llvm-project/llvm/lib/DebugInfo/DWARF/DWARFContext.cpp

1575 lines
57 KiB
C++
Raw Normal View History

//===- DWARFContext.cpp ---------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocVisitor.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 06:55:11 +08:00
#define DEBUG_TYPE "dwarf"
using DWARFLineTable = DWARFDebugLine::LineTable;
using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind;
using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind;
DWARFContext::DWARFContext(std::unique_ptr<const DWARFObject> DObj,
std::string DWPName)
: DIContext(CK_DWARF), DWPName(std::move(DWPName)), DObj(std::move(DObj)) {}
DWARFContext::~DWARFContext() = default;
/// Dump the UUID load command.
static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) {
auto *MachO = dyn_cast<MachOObjectFile>(&Obj);
if (!MachO)
return;
for (auto LC : MachO->load_commands()) {
raw_ostream::uuid_t UUID;
if (LC.C.cmd == MachO::LC_UUID) {
if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) {
OS << "error: UUID load command is too short.\n";
return;
}
OS << "UUID: ";
memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID));
OS.write_uuid(UUID);
Triple T = MachO->getArchTriple();
OS << " (" << T.getArchName() << ')';
OS << ' ' << MachO->getFileName() << '\n';
}
}
}
using ContributionCollection =
std::vector<Optional<StrOffsetsContributionDescriptor>>;
// Collect all the contributions to the string offsets table from all units,
// sort them by their starting offsets and remove duplicates.
static ContributionCollection
collectContributionData(DWARFContext::cu_iterator_range CUs,
DWARFContext::tu_section_iterator_range TUSs) {
ContributionCollection Contributions;
for (const auto &CU : CUs)
Contributions.push_back(CU->getStringOffsetsTableContribution());
for (const auto &TUS : TUSs)
for (const auto &TU : TUS)
Contributions.push_back(TU->getStringOffsetsTableContribution());
// Sort the contributions so that any invalid ones are placed at
// the start of the contributions vector. This way they are reported
// first.
llvm::sort(Contributions.begin(), Contributions.end(),
[](const Optional<StrOffsetsContributionDescriptor> &L,
const Optional<StrOffsetsContributionDescriptor> &R) {
if (L && R) return L->Base < R->Base;
return R.hasValue();
});
// Uniquify contributions, as it is possible that units (specifically
// type units in dwo or dwp files) share contributions. We don't want
// to report them more than once.
Contributions.erase(
std::unique(Contributions.begin(), Contributions.end(),
[](const Optional<StrOffsetsContributionDescriptor> &L,
const Optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base == R->Base && L->Size == R->Size;
return false;
}),
Contributions.end());
return Contributions;
}
static void dumpDWARFv5StringOffsetsSection(
raw_ostream &OS, StringRef SectionName, const DWARFObject &Obj,
const DWARFSection &StringOffsetsSection, StringRef StringSection,
DWARFContext::cu_iterator_range CUs,
DWARFContext::tu_section_iterator_range TUSs, bool LittleEndian) {
auto Contributions = collectContributionData(CUs, TUSs);
DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0);
DataExtractor StrData(StringSection, LittleEndian, 0);
uint64_t SectionSize = StringOffsetsSection.Data.size();
uint32_t Offset = 0;
for (auto &Contribution : Contributions) {
// Report an ill-formed contribution.
if (!Contribution) {
OS << "error: invalid contribution to string offsets table in section ."
<< SectionName << ".\n";
return;
}
dwarf::DwarfFormat Format = Contribution->getFormat();
uint16_t Version = Contribution->getVersion();
uint64_t ContributionHeader = Contribution->Base;
// In DWARF v5 there is a contribution header that immediately precedes
// the string offsets base (the location we have previously retrieved from
// the CU DIE's DW_AT_str_offsets attribute). The header is located either
// 8 or 16 bytes before the base, depending on the contribution's format.
if (Version >= 5)
ContributionHeader -= Format == DWARF32 ? 8 : 16;
// Detect overlapping contributions.
if (Offset > ContributionHeader) {
OS << "error: overlapping contributions to string offsets table in "
"section ."
<< SectionName << ".\n";
return;
}
// Report a gap in the table.
if (Offset < ContributionHeader) {
OS << format("0x%8.8x: Gap, length = ", Offset);
OS << (ContributionHeader - Offset) << "\n";
}
OS << format("0x%8.8x: ", (uint32_t)ContributionHeader);
OS << "Contribution size = " << Contribution->Size
<< ", Format = " << (Format == DWARF32 ? "DWARF32" : "DWARF64")
<< ", Version = " << Version << "\n";
Offset = Contribution->Base;
unsigned EntrySize = Contribution->getDwarfOffsetByteSize();
while (Offset - Contribution->Base < Contribution->Size) {
OS << format("0x%8.8x: ", Offset);
// FIXME: We can only extract strings if the offset fits in 32 bits.
uint64_t StringOffset =
StrOffsetExt.getRelocatedValue(EntrySize, &Offset);
// Extract the string if we can and display it. Otherwise just report
// the offset.
if (StringOffset <= std::numeric_limits<uint32_t>::max()) {
uint32_t StringOffset32 = (uint32_t)StringOffset;
OS << format("%8.8x ", StringOffset32);
const char *S = StrData.getCStr(&StringOffset32);
if (S)
OS << format("\"%s\"", S);
} else
OS << format("%16.16" PRIx64 " ", StringOffset);
OS << "\n";
}
}
// Report a gap at the end of the table.
if (Offset < SectionSize) {
OS << format("0x%8.8x: Gap, length = ", Offset);
OS << (SectionSize - Offset) << "\n";
}
}
// Dump a DWARF string offsets section. This may be a DWARF v5 formatted
// string offsets section, where each compile or type unit contributes a
// number of entries (string offsets), with each contribution preceded by
// a header containing size and version number. Alternatively, it may be a
// monolithic series of string offsets, as generated by the pre-DWARF v5
// implementation of split DWARF.
static void dumpStringOffsetsSection(
raw_ostream &OS, StringRef SectionName, const DWARFObject &Obj,
const DWARFSection &StringOffsetsSection, StringRef StringSection,
DWARFContext::cu_iterator_range CUs,
DWARFContext::tu_section_iterator_range TUSs, bool LittleEndian,
unsigned MaxVersion) {
// If we have at least one (compile or type) unit with DWARF v5 or greater,
// we assume that the section is formatted like a DWARF v5 string offsets
// section.
