llvm-project/lldb/source/Expression/UserExpression.cpp

637 lines
24 KiB
C++
Raw Normal View History

This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
//===-- UserExpression.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <stdio.h>
#if HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#include <cstdlib>
#include <string>
#include <map>
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Expression/ExpressionSourceCode.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Expression/Materializer.h"
#include "lldb/Expression/UserExpression.h"
#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/Block.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/TypeSystem.h"
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanCallUserExpression.h"
using namespace lldb_private;
UserExpression::UserExpression (ExecutionContextScope &exe_scope,
const char *expr,
const char *expr_prefix,
lldb::LanguageType language,
ResultType desired_type) :
Expression (exe_scope),
m_stack_frame_bottom (LLDB_INVALID_ADDRESS),
m_stack_frame_top (LLDB_INVALID_ADDRESS),
m_expr_text (expr),
m_expr_prefix (expr_prefix ? expr_prefix : ""),
m_language (language),
m_transformed_text (),
m_desired_type (desired_type),
m_execution_unit_sp(),
m_materializer_ap(),
m_jit_module_wp(),
m_enforce_valid_object (true),
m_in_cplusplus_method (false),
m_in_objectivec_method (false),
m_in_static_method(false),
m_needs_object_ptr (false),
m_const_object (false),
m_target (NULL),
m_can_interpret (false),
m_materialized_address (LLDB_INVALID_ADDRESS)
{
}
UserExpression::~UserExpression ()
{
if (m_target)
{
lldb::ModuleSP jit_module_sp (m_jit_module_wp.lock());
if (jit_module_sp)
m_target->GetImages().Remove(jit_module_sp);
}
}
void
UserExpression::InstallContext (ExecutionContext &exe_ctx)
{
m_jit_process_wp = exe_ctx.GetProcessSP();
lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP();
if (frame_sp)
m_address = frame_sp->GetFrameCodeAddress();
}
bool
UserExpression::LockAndCheckContext (ExecutionContext &exe_ctx,
lldb::TargetSP &target_sp,
lldb::ProcessSP &process_sp,
lldb::StackFrameSP &frame_sp)
{
lldb::ProcessSP expected_process_sp = m_jit_process_wp.lock();
process_sp = exe_ctx.GetProcessSP();
if (process_sp != expected_process_sp)
return false;
process_sp = exe_ctx.GetProcessSP();
target_sp = exe_ctx.GetTargetSP();
frame_sp = exe_ctx.GetFrameSP();
if (m_address.IsValid())
{
if (!frame_sp)
return false;
else
return (0 == Address::CompareLoadAddress(m_address, frame_sp->GetFrameCodeAddress(), target_sp.get()));
}
return true;
}
bool
UserExpression::MatchesContext (ExecutionContext &exe_ctx)
{
lldb::TargetSP target_sp;
lldb::ProcessSP process_sp;
lldb::StackFrameSP frame_sp;
return LockAndCheckContext(exe_ctx, target_sp, process_sp, frame_sp);
}
lldb::addr_t
UserExpression::GetObjectPointer (lldb::StackFrameSP frame_sp,
ConstString &object_name,
Error &err)
{
err.Clear();
if (!frame_sp)
{
err.SetErrorStringWithFormat("Couldn't load '%s' because the context is incomplete", object_name.AsCString());
return LLDB_INVALID_ADDRESS;
}
lldb::VariableSP var_sp;
lldb::ValueObjectSP valobj_sp;
valobj_sp = frame_sp->GetValueForVariableExpressionPath(object_name.AsCString(),
lldb::eNoDynamicValues,
StackFrame::eExpressionPathOptionCheckPtrVsMember |
StackFrame::eExpressionPathOptionsNoFragileObjcIvar |
StackFrame::eExpressionPathOptionsNoSyntheticChildren |
StackFrame::eExpressionPathOptionsNoSyntheticArrayRange,
var_sp,
err);
if (!err.Success() || !valobj_sp.get())
return LLDB_INVALID_ADDRESS;
lldb::addr_t ret = valobj_sp->GetValueAsUnsigned(LLDB_INVALID_ADDRESS);
if (ret == LLDB_INVALID_ADDRESS)
{
err.SetErrorStringWithFormat("Couldn't load '%s' because its value couldn't be evaluated", object_name.AsCString());
return LLDB_INVALID_ADDRESS;
}
return ret;
}
bool
UserExpression::PrepareToExecuteJITExpression (Stream &error_stream,
ExecutionContext &exe_ctx,
lldb::addr_t &struct_address)
{
lldb::TargetSP target;
lldb::ProcessSP process;
lldb::StackFrameSP frame;
if (!LockAndCheckContext(exe_ctx,
target,
process,
frame))
{
error_stream.Printf("The context has changed before we could JIT the expression!\n");
return false;
}
if (m_jit_start_addr != LLDB_INVALID_ADDRESS || m_can_interpret)
{
if (m_materialized_address == LLDB_INVALID_ADDRESS)
{
Error alloc_error;
IRMemoryMap::AllocationPolicy policy = m_can_interpret ? IRMemoryMap::eAllocationPolicyHostOnly : IRMemoryMap::eAllocationPolicyMirror;
