llvm-project/llvm/test/Transforms/SROA/basictest.ll

1870 lines
78 KiB
LLVM
Raw Normal View History

Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; RUN: opt < %s -sroa -S | FileCheck %s
[PM] Port SROA to the new pass manager. In some ways this is a very boring port to the new pass manager as there are no interesting analyses or dependencies or other oddities. However, this does introduce the first good example of a transformation pass with non-trivial state porting to the new pass manager. I've tried to carve out patterns here to replicate elsewhere, and would appreciate comments on whether folks like these patterns: - A common need in the new pass manager is to effectively lift the pass class and some of its state into a public header file. Prior to this, LLVM used anonymous namespaces to provide "module private" types and utilities, but that doesn't scale to cases where a public header file is needed and the new pass manager will exacerbate that. The pattern I've adopted here is to use the namespace-cased-name of the core pass (what would be a module if we had them) as a module-private namespace. Then utility and other code can be declared and defined in this namespace. At some point in the future, we could even have (conditionally compiled) code that used modules features when available to do the same basic thing. - I've split the actual pass run method in two in order to expose a private method usable by the old pass manager to wrap the new class with a minimum of duplicated code. I actually looked at a bunch of ways to automate or generate these, but they are all quite terrible IMO. The fundamental need is to extract the set of analyses which need to cross this interface boundary, and that will end up being too unpredictable to effectively encapsulate IMO. This is also a relatively small amount of boiler plate that will live a relatively short time, so I'm not too worried about the fact that it is boiler plate. The rest of the patch is totally boring but results in a massive diff (sorry). It just moves code around and removes or adds qualifiers to reflect the new name and nesting structure. Differential Revision: http://reviews.llvm.org/D12773 llvm-svn: 247501
2015-09-12 17:09:14 +08:00
; RUN: opt < %s -passes=sroa -S | FileCheck %s
target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. llvm-svn: 163965
2012-09-15 19:43:14 +08:00
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
define i32 @test0() {
; CHECK-LABEL: @test0(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca
; CHECK: ret i32
entry:
%a1 = alloca i32
%a2 = alloca float
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. llvm-svn: 163965
2012-09-15 19:43:14 +08:00
%a1.i8 = bitcast i32* %a1 to i8*
call void @llvm.lifetime.start.p0i8(i64 4, i8* %a1.i8)
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. llvm-svn: 163965
2012-09-15 19:43:14 +08:00
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 0, i32* %a1
%v1 = load i32, i32* %a1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
call void @llvm.lifetime.end.p0i8(i64 4, i8* %a1.i8)
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. llvm-svn: 163965
2012-09-15 19:43:14 +08:00
%a2.i8 = bitcast float* %a2 to i8*
call void @llvm.lifetime.start.p0i8(i64 4, i8* %a2.i8)
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. llvm-svn: 163965
2012-09-15 19:43:14 +08:00
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store float 0.0, float* %a2
%v2 = load float , float * %a2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%v2.int = bitcast float %v2 to i32
%sum1 = add i32 %v1, %v2.int
call void @llvm.lifetime.end.p0i8(i64 4, i8* %a2.i8)
Port the SSAUpdater-based promotion logic from the old SROA pass to the new one, and add support for running the new pass in that mode and in that slot of the pass manager. With this the new pass can completely replace the old one within the pipeline. The strategy for enabling or disabling the SSAUpdater logic is to do it by making the requirement of the domtree analysis optional. By default, it is required and we get the standard mem2reg approach. This is usually the desired strategy when run in stand-alone situations. Within the CGSCC pass manager, we disable requiring of the domtree analysis and consequentially trigger fallback to the SSAUpdater promotion. In theory this would allow the pass to re-use a domtree if one happened to be available even when run in a mode that doesn't require it. In practice, it lets us have a single pass rather than two which was simpler for me to wrap my head around. There is a hidden flag to force the use of the SSAUpdater code path for the purpose of testing. The primary testing strategy is just to run the existing tests through that path. One notable difference is that it has custom code to handle lifetime markers, and one of the tests has been enhanced to exercise that code. This has survived a bootstrap and the test suite without serious correctness issues, however my run of the test suite produced *very* alarming performance numbers. I don't entirely understand or trust them though, so more investigation is on-going. To aid my understanding of the performance impact of the new SROA now that it runs throughout the optimization pipeline, I'm enabling it by default in this commit, and will disable it again once the LNT bots have picked up one iteration with it. I want to get those bots (which are much more stable) to evaluate the impact of the change before I jump to any conclusions. NOTE: Several Clang tests will fail because they run -O3 and check the result's order of output. They'll go back to passing once I disable it again. llvm-svn: 163965
2012-09-15 19:43:14 +08:00
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i32 %sum1
}
define i32 @test1() {
; CHECK-LABEL: @test1(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca
; CHECK: ret i32 0
entry:
%X = alloca { i32, float }
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 0, i32* %Y
%Z = load i32, i32* %Y
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i32 %Z
}
define i64 @test2(i64 %X) {
; CHECK-LABEL: @test2(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca
; CHECK: ret i64 %X
entry:
%A = alloca [8 x i8]
%B = bitcast [8 x i8]* %A to i64*
store i64 %X, i64* %B
br label %L2
L2:
%Z = load i64, i64* %B
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i64 %Z
}
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
define void @test3(i8* %dst, i8* align 8 %src) {
; CHECK-LABEL: @test3(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
%a = alloca [300 x i8]
; CHECK-NOT: alloca