if (MaxVersion >= 5)
dumpDWARFv5StringOffsetsSection(OS, SectionName, Obj, StringOffsetsSection,
StringSection, CUs, TUSs, LittleEndian);
else {
DataExtractor strOffsetExt(StringOffsetsSection.Data, LittleEndian, 0);
uint32_t offset = 0;
uint64_t size = StringOffsetsSection.Data.size();
// Ensure that size is a multiple of the size of an entry.
if (size & ((uint64_t)(sizeof(uint32_t) - 1))) {
OS << "error: size of ." << SectionName << " is not a multiple of "
<< sizeof(uint32_t) << ".\n";
size &= -(uint64_t)sizeof(uint32_t);
}
DataExtractor StrData(StringSection, LittleEndian, 0);
while (offset < size) {
OS << format("0x%8.8x: ", offset);
uint32_t StringOffset = strOffsetExt.getU32(&offset);
OS << format("%8.8x ", StringOffset);
const char *S = StrData.getCStr(&StringOffset);
if (S)
OS << format("\"%s\"", S);
OS << "\n";
}
}
}
// We want to supply the Unit associated with a .debug_line[.dwo] table when
// we dump it, if possible, but still dump the table even if there isn't a Unit.
// Therefore, collect up handles on all the Units that point into the
// line-table section.
typedef std::map<uint64_t, DWARFUnit *> LineToUnitMap;
static LineToUnitMap
buildLineToUnitMap(DWARFContext::cu_iterator_range CUs,
DWARFContext::tu_section_iterator_range TUSections) {
LineToUnitMap LineToUnit;
for (const auto &CU : CUs)
if (auto CUDIE = CU->getUnitDIE())
if (auto StmtOffset = toSectionOffset(CUDIE.find(DW_AT_stmt_list)))
LineToUnit.insert(std::make_pair(*StmtOffset, &*CU));
for (const auto &TUS : TUSections)
for (const auto &TU : TUS)
if (auto TUDIE = TU->getUnitDIE())
if (auto StmtOffset = toSectionOffset(TUDIE.find(DW_AT_stmt_list)))
LineToUnit.insert(std::make_pair(*StmtOffset, &*TU));
return LineToUnit;
}
void DWARFContext::dump(
raw_ostream &OS, DIDumpOptions DumpOpts,
std::array<Optional<uint64_t>, DIDT_ID_Count> DumpOffsets) {
Optional<uint64_t> DumpOffset;
uint64_t DumpType = DumpOpts.DumpType;
StringRef Extension = sys::path::extension(DObj->getFileName());
bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp");
// Print UUID header.
const auto *ObjFile = DObj->getFile();
if (DumpType & DIDT_UUID)
dumpUUID(OS, *ObjFile);
// Print a header for each explicitly-requested section.
// Otherwise just print one for non-empty sections.
// Only print empty .dwo section headers when dumping a .dwo file.
bool Explicit = DumpType != DIDT_All && !IsDWO;
bool ExplicitDWO = Explicit && IsDWO;
auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID,
StringRef Section) {
DumpOffset = DumpOffsets[ID];
unsigned Mask = 1U << ID;
bool Should = (DumpType & Mask) && (Explicit || !Section.empty());
if (Should)
OS << "\n" << Name << " contents:\n";
return Should;
};
// Dump individual sections.
if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev,
DObj->getAbbrevSection()))
getDebugAbbrev()->dump(OS);
if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev,
DObj->getAbbrevDWOSection()))
getDebugAbbrevDWO()->dump(OS);
auto dumpDebugInfo = [&](bool IsExplicit, const char *Name,
DWARFSection Section, cu_iterator_range CUs) {
if (shouldDump(IsExplicit, Name, DIDT_ID_DebugInfo, Section.Data)) {
if (DumpOffset)
getDIEForOffset(DumpOffset.getValue())
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
for (const auto &CU : CUs)
CU->dump(OS, DumpOpts);
}
};
dumpDebugInfo(Explicit, ".debug_info", DObj->getInfoSection(),
compile_units());
dumpDebugInfo(ExplicitDWO, ".debug_info.dwo", DObj->getInfoDWOSection(),
dwo_compile_units());
auto dumpDebugType = [&](const char *Name,
tu_section_iterator_range TUSections) {
OS << '\n' << Name << " contents:\n";
DumpOffset = DumpOffsets[DIDT_ID_DebugTypes];
for (const auto &TUS : TUSections)
for (const auto &TU : TUS)
if (DumpOffset)
TU->getDIEForOffset(*DumpOffset)
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
TU->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugTypes)) {
if (Explicit || getNumTypeUnits())
dumpDebugType(".debug_types", type_unit_sections());
if (ExplicitDWO || getNumDWOTypeUnits())
dumpDebugType(".debug_types.dwo", dwo_type_unit_sections());
}
if (shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc,
DObj->getLocSection().Data)) {
getDebugLoc()->dump(OS, getRegisterInfo(), DumpOffset);
}
if (shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc,
DObj->getLocDWOSection().Data)) {
getDebugLocDWO()->dump(OS, getRegisterInfo(), DumpOffset);
}
if (shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame,
DObj->getDebugFrameSection()))
getDebugFrame()->dump(OS, getRegisterInfo(), DumpOffset);
if (shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame,
DObj->getEHFrameSection()))
getEHFrame()->dump(OS, getRegisterInfo(), DumpOffset);
if (DumpType & DIDT_DebugMacro) {
if (Explicit || !getDebugMacro()->empty()) {
OS << "\n.debug_macinfo contents:\n";
getDebugMacro()->dump(OS);
}
}
if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges,
DObj->getARangeSection())) {
uint32_t offset = 0;
DataExtractor arangesData(DObj->getARangeSection(), isLittleEndian(), 0);
DWARFDebugArangeSet set;
while (set.extract(arangesData, &offset))
set.dump(OS);
}
if (shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine,
DObj->getLineSection().Data)) {
LineToUnitMap LineToUnit =
buildLineToUnitMap(compile_units(), type_unit_sections());
unsigned Offset = 0;
DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(),
0);
while (Offset < LineData.getData().size()) {
DWARFUnit *U = nullptr;
auto It = LineToUnit.find(Offset);
if (It != LineToUnit.end())
U = It->second;
LineData.setAddressSize(U ? U->getAddressByteSize() : 0);
DWARFDebugLine::LineTable LineTable;
if (DumpOffset && Offset != *DumpOffset) {
// Find the size of this part of the line table section and skip it.
unsigned OldOffset = Offset;
LineTable.Prologue.parse(LineData, &Offset, *this, U);
Offset = OldOffset + LineTable.Prologue.TotalLength +
LineTable.Prologue.sizeofTotalLength();
continue;
}
// Verbose dumping is done during parsing and not on the intermediate
// representation.
