatch:
; CHECK-NEXT: phi i8
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
; CHECK-NEXT: catchswitch
; CHECK-NOT: llvm.dbg.value
; CHECK: catch:
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 13:38:55 +08:00
; CHECK-NEXT: catchpad
; CHECK-NEXT: call void @llvm.dbg.value
}
!llvm.dbg.cu = !{!0}
!llvm.module.flags = !{!7, !8, !9}
!llvm.ident = !{!10}
!0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.8.0 (trunk 254906) (llvm/trunk 254917)", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: null)
!1 = !DIFile(filename: "t.c", directory: "D:\5Csrc\5Cllvm\5Cbuild")
!4 = distinct !DISubprogram(name: "test_dbg_value", scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, variables: null)
!5 = !DISubroutineType(types: !6)
!6 = !{null}
!7 = !{i32 2, !"Dwarf Version", i32 4}
!8 = !{i32 2, !"Debug Info Version", i32 3}
!9 = !{i32 1, !"PIC Level", i32 2}
!10 = !{!"clang version 3.8.0 (trunk 254906) (llvm/trunk 254917)"}
!11 = !DILocalVariable(name: "p", scope: !4, file: !1, line: 2, type: !12)
!12 = !DIBasicType(name: "char", size: 8, align: 8, encoding: DW_ATE_signed_char)
Reapply r257105 "[Verifier] Check that debug values have proper size" I originally reapplied this in 257550, but had to revert again due to bot breakage. The only change in this version is to allow either the TypeSize or the TypeAllocSize of the variable to be the one represented in debug info (hopefully in the future we can figure out how to encode the difference). Additionally, several bot failures following r257550, were due to optimizer bugs now fixed in r257787 and r257795. r257550 commit message was: ``` The follow extra changes were made to test cases: Manually making the variable be the actual type instead of a pointer to avoid pointer-size differences in generic code: LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll LLVM :: DebugInfo/Generic/varargs.ll Delete sizing information from debug info for the same reason (but the presence of the pointer was important to the test case): LLVM :: DebugInfo/Generic/restrict.ll LLVM :: DebugInfo/Generic/tu-composite.ll LLVM :: Linker/type-unique-type-array-a.ll LLVM :: Linker/type-unique-simple2.ll Fixing an incorrect DW_OP_deref LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll Fixing a missing DW_OP_deref LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll Additionally, clang should no longer complain during bootstrap should no longer happen after r257534. The original commit message was: `` Summary: Teach the Verifier to make sure that the storage size given to llvm.dbg.declare or the value size given to llvm.dbg.value agree with what is declared in DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA). Additionally this catches a number of common mistakes, such as passing a pointer when a value was intended or vice versa. One complication comes from stack coloring which modifies the original IR when it merges allocas in order to make sure that if AA falls back to the IR it gets the correct result. However, given this new invariant, indiscriminately replacing one alloca by a different (differently sized one) is no longer valid. Fix this by just undefing out any use of the alloca in a dbg.declare in this case. Additionally, I had to fix a number of test cases. Of particular note: - I regenerated dbg-changes-codegen-branch-folding.ll from the given source as it was affected by the bug fixed in r256077 - two-cus-from-same-file.ll was changed to avoid having a variable-typed debug variable as that would depend on the target, even though this test is supposed to be generic - I had to manually declared size/align for reference type. See also the discussion for D14275/r253186. - fpstack-debuginstr-kill.ll required changing `double` to `long double` - most others were just a question of adding OP_deref `` ``` llvm-svn: 257850
2016-01-15 08:46:17 +08:00
!13 = !DIExpression(DW_OP_deref)
!14 = !DILocation(line: 2, column: 8, scope: !4)
!15 = !DILocation(line: 3, column: 1, scope: !4)