; CHECK: %[[test3_a1:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* align 8 %src, i32 300, i1 false), !tbaa !0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %src, i32 42, {{.*}}), !tbaa [[TAG_0:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 99, {{.*}}), !tbaa [[TAG_0:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 2 %[[gep_src]], i32 16, {{.*}}), !tbaa [[TAG_0:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 2 %[[gep_src]], i32 42, {{.*}}), !tbaa [[TAG_0:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 85, {{.*}}), !tbaa [[TAG_0:!.*]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Clobber a single element of the array, this should be promotable, and be deleted.
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %c
; Make a sequence of overlapping stores to the array. These overlap both in
; forward strides and in shrinking accesses.
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
%overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
%overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
%overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
%overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
%overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
%overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
%overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
%overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
%overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
%overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
%overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
%overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
%overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
%overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
%overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
%overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
%overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
%overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
store i8 1, i8* %overlap.1.i8, !tbaa !3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]], !tbaa [[TAG_3:!.*]]
store i16 1, i16* %overlap.1.i16, !tbaa !5
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_5:!.*]]
store i32 1, i32* %overlap.1.i32, !tbaa !7
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_7:!.*]]
store i64 1, i64* %overlap.1.i64, !tbaa !9
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
; CHECK-NEXT: store i64 1, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_9:!.*]]
store i64 2, i64* %overlap.2.i64, !tbaa !11
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 2, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_11:!.*]]
store i64 3, i64* %overlap.3.i64, !tbaa !13
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 3, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_13:!.*]]
store i64 4, i64* %overlap.4.i64, !tbaa !15
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 4, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_15:!.*]]
store i64 5, i64* %overlap.5.i64, !tbaa !17
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 5, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_17:!.*]]
store i64 6, i64* %overlap.6.i64, !tbaa !19
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 6, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_19:!.*]]
store i64 7, i64* %overlap.7.i64, !tbaa !21
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 7, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_21:!.*]]
store i64 8, i64* %overlap.8.i64, !tbaa !23
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 8, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_23:!.*]]
store i64 9, i64* %overlap.9.i64, !tbaa !25
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 9, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_25:!.*]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Make two sequences of overlapping stores with more gaps and irregularities.
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
%overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
%overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
%overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
%overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
%overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
%overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
%overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
%overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
%overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
%overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
store i8 1, i8* %overlap2.1.0.i8, !tbaa !27
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]], !tbaa [[TAG_27:!.*]]
store i16 1, i16* %overlap2.1.0.i16, !tbaa !29
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_29:!.*]]
store i32 1, i32* %overlap2.1.0.i32, !tbaa !31
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_31:!.*]]
store i32 2, i32* %overlap2.1.1.i32, !tbaa !33
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 2, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_33:!.*]]
store i32 3, i32* %overlap2.1.2.i32, !tbaa !35
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_35:!.*]]
store i32 4, i32* %overlap2.1.3.i32, !tbaa !37
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_37:!.*]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
%overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
%overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
%overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
%overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
store i32 1, i32* %overlap2.2.0.i32, !tbaa !39
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_39:!.*]]
store i8 1, i8* %overlap2.2.1.i8, !tbaa !41
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: store i8 1, i8* %[[gep]], !tbaa [[TAG_41:!.*]]
store i16 1, i16* %overlap2.2.1.i16, !tbaa !43
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_43:!.*]]
store i32 1, i32* %overlap2.2.1.i32, !tbaa !45
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_45:!.*]]
store i32 3, i32* %overlap2.2.2.i32, !tbaa !47
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_47:!.*]]
store i32 4, i32* %overlap2.2.3.i32, !tbaa !49
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_49:!.*]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i1 false), !tbaa !51
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %src, i32 3, {{.*}}), !tbaa [[TAG_51:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 5, {{.*}}), !tbaa [[TAG_51]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Bridge between the overlapping areas
call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i1 false), !tbaa !53
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[gep]], i8 42, i32 5, {{.*}}), !tbaa [[TAG_53:!.*]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; ...promoted i8 store...