OS << "debug_line[" << format("0x%8.8x", Offset) << "]\n";
unsigned OldOffset = Offset;
if (DumpOpts.Verbose) {
LineTable.parse(LineData, &Offset, *this, U, &OS);
} else {
LineTable.parse(LineData, &Offset, *this, U);
LineTable.dump(OS, DIDumpOptions());
}
// Check for unparseable prologue, to avoid infinite loops.
if (OldOffset == Offset)
break;
}
}
if (shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine,
DObj->getLineDWOSection().Data)) {
LineToUnitMap LineToUnit =
buildLineToUnitMap(dwo_compile_units(), dwo_type_unit_sections());
unsigned Offset = 0;
DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(),
isLittleEndian(), 0);
while (Offset < LineData.getData().size()) {
DWARFUnit *U = nullptr;
auto It = LineToUnit.find(Offset);
if (It != LineToUnit.end())
U = It->second;
DWARFDebugLine::LineTable LineTable;
unsigned OldOffset = Offset;
if (!LineTable.Prologue.parse(LineData, &Offset, *this, U))
break;
if (!DumpOffset || OldOffset == *DumpOffset)
LineTable.dump(OS, DumpOpts);
}
}
if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex,
DObj->getCUIndexSection())) {
getCUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex,
DObj->getTUIndexSection())) {
getTUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr,
DObj->getStringSection())) {
DataExtractor strData(DObj->getStringSection(), isLittleEndian(), 0);
uint32_t offset = 0;
uint32_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8x: \"%s\"\n", strOffset, s);
strOffset = offset;
}
}
if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr,
DObj->getStringDWOSection())) {
DataExtractor strDWOData(DObj->getStringDWOSection(), isLittleEndian(), 0);
uint32_t offset = 0;
uint32_t strDWOOffset = 0;
while (const char *s = strDWOData.getCStr(&offset)) {
OS << format("0x%8.8x: \"%s\"\n", strDWOOffset, s);
strDWOOffset = offset;
}
}
if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr,
DObj->getLineStringSection())) {
DataExtractor strData(DObj->getLineStringSection(), isLittleEndian(), 0);
uint32_t offset = 0;
uint32_t strOffset = 0;
while (const char *s = strData.getCStr(&offset)) {
OS << format("0x%8.8x: \"", strOffset);
OS.write_escaped(s);
OS << "\"\n";
strOffset = offset;
}
}
if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges,
DObj->getRangeSection().Data)) {
// In fact, different compile units may have different address byte
// sizes, but for simplicity we just use the address byte size of the
// last compile unit (there is no easy and fast way to associate address
// range list and the compile unit it describes).
// FIXME: savedAddressByteSize seems sketchy.
uint8_t savedAddressByteSize = 0;
for (const auto &CU : compile_units()) {
savedAddressByteSize = CU->getAddressByteSize();
break;
}
DWARFDataExtractor rangesData(*DObj, DObj->getRangeSection(),
isLittleEndian(), savedAddressByteSize);
uint32_t offset = 0;
DWARFDebugRangeList rangeList;
while (rangeList.extract(rangesData, &offset))
rangeList.dump(OS);
}
if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists,
DObj->getRnglistsSection().Data)) {
DWARFDataExtractor rnglistData(*DObj, DObj->getRnglistsSection(),
isLittleEndian(), 0);
uint32_t Offset = 0;
while (rnglistData.isValidOffset(Offset)) {
DWARFDebugRnglistTable Rnglists;
uint32_t TableOffset = Offset;
if (Error Err = Rnglists.extract(rnglistData, &Offset)) {
errs() << "error: " + toString(std::move(Err)) << '\n';
uint64_t Length = Rnglists.length();
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (Length == 0)
break;
Offset = TableOffset + Length;
} else {
Rnglists.dump(OS, DumpOpts);
}
}
}
if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames,
DObj->getPubNamesSection()))
DWARFDebugPubTable(DObj->getPubNamesSection(), isLittleEndian(), false)
.dump(OS);
if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes,
DObj->getPubTypesSection()))
DWARFDebugPubTable(DObj->getPubTypesSection(), isLittleEndian(), false)
.dump(OS);
if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames,
DObj->getGnuPubNamesSection()))
DWARFDebugPubTable(DObj->getGnuPubNamesSection(), isLittleEndian(),
true /* GnuStyle */)
.dump(OS);
if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes,
DObj->getGnuPubTypesSection()))
DWARFDebugPubTable(DObj->getGnuPubTypesSection(), isLittleEndian(),
true /* GnuStyle */)
.dump(OS);
if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets,
DObj->getStringOffsetSection().Data))
dumpStringOffsetsSection(
OS, "debug_str_offsets", *DObj, DObj->getStringOffsetSection(),
DObj->getStringSection(), compile_units(), type_unit_sections(),
isLittleEndian(), getMaxVersion());
if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets,
DObj->getStringOffsetDWOSection().Data))
dumpStringOffsetsSection(
OS, "debug_str_offsets.dwo", *DObj, DObj->getStringOffsetDWOSection(),
DObj->getStringDWOSection(), dwo_compile_units(),
dwo_type_unit_sections(), isLittleEndian(), getMaxVersion());
if (shouldDump(Explicit, ".gnu_index", DIDT_ID_GdbIndex,
DObj->getGdbIndexSection())) {
getGdbIndex().dump(OS);
}
if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames,
DObj->getAppleNamesSection().Data))
getAppleNames().dump(OS);
if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes,
DObj->getAppleTypesSection().Data))
getAppleTypes().dump(OS);
if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces,
DObj->getAppleNamespacesSection().Data))
getAppleNamespaces().dump(OS);
if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC,
DObj->getAppleObjCSection().Data))
getAppleObjC().dump(OS);
if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames,
DObj->getDebugNamesSection().Data))
getDebugNames().dump(OS);
}
DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) {
DWOCUs.parseDWO(*this, DObj->getInfoDWOSection(), true);
if (const auto &CUI = getCUIndex()) {
if (const auto *R = CUI.getFromHash(Hash))
return DWOCUs.getUnitForIndexEntry(*R);
return nullptr;
}
// If there's no index, just search through the CUs in the DWO - there's
// probably only one unless this is something like LTO - though an in-process
// built/cached lookup table could be used in that case to improve repeated
// lookups of different CUs in the DWO.