m_materialized_address = m_execution_unit_sp->Malloc(m_materializer_ap->GetStructByteSize(),
m_materializer_ap->GetStructAlignment(),
lldb::ePermissionsReadable | lldb::ePermissionsWritable,
policy,
alloc_error);
if (!alloc_error.Success())
{
error_stream.Printf("Couldn't allocate space for materialized struct: %s\n", alloc_error.AsCString());
return false;
}
}
struct_address = m_materialized_address;
if (m_can_interpret && m_stack_frame_bottom == LLDB_INVALID_ADDRESS)
{
Error alloc_error;
const size_t stack_frame_size = 512 * 1024;
m_stack_frame_bottom = m_execution_unit_sp->Malloc(stack_frame_size,
8,
lldb::ePermissionsReadable | lldb::ePermissionsWritable,
IRMemoryMap::eAllocationPolicyHostOnly,
alloc_error);
m_stack_frame_top = m_stack_frame_bottom + stack_frame_size;
if (!alloc_error.Success())
{
error_stream.Printf("Couldn't allocate space for the stack frame: %s\n", alloc_error.AsCString());
return false;
}
}
Error materialize_error;
m_dematerializer_sp = m_materializer_ap->Materialize(frame, *m_execution_unit_sp, struct_address, materialize_error);
if (!materialize_error.Success())
{
error_stream.Printf("Couldn't materialize: %s\n", materialize_error.AsCString());
return false;
}
}
return true;
}
bool
UserExpression::FinalizeJITExecution (Stream &error_stream,
ExecutionContext &exe_ctx,
lldb::ExpressionVariableSP &result,
lldb::addr_t function_stack_bottom,
lldb::addr_t function_stack_top)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
log->Printf("-- [UserExpression::FinalizeJITExecution] Dematerializing after execution --");
if (!m_dematerializer_sp)
{
error_stream.Printf ("Couldn't apply expression side effects : no dematerializer is present");
return false;
}
Error dematerialize_error;
m_dematerializer_sp->Dematerialize(dematerialize_error, result, function_stack_bottom, function_stack_top);
if (!dematerialize_error.Success())
{
error_stream.Printf ("Couldn't apply expression side effects : %s\n", dematerialize_error.AsCString("unknown error"));
return false;
}
if (result)
result->TransferAddress();
m_dematerializer_sp.reset();
return true;
}
lldb::ExpressionResults
UserExpression::Execute (Stream &error_stream,
ExecutionContext &exe_ctx,
const EvaluateExpressionOptions& options,
lldb::UserExpressionSP &shared_ptr_to_me,
lldb::ExpressionVariableSP &result)
{
// The expression log is quite verbose, and if you're just tracking the execution of the
// expression, it's quite convenient to have these logs come out with the STEP log as well.
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_EXPRESSIONS | LIBLLDB_LOG_STEP));
if (m_jit_start_addr != LLDB_INVALID_ADDRESS || m_can_interpret)
{
lldb::addr_t struct_address = LLDB_INVALID_ADDRESS;
if (!PrepareToExecuteJITExpression (error_stream, exe_ctx, struct_address))
{
error_stream.Printf("Errored out in %s, couldn't PrepareToExecuteJITExpression", __FUNCTION__);
return lldb::eExpressionSetupError;
}
lldb::addr_t function_stack_bottom = LLDB_INVALID_ADDRESS;
lldb::addr_t function_stack_top = LLDB_INVALID_ADDRESS;
if (m_can_interpret)
{
llvm::Module *module = m_execution_unit_sp->GetModule();
llvm::Function *function = m_execution_unit_sp->GetFunction();
if (!module || !function)
{
error_stream.Printf("Supposed to interpret, but nothing is there");
return lldb::eExpressionSetupError;
}
Error interpreter_error;
std::vector<lldb::addr_t> args;
if (!AddInitialArguments(exe_ctx, args, error_stream))
{
error_stream.Printf ("Errored out in %s, couldn't AddInitialArguments", __FUNCTION__);
return lldb::eExpressionSetupError;
}
args.push_back(struct_address);
function_stack_bottom = m_stack_frame_bottom;
function_stack_top = m_stack_frame_top;
IRInterpreter::Interpret (*module,
*function,
args,
*m_execution_unit_sp.get(),
interpreter_error,
function_stack_bottom,
function_stack_top,
exe_ctx);
if (!interpreter_error.Success())
{
error_stream.Printf("Supposed to interpret, but failed: %s", interpreter_error.AsCString());
return lldb::eExpressionDiscarded;
}
}
else
{
if (!exe_ctx.HasThreadScope())
{
error_stream.Printf("UserExpression::Execute called with no thread selected.");
return lldb::eExpressionSetupError;
}
Address wrapper_address (m_jit_start_addr);
std::vector<lldb::addr_t> args;
if (!AddInitialArguments(exe_ctx, args, error_stream))
{
error_stream.Printf ("Errored out in %s, couldn't AddInitialArguments", __FUNCTION__);
return lldb::eExpressionSetupError;
}
args.push_back(struct_address);
lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallUserExpression (exe_ctx.GetThreadRef(),