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[gep]], i8 42, i32 2, {{.*}}), !tbaa [[TAG_53]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Entirely within the second overlap.
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i1 false), !tbaa !55
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 5, {{.*}}), !tbaa [[TAG_55:!.*]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Trailing past the second overlap.
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i1 false), !tbaa !57
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 5, {{.*}}), !tbaa [[TAG_57:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 3, {{.*}}), !tbaa [[TAG_57]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i1 false), !tbaa !59
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %dst, i8* align 1 %[[gep]], i32 42, {{.*}}), !tbaa [[TAG_59:!.*]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
; CHECK-NEXT: store i8 0, i8* %[[gep]], {{.*}}, !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 99, {{.*}}), !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 16, {{.*}}), !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 42, {{.*}}), !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
; CHECK-NEXT: store i8 42, i8* %[[gep]], {{.*}}, !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_59]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 85, {{.*}}), !tbaa [[TAG_59]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret void
}
define void @test4(i8* %dst, i8* %src) {
; CHECK-LABEL: @test4(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
%a = alloca [100 x i8]
; CHECK-NOT: alloca
; CHECK: %[[test4_a1:.*]] = alloca [20 x i8]
; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i1 false), !tbaa !0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 20, {{.*}}), !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 10, {{.*}}), !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 40, {{.*}}), !tbaa [[TAG_0]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
%a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i1 false), !tbaa !3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_3]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Clobber a single element of the array, this should be promotable, and be deleted.
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %c
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i1 false), !tbaa !5
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_5]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i1 false), !tbaa !7
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %dst, i8* align 1 %[[gep]], i32 20, {{.*}}), !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]], {{.*}}, !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 10, {{.*}}), !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]], {{.*}}, !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]], {{.*}}, !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_7]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 40, {{.*}}), !tbaa [[TAG_7]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret void
}
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i1) nounwind
declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i1) nounwind
declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i1) nounwind
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i1) nounwind
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
define i16 @test5() {
; CHECK-LABEL: @test5(
First major step toward addressing PR14059. This teaches SROA to handle cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
2012-10-15 16:40:30 +08:00
; CHECK-NOT: alloca float
; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
; CHECK-NEXT: ret i16 %[[trunc]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
%a = alloca [4 x i8]
%fptr = bitcast [4 x i8]* %a to float*
store float 0.0, float* %fptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%iptr = bitcast i8* %ptr to i16*
%val = load i16, i16* %iptr
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i16 %val
}
define i32 @test6() {
; CHECK-LABEL: @test6(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK: alloca i32
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: load i32, i32*
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: ret i32
entry:
%a = alloca [4 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i1 true)
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%iptr = bitcast i8* %ptr to i32*
%val = load i32, i32* %iptr
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i32 %val
}
define void @test7(i8* %src, i8* %dst) {
; CHECK-LABEL: @test7(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK: alloca i32
; CHECK-NEXT: bitcast i8* %src to i32*
; CHECK-NEXT: load volatile i32, {{.*}}, !tbaa [[TAG_0]]
; CHECK-NEXT: store volatile i32 {{.*}}, !tbaa [[TAG_0]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: bitcast i8* %dst to i32*
; CHECK-NEXT: load volatile i32, {{.*}}, !tbaa [[TAG_3]]
; CHECK-NEXT: store volatile i32 {{.*}}, !tbaa [[TAG_3]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: ret
entry:
%a = alloca [4 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 true), !tbaa !0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 true), !tbaa !3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret void