for (const auto &DWOCU : dwo_compile_units())
if (DWOCU->getDWOId() == Hash)
return DWOCU.get();
return nullptr;
}
DWARFDie DWARFContext::getDIEForOffset(uint32_t Offset) {
parseCompileUnits();
if (auto *CU = CUs.getUnitForOffset(Offset))
return CU->getDIEForOffset(Offset);
return DWARFDie();
}
bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) {
bool Success = true;
DWARFVerifier verifier(OS, *this, DumpOpts);
Success &= verifier.handleDebugAbbrev();
if (DumpOpts.DumpType & DIDT_DebugInfo)
Success &= verifier.handleDebugInfo();
if (DumpOpts.DumpType & DIDT_DebugLine)
Success &= verifier.handleDebugLine();
Success &= verifier.handleAccelTables();
return Success;
}
const DWARFUnitIndex &DWARFContext::getCUIndex() {
if (CUIndex)
return *CUIndex;
DataExtractor CUIndexData(DObj->getCUIndexSection(), isLittleEndian(), 0);
CUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_INFO);
CUIndex->parse(CUIndexData);
return *CUIndex;
}
const DWARFUnitIndex &DWARFContext::getTUIndex() {
if (TUIndex)
return *TUIndex;
DataExtractor TUIndexData(DObj->getTUIndexSection(), isLittleEndian(), 0);
TUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_TYPES);
TUIndex->parse(TUIndexData);
return *TUIndex;
}
DWARFGdbIndex &DWARFContext::getGdbIndex() {
if (GdbIndex)
return *GdbIndex;
DataExtractor GdbIndexData(DObj->getGdbIndexSection(), true /*LE*/, 0);
GdbIndex = llvm::make_unique<DWARFGdbIndex>();
GdbIndex->parse(GdbIndexData);
return *GdbIndex;
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
if (Abbrev)
return Abbrev.get();
DataExtractor abbrData(DObj->getAbbrevSection(), isLittleEndian(), 0);
Abbrev.reset(new DWARFDebugAbbrev());
Abbrev->extract(abbrData);
return Abbrev.get();
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() {
if (AbbrevDWO)
return AbbrevDWO.get();
DataExtractor abbrData(DObj->getAbbrevDWOSection(), isLittleEndian(), 0);
AbbrevDWO.reset(new DWARFDebugAbbrev());
AbbrevDWO->extract(abbrData);
return AbbrevDWO.get();
}
const DWARFDebugLoc *DWARFContext::getDebugLoc() {
if (Loc)
return Loc.get();
Loc.reset(new DWARFDebugLoc);
// assume all compile units have the same address byte size
if (getNumCompileUnits()) {
DWARFDataExtractor LocData(*DObj, DObj->getLocSection(), isLittleEndian(),
getCompileUnitAtIndex(0)->getAddressByteSize());
Loc->parse(LocData);
}
return Loc.get();
}
const DWARFDebugLocDWO *DWARFContext::getDebugLocDWO() {
if (LocDWO)
return LocDWO.get();
DataExtractor LocData(DObj->getLocDWOSection().Data, isLittleEndian(), 0);
LocDWO.reset(new DWARFDebugLocDWO());
LocDWO->parse(LocData);
return LocDWO.get();
}
const DWARFDebugAranges *DWARFContext::getDebugAranges() {
if (Aranges)
return Aranges.get();
Aranges.reset(new DWARFDebugAranges());
Aranges->generate(this);
return Aranges.get();
}
const DWARFDebugFrame *DWARFContext::getDebugFrame() {
if (DebugFrame)
return DebugFrame.get();
// There's a "bug" in the DWARFv3 standard with respect to the target address
// size within debug frame sections. While DWARF is supposed to be independent
// of its container, FDEs have fields with size being "target address size",
// which isn't specified in DWARF in general. It's only specified for CUs, but
// .eh_frame can appear without a .debug_info section. Follow the example of
// other tools (libdwarf) and extract this from the container (ObjectFile
// provides this information). This problem is fixed in DWARFv4
// See this dwarf-discuss discussion for more details:
// http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html
DWARFDataExtractor debugFrameData(DObj->getDebugFrameSection(),
isLittleEndian(), DObj->getAddressSize());
DebugFrame.reset(new DWARFDebugFrame(false /* IsEH */));
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFDebugFrame *DWARFContext::getEHFrame() {
if (EHFrame)
return EHFrame.get();
DWARFDataExtractor debugFrameData(DObj->getEHFrameSection(), isLittleEndian(),
DObj->getAddressSize());
DebugFrame.reset(new DWARFDebugFrame(true /* IsEH */));
DebugFrame->parse(debugFrameData);
return DebugFrame.get();
}
const DWARFDebugMacro *DWARFContext::getDebugMacro() {
if (Macro)
return Macro.get();
DataExtractor MacinfoData(DObj->getMacinfoSection(), isLittleEndian(), 0);
Macro.reset(new DWARFDebugMacro());
Macro->parse(MacinfoData);
return Macro.get();
}
template <typename T>
static T &getAccelTable(std::unique_ptr<T> &Cache, const DWARFObject &Obj,
const DWARFSection &Section, StringRef StringSection,
bool IsLittleEndian) {
if (Cache)
return *Cache;
DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0);
DataExtractor StrData(StringSection, IsLittleEndian, 0);
Cache.reset(new T(AccelSection, StrData));
if (Error E = Cache->extract())
llvm::consumeError(std::move(E));
return *Cache;
}
const DWARFDebugNames &DWARFContext::getDebugNames() {
return getAccelTable(Names, *DObj, DObj->getDebugNamesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleNames() {
return getAccelTable(AppleNames, *DObj, DObj->getAppleNamesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleTypes() {
return getAccelTable(AppleTypes, *DObj, DObj->getAppleTypesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() {
return getAccelTable(AppleNamespaces, *DObj,
DObj->getAppleNamespacesSection(),
DObj->getStringSection(), isLittleEndian());
}
const AppleAcceleratorTable &DWARFContext::getAppleObjC() {
return getAccelTable(AppleObjC, *DObj, DObj->getAppleObjCSection(),
DObj->getStringSection(), isLittleEndian());
}
const DWARFLineTable *
DWARFContext::getLineTableForUnit(DWARFUnit *U) {
if (!Line)
Line.reset(new DWARFDebugLine);
auto UnitDIE = U->getUnitDIE();
if (!UnitDIE)
return nullptr;
auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list));
if (!Offset)
return nullptr; // No line table for this compile unit.