wrapper_address,
args,
options,
shared_ptr_to_me));
if (!call_plan_sp || !call_plan_sp->ValidatePlan (&error_stream))
return lldb::eExpressionSetupError;
ThreadPlanCallUserExpression *user_expression_plan = static_cast<ThreadPlanCallUserExpression *>(call_plan_sp.get());
lldb::addr_t function_stack_pointer = user_expression_plan->GetFunctionStackPointer();
function_stack_bottom = function_stack_pointer - HostInfo::GetPageSize();
function_stack_top = function_stack_pointer;
if (log)
log->Printf("-- [UserExpression::Execute] Execution of expression begins --");
if (exe_ctx.GetProcessPtr())
exe_ctx.GetProcessPtr()->SetRunningUserExpression(true);
lldb::ExpressionResults execution_result = exe_ctx.GetProcessRef().RunThreadPlan (exe_ctx,
call_plan_sp,
options,
error_stream);
if (exe_ctx.GetProcessPtr())
exe_ctx.GetProcessPtr()->SetRunningUserExpression(false);
if (log)
log->Printf("-- [UserExpression::Execute] Execution of expression completed --");
if (execution_result == lldb::eExpressionInterrupted || execution_result == lldb::eExpressionHitBreakpoint)
{
const char *error_desc = NULL;
if (call_plan_sp)
{
lldb::StopInfoSP real_stop_info_sp = call_plan_sp->GetRealStopInfo();
if (real_stop_info_sp)
error_desc = real_stop_info_sp->GetDescription();
}
if (error_desc)
error_stream.Printf ("Execution was interrupted, reason: %s.", error_desc);
else
error_stream.PutCString ("Execution was interrupted.");
if ((execution_result == lldb::eExpressionInterrupted && options.DoesUnwindOnError())
|| (execution_result == lldb::eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints()))
error_stream.PutCString ("\nThe process has been returned to the state before expression evaluation.");
else
{
if (execution_result == lldb::eExpressionHitBreakpoint)
user_expression_plan->TransferExpressionOwnership();
error_stream.PutCString ("\nThe process has been left at the point where it was interrupted, "
"use \"thread return -x\" to return to the state before expression evaluation.");
}
return execution_result;
}
else if (execution_result == lldb::eExpressionStoppedForDebug)
{
error_stream.PutCString ("Execution was halted at the first instruction of the expression "
"function because \"debug\" was requested.\n"
"Use \"thread return -x\" to return to the state before expression evaluation.");
return execution_result;
}
else if (execution_result != lldb::eExpressionCompleted)
{
error_stream.Printf ("Couldn't execute function; result was %s\n", Process::ExecutionResultAsCString (execution_result));
return execution_result;
}
}
if (FinalizeJITExecution (error_stream, exe_ctx, result, function_stack_bottom, function_stack_top))
{
return lldb::eExpressionCompleted;
}
else
{
return lldb::eExpressionResultUnavailable;
}
}
else
{
error_stream.Printf("Expression can't be run, because there is no JIT compiled function");
return lldb::eExpressionSetupError;
}
}
lldb::ExpressionResults
UserExpression::Evaluate (ExecutionContext &exe_ctx,
const EvaluateExpressionOptions& options,
const char *expr_cstr,
const char *expr_prefix,
lldb::ValueObjectSP &result_valobj_sp,
Error &error)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_EXPRESSIONS | LIBLLDB_LOG_STEP));
lldb_private::ExecutionPolicy execution_policy = options.GetExecutionPolicy();
const lldb::LanguageType language = options.GetLanguage();
const ResultType desired_type = options.DoesCoerceToId() ? UserExpression::eResultTypeId : UserExpression::eResultTypeAny;
lldb::ExpressionResults execution_results = lldb::eExpressionSetupError;
Target *target = exe_ctx.GetTargetPtr();
if (!target)
{
if (log)
log->Printf("== [UserExpression::Evaluate] Passed a NULL target, can't run expressions.");
return lldb::eExpressionSetupError;
}
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL || process->GetState() != lldb::eStateStopped)
{
if (execution_policy == eExecutionPolicyAlways)
{
if (log)
log->Printf("== [UserExpression::Evaluate] Expression may not run, but is not constant ==");
error.SetErrorString ("expression needed to run but couldn't");
return execution_results;
}
}
if (process == NULL || !process->CanJIT())
execution_policy = eExecutionPolicyNever;
const char *full_prefix = NULL;
const char *option_prefix = options.GetPrefix();
std::string full_prefix_storage;
if (expr_prefix && option_prefix)
{
full_prefix_storage.assign(expr_prefix);
full_prefix_storage.append(option_prefix);
if (!full_prefix_storage.empty())
full_prefix = full_prefix_storage.c_str();
}