}
%S1 = type { i32, i32, [16 x i8] }
%S2 = type { %S1*, %S2* }
define %S2 @test8(%S2* %s2) {
; CHECK-LABEL: @test8(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
%new = alloca %S2
; CHECK-NOT: alloca
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
%s2.next = load %S2*, %S2** %s2.next.ptr, !tbaa !0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]], !tbaa [[TAG_0]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
%s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr, !tbaa !3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
store %S1* %s2.next.s1, %S1** %new.s1.ptr, !tbaa !5
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
%s2.next.next = load %S2*, %S2** %s2.next.next.ptr, !tbaa !7
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
store %S2* %s2.next.next, %S2** %new.next.ptr, !tbaa !9
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]], !tbaa [[TAG_3]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]], !tbaa [[TAG_7]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%new.s1 = load %S1*, %S1** %new.s1.ptr
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%result1 = insertvalue %S2 undef, %S1* %new.s1, 0
; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
%new.next = load %S2*, %S2** %new.next.ptr
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%result2 = insertvalue %S2 %result1, %S2* %new.next, 1
; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
ret %S2 %result2
; CHECK-NEXT: ret %S2 %[[result2]]
}
define i64 @test9() {
; Ensure we can handle loads off the end of an alloca even when wrapped in
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
; weird bit casts and types. This is valid IR due to the alignment and masking
; off the bits past the end of the alloca.
;
; CHECK-LABEL: @test9(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
; CHECK: %[[b2:.*]] = zext i8 26 to i64
; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
; CHECK-NEXT: ret i64 %[[result]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
%a = alloca { [3 x i8] }, align 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %gep1, align 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %gep2, align 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 26, i8* %gep3, align 1
%cast = bitcast { [3 x i8] }* %a to { i64 }*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
%load = load i64, i64* %elt
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
%result = and i64 %load, 16777215
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i64 %result
}
define %S2* @test10() {
; CHECK-LABEL: @test10(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca %S2*
; CHECK: ret %S2* null
entry:
%a = alloca [8 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i1 false)
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%s2ptrptr = bitcast i8* %ptr to %S2**
%s2ptr = load %S2*, %S2** %s2ptrptr
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret %S2* %s2ptr
}
define i32 @test11() {
; CHECK-LABEL: @test11(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca
; CHECK: ret i32 0
entry:
%X = alloca i32
br i1 undef, label %good, label %bad
good:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%Y = getelementptr i32, i32* %X, i64 0
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 0, i32* %Y
%Z = load i32, i32* %Y
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i32 %Z
bad:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%Y2 = getelementptr i32, i32* %X, i64 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 0, i32* %Y2
%Z2 = load i32, i32* %Y2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret i32 %Z2
}
define i8 @test12() {
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
; We fully promote these to the i24 load or store size, resulting in just masks
; and other operations that instcombine will fold, but no alloca.
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
;
; CHECK-LABEL: @test12(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
%a = alloca [3 x i8]
%b = alloca [3 x i8]
; CHECK-NOT: alloca
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
store i8 0, i8* %a0ptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
store i8 0, i8* %a1ptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
store i8 0, i8* %a2ptr
%aiptr = bitcast [3 x i8]* %a to i24*
%ai = load i24, i24* %aiptr
2012-12-13 03:47:04 +08:00
; CHECK-NOT: store
; CHECK-NOT: load
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
; CHECK: %[[ext2:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
%biptr = bitcast [3 x i8]* %b to i24*
store i24 %ai, i24* %biptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
%b0 = load i8, i8* %b0ptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
%b1 = load i8, i8* %b1ptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
%b2 = load i8, i8* %b2ptr
2012-12-13 03:47:04 +08:00
; CHECK-NOT: store
; CHECK-NOT: load
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
%bsum0 = add i8 %b0, %b1
%bsum1 = add i8 %bsum0, %b2
ret i8 %bsum1
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
; CHECK-NEXT: ret i8 %[[sum1]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
}
define i32 @test13() {
; Ensure we don't crash and handle undefined loads that straddle the end of the
; allocation.