uint32_t stmtOffset = *Offset + U->getLineTableOffset();
// See if the line table is cached.
if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset))
return lt;
// Make sure the offset is good before we try to parse.
if (stmtOffset >= U->getLineSection().Data.size())
return nullptr;
// We have to parse it first.
DWARFDataExtractor lineData(*DObj, U->getLineSection(), isLittleEndian(),
U->getAddressByteSize());
return Line->getOrParseLineTable(lineData, stmtOffset, *this, U);
}
void DWARFContext::parseCompileUnits() {
CUs.parse(*this, DObj->getInfoSection());
}
void DWARFContext::parseTypeUnits() {
if (!TUs.empty())
return;
DObj->forEachTypesSections([&](const DWARFSection &S) {
TUs.emplace_back();
TUs.back().parse(*this, S);
});
}
void DWARFContext::parseDWOCompileUnits() {
DWOCUs.parseDWO(*this, DObj->getInfoDWOSection());
}
void DWARFContext::parseDWOTypeUnits() {
if (!DWOTUs.empty())
return;
DObj->forEachTypesDWOSections([&](const DWARFSection &S) {
DWOTUs.emplace_back();
DWOTUs.back().parseDWO(*this, S);
});
}
DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) {
parseCompileUnits();
return CUs.getUnitForOffset(Offset);
}
DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
// First, get the offset of the compile unit.
uint32_t CUOffset = getDebugAranges()->findAddress(Address);
// Retrieve the compile unit.
return getCompileUnitForOffset(CUOffset);
}
DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address) {
DIEsForAddress Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Result;
Result.CompileUnit = CU;
Result.FunctionDIE = CU->getSubroutineForAddress(Address);
std::vector<DWARFDie> Worklist;
Worklist.push_back(Result.FunctionDIE);
while (!Worklist.empty()) {
DWARFDie DIE = Worklist.back();
Worklist.pop_back();
if (DIE.getTag() == DW_TAG_lexical_block &&
DIE.addressRangeContainsAddress(Address)) {
Result.BlockDIE = DIE;
break;
}
for (auto Child : DIE)
Worklist.push_back(Child);
}
return Result;
}
static bool getFunctionNameAndStartLineForAddress(DWARFCompileUnit *CU,
uint64_t Address,
FunctionNameKind Kind,
std::string &FunctionName,
uint32_t &StartLine) {
// The address may correspond to instruction in some inlined function,
// so we have to build the chain of inlined functions and take the
// name of the topmost function in it.
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address, InlinedChain);
if (InlinedChain.empty())
return false;
const DWARFDie &DIE = InlinedChain[0];
bool FoundResult = false;
const char *Name = nullptr;
if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) {
FunctionName = Name;
FoundResult = true;
}
if (auto DeclLineResult = DIE.getDeclLine()) {
StartLine = DeclLineResult;
FoundResult = true;
}
return FoundResult;
}
DILineInfo DWARFContext::getLineInfoForAddress(uint64_t Address,
DILineInfoSpecifier Spec) {
DILineInfo Result;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Result;
getFunctionNameAndStartLineForAddress(CU, Address, Spec.FNKind,
Result.FunctionName,
Result.StartLine);
if (Spec.FLIKind != FileLineInfoKind::None) {
if (const DWARFLineTable *LineTable = getLineTableForUnit(CU))
LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(),
Spec.FLIKind, Result);
}
return Result;
}
DILineInfoTable
DWARFContext::getLineInfoForAddressRange(uint64_t Address, uint64_t Size,
DILineInfoSpecifier Spec) {
DILineInfoTable Lines;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return Lines;
std::string FunctionName = "<invalid>";
uint32_t StartLine = 0;
getFunctionNameAndStartLineForAddress(CU, Address, Spec.FNKind, FunctionName,
StartLine);
// If the Specifier says we don't need FileLineInfo, just
// return the top-most function at the starting address.
if (Spec.FLIKind == FileLineInfoKind::None) {
DILineInfo Result;
Result.FunctionName = FunctionName;
Result.StartLine = StartLine;
Lines.push_back(std::make_pair(Address, Result));
return Lines;
}
const DWARFLineTable *LineTable = getLineTableForUnit(CU);
// Get the index of row we're looking for in the line table.
std::vector<uint32_t> RowVector;
if (!LineTable->lookupAddressRange(Address, Size, RowVector))
return Lines;
for (uint32_t RowIndex : RowVector) {
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
DILineInfo Result;
LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(),
Spec.FLIKind, Result.FileName);
Result.FunctionName = FunctionName;
Result.Line = Row.Line;
Result.Column = Row.Column;
Result.StartLine = StartLine;
Lines.push_back(std::make_pair(Row.Address, Result));
}
return Lines;
}
DIInliningInfo
DWARFContext::getInliningInfoForAddress(uint64_t Address,
DILineInfoSpecifier Spec) {
DIInliningInfo InliningInfo;
DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
if (!CU)
return InliningInfo;
const DWARFLineTable *LineTable = nullptr;
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address, InlinedChain);
if (InlinedChain.size() == 0) {
// If there is no DIE for address (e.g. it is in unavailable .dwo file),
// try to at least get file/line info from symbol table.
if (Spec.FLIKind != FileLineInfoKind::None) {
DILineInfo Frame;
LineTable = getLineTableForUnit(CU);
if (LineTable &&
LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(),
Spec.FLIKind, Frame))
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0;
for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) {
DWARFDie &FunctionDIE = InlinedChain[i];
DILineInfo Frame;
// Get function name if necessary.
if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind))
Frame.FunctionName = Name;
if (auto DeclLineResult = FunctionDIE.getDeclLine())
Frame.StartLine = DeclLineResult;
if (Spec.FLIKind != FileLineInfoKind::None) {
if (i == 0) {
// For the topmost frame, initialize the line table of this
// compile unit and fetch file/line info from it.