else if (expr_prefix)
full_prefix = expr_prefix;
else
full_prefix = option_prefix;
lldb::UserExpressionSP user_expression_sp(target->GetUserExpressionForLanguage (expr_cstr,
full_prefix,
language,
desired_type,
error));
if (error.Fail())
{
if (log)
log->Printf ("== [UserExpression::Evaluate] Getting expression: %s ==", error.AsCString());
return lldb::eExpressionSetupError;
}
StreamString error_stream;
if (log)
log->Printf("== [UserExpression::Evaluate] Parsing expression %s ==", expr_cstr);
const bool keep_expression_in_memory = true;
const bool generate_debug_info = options.GetGenerateDebugInfo();
if (options.InvokeCancelCallback (lldb::eExpressionEvaluationParse))
{
error.SetErrorString ("expression interrupted by callback before parse");
result_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), error);
return lldb::eExpressionInterrupted;
}
if (!user_expression_sp->Parse (error_stream,
exe_ctx,
execution_policy,
keep_expression_in_memory,
generate_debug_info))
{
execution_results = lldb::eExpressionParseError;
if (error_stream.GetString().empty())
error.SetExpressionError (execution_results, "expression failed to parse, unknown error");
else
error.SetExpressionError (execution_results, error_stream.GetString().c_str());
}
else
{
lldb::ExpressionVariableSP expr_result;
if (execution_policy == eExecutionPolicyNever &&
!user_expression_sp->CanInterpret())
{
if (log)
log->Printf("== [UserExpression::Evaluate] Expression may not run, but is not constant ==");
if (error_stream.GetString().empty())
error.SetExpressionError (lldb::eExpressionSetupError, "expression needed to run but couldn't");
}
else
{
if (options.InvokeCancelCallback (lldb::eExpressionEvaluationExecution))
{
error.SetExpressionError (lldb::eExpressionInterrupted, "expression interrupted by callback before execution");
result_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), error);
return lldb::eExpressionInterrupted;
}
error_stream.GetString().clear();
if (log)
log->Printf("== [UserExpression::Evaluate] Executing expression ==");
execution_results = user_expression_sp->Execute (error_stream,
exe_ctx,
options,
user_expression_sp,
expr_result);
if (options.GetResultIsInternal() && expr_result && process)
{
process->GetTarget().GetScratchTypeSystemForLanguage(lldb::eLanguageTypeC)->GetPersistentExpressionState()->RemovePersistentVariable (expr_result);
This patch makes Clang-independent base classes for all the expression types that lldb currently vends. Before we had: ClangFunction ClangUtilityFunction ClangUserExpression and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression base class, and three pure virtual implementations for the Expression kinds: FunctionCaller UtilityFunction UserExpression You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage. The Target will then consult all the registered TypeSystem plugins, and if the type system that matches the language can make an expression of that kind, it will do so and return it. Because all of the real expression types need to communicate with their ExpressionParser in a uniform way, I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types. Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs. The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions. Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary. llvm-svn: 247720
2015-09-16 05:13:50 +08:00
}
if (execution_results != lldb::eExpressionCompleted)
{
if (log)
log->Printf("== [UserExpression::Evaluate] Execution completed abnormally ==");
if (error_stream.GetString().empty())
error.SetExpressionError (execution_results, "expression failed to execute, unknown error");
else
error.SetExpressionError (execution_results, error_stream.GetString().c_str());
}
else
{
if (expr_result)
{
result_valobj_sp = expr_result->GetValueObject();
if (log)
log->Printf("== [UserExpression::Evaluate] Execution completed normally with result %s ==",
result_valobj_sp->GetValueAsCString());
}
else
{
if (log)
log->Printf("== [UserExpression::Evaluate] Execution completed normally with no result ==");
error.SetError(UserExpression::kNoResult, lldb::eErrorTypeGeneric);
}
}
}
}
if (options.InvokeCancelCallback(lldb::eExpressionEvaluationComplete))
{
error.SetExpressionError (lldb::eExpressionInterrupted, "expression interrupted by callback after complete");
return lldb::eExpressionInterrupted;
}
if (result_valobj_sp.get() == NULL)
{
result_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), error);
}
return execution_results;
}