; CHECK-LABEL: @test13(
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
; CHECK: %[[value:.*]] = zext i8 0 to i16
; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
; CHECK-NEXT: ret i32 %[[ret]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
entry:
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
%a = alloca [3 x i8], align 2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %b0ptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %b1ptr
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i8 0, i8* %b2ptr
%iptrcast = bitcast [3 x i8]* %a to i16*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%iptrgep = getelementptr i16, i16* %iptrcast, i64 1
%i = load i16, i16* %iptrgep
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%ret = zext i16 %i to i32
ret i32 %ret
}
%test14.struct = type { [3 x i32] }
define void @test14(...) nounwind uwtable {
; This is a strange case where we split allocas into promotable partitions, but
; also gain enough data to prove they must be dead allocas due to GEPs that walk
; across two adjacent allocas. Test that we don't try to promote or otherwise
; do bad things to these dead allocas, they should just be removed.
; CHECK-LABEL: @test14(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: entry:
; CHECK-NEXT: ret void
entry:
%a = alloca %test14.struct
%p = alloca %test14.struct*
%0 = bitcast %test14.struct* %a to i8*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%1 = getelementptr i8, i8* %0, i64 12
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%2 = bitcast i8* %1 to %test14.struct*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
%4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%5 = bitcast [3 x i32]* %3 to i32*
%6 = bitcast [3 x i32]* %4 to i32*
%7 = load i32, i32* %6, align 4
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 %7, i32* %5, align 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%8 = getelementptr inbounds i32, i32* %5, i32 1
%9 = getelementptr inbounds i32, i32* %6, i32 1
%10 = load i32, i32* %9, align 4
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 %10, i32* %8, align 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%11 = getelementptr inbounds i32, i32* %5, i32 2
%12 = getelementptr inbounds i32, i32* %6, i32 2
%13 = load i32, i32* %12, align 4
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i32 %13, i32* %11, align 4
ret void
}
define i32 @test15(i1 %flag) nounwind uwtable {
; Ensure that when there are dead instructions using an alloca that are not
; loads or stores we still delete them during partitioning and rewriting.
; Otherwise we'll go to promote them while thy still have unpromotable uses.
; CHECK-LABEL: @test15(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %loop
; CHECK: loop:
; CHECK-NEXT: br label %loop
entry:
%l0 = alloca i64
%l1 = alloca i64
%l2 = alloca i64
%l3 = alloca i64
br label %loop
loop:
%dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
store i64 1879048192, i64* %l0, align 8
%bc0 = bitcast i64* %l0 to i8*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep0 = getelementptr i8, i8* %bc0, i64 3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%dead0 = bitcast i8* %gep0 to i64*
store i64 1879048192, i64* %l1, align 8
%bc1 = bitcast i64* %l1 to i8*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr i8, i8* %bc1, i64 3
%dead1 = getelementptr i8, i8* %gep1, i64 1
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
store i64 1879048192, i64* %l2, align 8
%bc2 = bitcast i64* %l2 to i8*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2.1 = getelementptr i8, i8* %bc2, i64 1
%gep2.2 = getelementptr i8, i8* %bc2, i64 3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; Note that this select should get visited multiple times due to using two
; different GEPs off the same alloca. We should only delete it once.
%dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
store i64 1879048192, i64* %l3, align 8
%bc3 = bitcast i64* %l3 to i8*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep3 = getelementptr i8, i8* %bc3, i64 3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
br label %loop
}
define void @test16(i8* %src, i8* %dst) {
; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
; CHECK-LABEL: @test16(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NOT: alloca
; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24*
; CHECK-NEXT: load i24, i24* %[[srccast]], {{.*}}, !tbaa [[TAG_0]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
; CHECK-NEXT: store i24 0, i24* %[[dstcast]], {{.*}}, !tbaa [[TAG_5]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: ret void
entry:
%a = alloca [3 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 false), !tbaa !0
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%cast = bitcast i8* %ptr to i24*
store i24 0, i24* %cast, !tbaa !3
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 false), !tbaa !5
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret void
}
define void @test17(i8* %src, i8* %dst) {
; Ensure that we can rewrite unpromotable memcpys which extend past the end of
; the alloca.
; CHECK-LABEL: @test17(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK: %[[a:.*]] = alloca [3 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src, {{.*}}), !tbaa [[TAG_0]]
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]], {{.*}}), !tbaa [[TAG_3]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: ret void
entry:
%a = alloca [3 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 true), !tbaa !0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 true), !tbaa !3
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret void
}
define void @test18(i8* %src, i8* %dst, i32 %size) {
; Preserve transfer instrinsics with a variable size, even if they overlap with
; fixed size operations. Further, continue to split and promote allocas preceding
; the variable sized intrinsic.