LineTable = getLineTableForUnit(CU);
// For the topmost routine, get file/line info from line table.
if (LineTable)
LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(),
Spec.FLIKind, Frame);
} else {
// Otherwise, use call file, call line and call column from
// previous DIE in inlined chain.
if (LineTable)
LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(),
Spec.FLIKind, Frame.FileName);
Frame.Line = CallLine;
Frame.Column = CallColumn;
Frame.Discriminator = CallDiscriminator;
}
// Get call file/line/column of a current DIE.
if (i + 1 < n) {
FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn,
CallDiscriminator);
}
}
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
std::shared_ptr<DWARFContext>
DWARFContext::getDWOContext(StringRef AbsolutePath) {
if (auto S = DWP.lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
std::weak_ptr<DWOFile> *Entry = &DWOFiles[AbsolutePath];
if (auto S = Entry->lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
Expected<OwningBinary<ObjectFile>> Obj = [&] {
if (!CheckedForDWP) {
SmallString<128> DWPName;
auto Obj = object::ObjectFile::createObjectFile(
this->DWPName.empty()
? (DObj->getFileName() + ".dwp").toStringRef(DWPName)
: StringRef(this->DWPName));
if (Obj) {
Entry = &DWP;
return Obj;
} else {
CheckedForDWP = true;
// TODO: Should this error be handled (maybe in a high verbosity mode)
// before falling back to .dwo files?
consumeError(Obj.takeError());
}
}
return object::ObjectFile::createObjectFile(AbsolutePath);
}();
if (!Obj) {
// TODO: Actually report errors helpfully.
consumeError(Obj.takeError());
return nullptr;
}
auto S = std::make_shared<DWOFile>();
S->File = std::move(Obj.get());
S->Context = DWARFContext::create(*S->File.getBinary());
*Entry = S;
auto *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
static Error createError(const Twine &Reason, llvm::Error E) {
return make_error<StringError>(Reason + toString(std::move(E)),
inconvertibleErrorCode());
}
/// SymInfo contains information about symbol: it's address
/// and section index which is -1LL for absolute symbols.
struct SymInfo {
uint64_t Address;
uint64_t SectionIndex;
};
/// Returns the address of symbol relocation used against and a section index.
/// Used for futher relocations computation. Symbol's section load address is
static Expected<SymInfo> getSymbolInfo(const object::ObjectFile &Obj,
const RelocationRef &Reloc,
const LoadedObjectInfo *L,
std::map<SymbolRef, SymInfo> &Cache) {
SymInfo Ret = {0, (uint64_t)-1LL};
object::section_iterator RSec = Obj.section_end();
object::symbol_iterator Sym = Reloc.getSymbol();
std::map<SymbolRef, SymInfo>::iterator CacheIt = Cache.end();
// First calculate the address of the symbol or section as it appears
// in the object file
if (Sym != Obj.symbol_end()) {
bool New;
std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}});
if (!New)
return CacheIt->second;
Expected<uint64_t> SymAddrOrErr = Sym->getAddress();
if (!SymAddrOrErr)
return createError("failed to compute symbol address: ",
SymAddrOrErr.takeError());
// Also remember what section this symbol is in for later
auto SectOrErr = Sym->getSection();
if (!SectOrErr)
return createError("failed to get symbol section: ",
SectOrErr.takeError());
RSec = *SectOrErr;
Ret.Address = *SymAddrOrErr;
} else if (auto *MObj = dyn_cast<MachOObjectFile>(&Obj)) {
RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl());
Ret.Address = RSec->getAddress();
}
if (RSec != Obj.section_end())
Ret.SectionIndex = RSec->getIndex();
// If we are given load addresses for the sections, we need to adjust:
// SymAddr = (Address of Symbol Or Section in File) -
// (Address of Section in File) +
// (Load Address of Section)
// RSec is now either the section being targeted or the section
// containing the symbol being targeted. In either case,
// we need to perform the same computation.
if (L && RSec != Obj.section_end())
if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec))
Ret.Address += SectionLoadAddress - RSec->getAddress();
if (CacheIt != Cache.end())
CacheIt->second = Ret;
return Ret;
}
static bool isRelocScattered(const object::ObjectFile &Obj,
const RelocationRef &Reloc) {
const MachOObjectFile *MachObj = dyn_cast<MachOObjectFile>(&Obj);
if (!MachObj)
return false;
// MachO also has relocations that point to sections and
// scattered relocations.
auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl());
return MachObj->isRelocationScattered(RelocInfo);
}
ErrorPolicy DWARFContext::defaultErrorHandler(Error E) {
errs() << "error: " + toString(std::move(E)) << '\n';
return ErrorPolicy::Continue;
}
namespace {
struct DWARFSectionMap final : public DWARFSection {
RelocAddrMap Relocs;
};
class DWARFObjInMemory final : public DWARFObject {
bool IsLittleEndian;
uint8_t AddressSize;
StringRef FileName;
const object::ObjectFile *Obj = nullptr;
std::vector<SectionName> SectionNames;
using TypeSectionMap = MapVector<object::SectionRef, DWARFSectionMap,
std::map<object::SectionRef, unsigned>>;
TypeSectionMap TypesSections;
TypeSectionMap TypesDWOSections;
DWARFSectionMap InfoSection;
DWARFSectionMap LocSection;
DWARFSectionMap LineSection;
DWARFSectionMap RangeSection;
DWARFSectionMap RnglistsSection;
DWARFSectionMap StringOffsetSection;
DWARFSectionMap InfoDWOSection;
DWARFSectionMap LineDWOSection;
DWARFSectionMap LocDWOSection;
DWARFSectionMap StringOffsetDWOSection;
DWARFSectionMap RangeDWOSection;
DWARFSectionMap AddrSection;
DWARFSectionMap AppleNamesSection;
DWARFSectionMap AppleTypesSection;
DWARFSectionMap AppleNamespacesSection;
DWARFSectionMap AppleObjCSection;
DWARFSectionMap DebugNamesSection;
DWARFSectionMap *mapNameToDWARFSection(StringRef Name) {
return StringSwitch<DWARFSectionMap *>(Name)
.Case("debug_info", &InfoSection)
.Case("debug_loc", &LocSection)
.Case("debug_line", &LineSection)
.Case("debug_str_offsets", &StringOffsetSection)
.Case("debug_ranges", &RangeSection)
.Case("debug_rnglists", &RnglistsSection)
.Case("debug_info.dwo", &InfoDWOSection)
.Case("debug_loc.dwo", &LocDWOSection)
.Case("debug_line.dwo", &LineDWOSection)
.Case("debug_names", &DebugNamesSection)
.Case("debug_str_offsets.dwo", &StringOffsetDWOSection)
.Case("debug_addr", &AddrSection)
.Case("apple_names", &AppleNamesSection)
.Case("apple_types", &AppleTypesSection)
.Case("apple_namespaces", &AppleNamespacesSection)
.Case("apple_namespac", &AppleNamespacesSection)
.Case("apple_objc", &AppleObjCSection)
.Default(nullptr);
}
StringRef AbbrevSection;
StringRef ARangeSection;
StringRef DebugFrameSection;
StringRef EHFrameSection;
StringRef StringSection;
StringRef MacinfoSection;
StringRef PubNamesSection;
StringRef PubTypesSection;
StringRef GnuPubNamesSection;
StringRef AbbrevDWOSection;
StringRef StringDWOSection;
StringRef GnuPubTypesSection;
StringRef CUIndexSection;
StringRef GdbIndexSection;
StringRef TUIndexSection;
StringRef LineStringSection;
SmallVector<SmallString<32>, 4> UncompressedSections;
StringRef *mapSectionToMember(StringRef Name) {
if (DWARFSection *Sec = mapNameToDWARFSection(Name))
return &Sec->Data;
return StringSwitch<StringRef *>(Name)
.Case("debug_abbrev", &AbbrevSection)
.Case("debug_aranges", &ARangeSection)
.Case("debug_frame", &DebugFrameSection)
.Case("eh_frame", &EHFrameSection)
.Case("debug_str", &StringSection)
.Case("debug_macinfo", &MacinfoSection)
.Case("debug_pubnames", &PubNamesSection)
.Case("debug_pubtypes", &PubTypesSection)
.Case("debug_gnu_pubnames", &GnuPubNamesSection)
.Case("debug_gnu_pubtypes", &GnuPubTypesSection)
.Case("debug_abbrev.dwo", &AbbrevDWOSection)
.Case("debug_str.dwo", &StringDWOSection)
.Case("debug_cu_index", &CUIndexSection)
.Case("debug_tu_index", &TUIndexSection)
.Case("gdb_index", &GdbIndexSection)
.Case("debug_line_str", &LineStringSection)
// Any more debug info sections go here.
.Default(nullptr);
}
/// If Sec is compressed section, decompresses and updates its contents
/// provided by Data. Otherwise leaves it unchanged.
Error maybeDecompress(const object::SectionRef &Sec, StringRef Name,
StringRef &Data) {
if (!Decompressor::isCompressed(Sec))
return Error::success();
Expected<Decompressor> Decompressor =
Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8);
if (!Decompressor)
return Decompressor.takeError();
SmallString<32> Out;
if (auto Err = Decompressor->resizeAndDecompress(Out))
return Err;
UncompressedSections.emplace_back(std::move(Out));
Data = UncompressedSections.back();
return Error::success();
}
public:
DWARFObjInMemory(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool IsLittleEndian)
: IsLittleEndian(IsLittleEndian) {
for (const auto &SecIt : Sections) {
if (StringRef *SectionData = mapSectionToMember(SecIt.first()))
*SectionData = SecIt.second->getBuffer();
}
}
DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
function_ref<ErrorPolicy(Error)> HandleError)
: IsLittleEndian(Obj.isLittleEndian()),
AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()),
Obj(&Obj) {
StringMap<unsigned> SectionAmountMap;
for (const SectionRef &Section : Obj.sections()) {
StringRef Name;
Section.getName(Name);
++SectionAmountMap[Name];
SectionNames.push_back({ Name, true });
// Skip BSS and Virtual sections, they aren't interesting.
if (Section.isBSS() || Section.isVirtual())
continue;
// Skip sections stripped by dsymutil.
if (Section.isStripped())
continue;
StringRef Data;
section_iterator RelocatedSection = Section.getRelocatedSection();
// Try to obtain an already relocated version of this section.
// Else use the unrelocated section from the object file. We'll have to
// apply relocations ourselves later.
if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data))
Section.getContents(Data);
if (auto Err = maybeDecompress(Section, Name, Data)) {
ErrorPolicy EP = HandleError(createError(
"failed to decompress '" + Name + "', ", std::move(Err)));
if (EP == ErrorPolicy::Halt)
return;
continue;
}
// Compressed sections names in GNU style starts from ".z",
// at this point section is decompressed and we drop compression prefix.
Name = Name.substr(
Name.find_first_not_of("._z")); // Skip ".", "z" and "_" prefixes.
// Map platform specific debug section names to DWARF standard section
// names.
Name = Obj.mapDebugSectionName(Name);
if (StringRef *SectionData = mapSectionToMember(Name)) {
*SectionData = Data;
if (Name == "debug_ranges") {
// FIXME: Use the other dwo range section when we emit it.
RangeDWOSection.Data = Data;
}
} else if (Name == "debug_types") {
// Find debug_types data by section rather than name as there are
// multiple, comdat grouped, debug_types sections.
TypesSections[Section].Data = Data;
} else if (Name == "debug_types.dwo") {
TypesDWOSections[Section].Data = Data;
}
if (RelocatedSection == Obj.section_end())
continue;
StringRef RelSecName;
StringRef RelSecData;
RelocatedSection->getName(RelSecName);
// If the section we're relocating was relocated already by the JIT,
// then we used the relocated version above, so we do not need to process
// relocations for it now.
if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData))
continue;
// In Mach-o files, the relocations do not need to be applied if
// there is no load offset to apply. The value read at the
// relocation point already factors in the section address
// (actually applying the relocations will produce wrong results
// as the section address will be added twice).
if (!L && isa<MachOObjectFile>(&Obj))
continue;
RelSecName = RelSecName.substr(
RelSecName.find_first_not_of("._z")); // Skip . and _ prefixes.
// TODO: Add support for relocations in other sections as needed.
// Record relocations for the debug_info and debug_line sections.
DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName);
RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr;
if (!Map) {
// Find debug_types relocs by section rather than name as there are
// multiple, comdat grouped, debug_types sections.
if (RelSecName == "debug_types")
Map =
&static_cast<DWARFSectionMap &>(TypesSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_types.dwo")
Map = &static_cast<DWARFSectionMap &>(
TypesDWOSections[*RelocatedSection])
.Relocs;
else
continue;
}
if (Section.relocation_begin() == Section.relocation_end())
continue;
// Symbol to [address, section index] cache mapping.
std::map<SymbolRef, SymInfo> AddrCache;
for (const RelocationRef &Reloc : Section.relocations()) {
// FIXME: it's not clear how to correctly handle scattered
// relocations.
if (isRelocScattered(Obj, Reloc))
continue;
Expected<SymInfo> SymInfoOrErr =
getSymbolInfo(Obj, Reloc, L, AddrCache);
if (!SymInfoOrErr) {
if (HandleError(SymInfoOrErr.takeError()) == ErrorPolicy::Halt)
return;
continue;
}
object::RelocVisitor V(Obj);
uint64_t Val = V.visit(Reloc.getType(), Reloc, SymInfoOrErr->Address);
if (V.error()) {
SmallString<32> Type;
Reloc.getTypeName(Type);
ErrorPolicy EP = HandleError(
createError("failed to compute relocation: " + Type + ", ",
errorCodeToError(object_error::parse_failed)));
if (EP == ErrorPolicy::Halt)
return;
continue;
}
RelocAddrEntry Rel = {SymInfoOrErr->SectionIndex, Val};
Map->insert({Reloc.getOffset(), Rel});
}
}
for (SectionName &S : SectionNames)
if (SectionAmountMap[S.Name] > 1)
S.IsNameUnique = false;
}
Optional<RelocAddrEntry> find(const DWARFSection &S,
uint64_t Pos) const override {
auto &Sec = static_cast<const DWARFSectionMap &>(S);
RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos);
if (AI == Sec.Relocs.end())
return None;
return AI->second;
}
const object::ObjectFile *getFile() const override { return Obj; }
ArrayRef<SectionName> getSectionNames() const override {
return SectionNames;
}
bool isLittleEndian() const override { return IsLittleEndian; }
StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; }
const DWARFSection &getLineDWOSection() const override {
return LineDWOSection;
}
const DWARFSection &getLocDWOSection() const override {
return LocDWOSection;
}
StringRef getStringDWOSection() const override { return StringDWOSection; }
const DWARFSection &getStringOffsetDWOSection() const override {
return StringOffsetDWOSection;
}
const DWARFSection &getRangeDWOSection() const override {
return RangeDWOSection;
}
const DWARFSection &getAddrSection() const override { return AddrSection; }
StringRef getCUIndexSection() const override { return CUIndexSection; }
StringRef getGdbIndexSection() const override { return GdbIndexSection; }
StringRef getTUIndexSection() const override { return TUIndexSection; }
// DWARF v5
const DWARFSection &getStringOffsetSection() const override {
return StringOffsetSection;
}
StringRef getLineStringSection() const override { return LineStringSection; }
// Sections for DWARF5 split dwarf proposal.
const DWARFSection &getInfoDWOSection() const override {
return InfoDWOSection;
}
void forEachTypesDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesDWOSections)
F(P.second);
}
StringRef getAbbrevSection() const override { return AbbrevSection; }
const DWARFSection &getLocSection() const override { return LocSection; }
StringRef getARangeSection() const override { return ARangeSection; }
StringRef getDebugFrameSection() const override { return DebugFrameSection; }
StringRef getEHFrameSection() const override { return EHFrameSection; }
const DWARFSection &getLineSection() const override { return LineSection; }
StringRef getStringSection() const override { return StringSection; }
const DWARFSection &getRangeSection() const override { return RangeSection; }
const DWARFSection &getRnglistsSection() const override {
return RnglistsSection;
}
StringRef getMacinfoSection() const override { return MacinfoSection; }
StringRef getPubNamesSection() const override { return PubNamesSection; }
StringRef getPubTypesSection() const override { return PubTypesSection; }
StringRef getGnuPubNamesSection() const override {
return GnuPubNamesSection;
}
StringRef getGnuPubTypesSection() const override {
return GnuPubTypesSection;
}
const DWARFSection &getAppleNamesSection() const override {
return AppleNamesSection;
}
const DWARFSection &getAppleTypesSection() const override {
return AppleTypesSection;
}
const DWARFSection &getAppleNamespacesSection() const override {
return AppleNamespacesSection;
}
const DWARFSection &getAppleObjCSection() const override {
return AppleObjCSection;
}
const DWARFSection &getDebugNamesSection() const override {
return DebugNamesSection;
}
StringRef getFileName() const override { return FileName; }
uint8_t getAddressSize() const override { return AddressSize; }
const DWARFSection &getInfoSection() const override { return InfoSection; }
void forEachTypesSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesSections)
F(P.second);
}
};
} // namespace
std::unique_ptr<DWARFContext>
DWARFContext::create(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
function_ref<ErrorPolicy(Error)> HandleError,
std::string DWPName) {
auto DObj = llvm::make_unique<DWARFObjInMemory>(Obj, L, HandleError);
return llvm::make_unique<DWARFContext>(std::move(DObj), std::move(DWPName));
}
std::unique_ptr<DWARFContext>
DWARFContext::create(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool isLittleEndian) {
auto DObj =
llvm::make_unique<DWARFObjInMemory>(Sections, AddrSize, isLittleEndian);
return llvm::make_unique<DWARFContext>(std::move(DObj), "");
}
Error DWARFContext::loadRegisterInfo(const object::ObjectFile &Obj) {
// Detect the architecture from the object file. We usually don't need OS
// info to lookup a target and create register info.
Triple TT;
TT.setArch(Triple::ArchType(Obj.getArch()));
TT.setVendor(Triple::UnknownVendor);
TT.setOS(Triple::UnknownOS);
std::string TargetLookupError;
const Target *TheTarget =
TargetRegistry::lookupTarget(TT.str(), TargetLookupError);
if (!TargetLookupError.empty())
return make_error<StringError>(TargetLookupError, inconvertibleErrorCode());
RegInfo.reset(TheTarget->createMCRegInfo(TT.str()));
return Error::success();
}