; CHECK-LABEL: @test18(
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK: %[[a:.*]] = alloca [34 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]], {{.*}}, !tbaa [[TAG_0]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[agep1]], i8* %src, i32 %size, {{.*}}), !tbaa [[TAG_3]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[agep2]], i8 42, i32 %size, {{.*}}), !tbaa [[TAG_5]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
; CHECK-NEXT: store i32 42, i32* %[[dstcast1]], {{.*}}, !tbaa [[TAG_9]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]], {{.*}}, !tbaa [[TAG_9]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
[SROA] Take advantage of separate alignments for memcpy source and destination Summary: This change is part of step five in the series of changes to remove alignment argument from memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in favour of getting source & dest specific alignments through the new API. This allows us to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy calls that it creates, as well as to only change the alignment of a memcpy/memmove argument that it replaces. Steps: Step 1) Remove alignment parameter and create alignment parameter attributes for memcpy/memmove/memset. ( rL322965, rC322964, rL322963 ) Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. ( rL323597 ) Step 3) Update Clang to use the new IRBuilder API. ( rC323617 ) Step 4) Update Polly to use the new IRBuilder API. ( rL323618 ) Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment() and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278, rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774, rL324781, rL324784, rL324955, rL324960, rL325816 ) Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reference http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html Reviewers: chandlerc, bollu, efriedma Reviewed By: efriedma Subscribers: efriedma, eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D42974 llvm-svn: 327398
2018-03-13 22:25:33 +08:00
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* align 1 %[[agep3]], i32 %size, {{.*}}), !tbaa [[TAG_11]]
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
; CHECK-NEXT: ret void
entry:
%a = alloca [42 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i1 false), !tbaa !0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i1 false), !tbaa !3
call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i1 false), !tbaa !5
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
%cast = bitcast i8* %ptr to i32*
store i32 42, i32* %cast, !tbaa !7
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i1 false), !tbaa !9
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i1 false), !tbaa !11
Introduce a new SROA implementation. This is essentially a ground up re-think of the SROA pass in LLVM. It was initially inspired by a few problems with the existing pass: - It is subject to the bane of my existence in optimizations: arbitrary thresholds. - It is overly conservative about which constructs can be split and promoted. - The vector value replacement aspect is separated from the splitting logic, missing many opportunities where splitting and vector value formation can work together. - The splitting is entirely based around the underlying type of the alloca, despite this type often having little to do with the reality of how that memory is used. This is especially prevelant with unions and base classes where we tail-pack derived members. - When splitting fails (often due to the thresholds), the vector value replacement (again because it is separate) can kick in for preposterous cases where we simply should have split the value. This results in forming i1024 and i2048 integer "bit vectors" that tremendously slow down subsequnet IR optimizations (due to large APInts) and impede the backend's lowering. The new design takes an approach that fundamentally is not susceptible to many of these problems. It is the result of a discusison between myself and Duncan Sands over IRC about how to premptively avoid these types of problems and how to do SROA in a more principled way. Since then, it has evolved and grown, but this remains an important aspect: it fixes real world problems with the SROA process today. First, the transform of SROA actually has little to do with replacement. It has more to do with splitting. The goal is to take an aggregate alloca and form a composition of scalar allocas which can replace it and will be most suitable to the eventual replacement by scalar SSA values. The actual replacement is performed by mem2reg (and in the future SSAUpdater). The splitting is divided into four phases. The first phase is an analysis of the uses of the alloca. This phase recursively walks uses, building up a dense datastructure representing the ranges of the alloca's memory actually used and checking for uses which inhibit any aspects of the transform such as the escape of a pointer. Once we have a mapping of the ranges of the alloca used by individual operations, we compute a partitioning of the used ranges. Some uses are inherently splittable (such as memcpy and memset), while scalar uses are not splittable. The goal is to build a partitioning that has the minimum number of splits while placing each unsplittable use in its own partition. Overlapping unsplittable uses belong to the same partition. This is the target split of the aggregate alloca, and it maximizes the number of scalar accesses which become accesses to their own alloca and candidates for promotion. Third, we re-walk the uses of the alloca and assign each specific memory access to all the partitions touched so that we have dense use-lists for each partition. Finally, we build a new, smaller alloca for each partition and rewrite each use of that partition to use the new alloca. During this phase the pass will also work very hard to transform uses of an alloca into a form suitable for promotion, including forming vector operations, speculating loads throguh PHI nodes and selects, etc. After splitting is complete, each newly refined alloca that is a candidate for promotion to a scalar SSA value is run through mem2reg. There are lots of reasonably detailed comments in the source code about the design and algorithms, and I'm going to be trying to improve them in subsequent commits to ensure this is well documented, as the new pass is in many ways more complex than the old one. Some of this is still a WIP, but the current state is reasonbly stable. It has passed bootstrap, the nightly test suite, and Duncan has run it successfully through the ACATS and DragonEgg test suites. That said, it remains behind a default-off flag until the last few pieces are in place, and full testing can be done. Specific areas I'm looking at next: - Improved comments and some code cleanup from reviews. - SSAUpdater and enabling this pass inside the CGSCC pass manager. - Some datastructure tuning and compile-time measurements. - More aggressive FCA splitting and vector formation. Many thanks to Duncan Sands for the thorough final review, as well as Benjamin Kramer for lots of review during the process of writing this pass, and Daniel Berlin for reviewing the data structures and algorithms and general theory of the pass. Also, several other people on IRC, over lunch tables, etc for lots of feedback and advice. llvm-svn: 163883
2012-09-14 17:22:59 +08:00
ret void
}
%opaque = type opaque
define i32 @test19(%opaque* %x) {
; This input will cause us to try to compute a natural GEP when rewriting
; pointers in such a way that we try to GEP through the opaque type. Previously,
; a check for an unsized type was missing and this crashed. Ensure it behaves
; reasonably now.
; CHECK-LABEL: @test19(
; CHECK-NOT: alloca
; CHECK: ret i32 undef
entry:
%a = alloca { i64, i8* }
%cast1 = bitcast %opaque* %x to i8*
%cast2 = bitcast { i64, i8* }* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i1 false)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
%val = load i64, i64* %gep
ret i32 undef
}
define i32 @test20() {
; Ensure we can track negative offsets (before the beginning of the alloca) and
; negative relative offsets from offsets starting past the end of the alloca.
; CHECK-LABEL: @test20(
; CHECK-NOT: alloca
; CHECK: %[[sum1:.*]] = add i32 1, 2
; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
; CHECK: ret i32 %[[sum2]]
entry:
%a = alloca [3 x i32]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
store i32 1, i32* %gep1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
%gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
store i32 2, i32* %gep2.2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
%gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
store i32 3, i32* %gep3.2
%load1 = load i32, i32* %gep1
%load2 = load i32, i32* %gep2.2
%load3 = load i32, i32* %gep3.2
%sum1 = add i32 %load1, %load2
%sum2 = add i32 %sum1, %load3
ret i32 %sum2
}
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i1) nounwind
define i8 @test21() {
; Test allocations and offsets which border on overflow of the int64_t used
; internally. This is really awkward to really test as LLVM doesn't really
; support such extreme constructs cleanly.
; CHECK-LABEL: @test21(
; CHECK-NOT: alloca
; CHECK: or i8 -1, -1
entry:
%a = alloca [2305843009213693951 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
store i8 255, i8* %gep0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
%gep2 = getelementptr i8, i8* %gep1, i64 -1
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i1 false)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
%gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
%gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
store i8 255, i8* %gep5
%cast1 = bitcast i8* %gep4 to i32*
store i32 0, i32* %cast1
%load = load i8, i8* %gep0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep6 = getelementptr i8, i8* %gep0, i32 1
%load2 = load i8, i8* %gep6
%result = or i8 %load, %load2
ret i8 %result
}
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
%PR13916.struct = type { i8 }
define void @PR13916.1() {
; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
; the case where there is a directly identical value for both source and dest.
; CHECK: @PR13916.1
; CHECK-NOT: alloca
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
; CHECK: ret void
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
entry:
%a = alloca i8
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i1 false)
%tmp2 = load i8, i8* %a
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
ret void
}
define void @PR13916.2() {
; Check whether we continue to handle them correctly when they start off with
; different pointer value chains, but during rewriting we coalesce them into the
; same value.
; CHECK: @PR13916.2
; CHECK-NOT: alloca
; CHECK: ret void
entry:
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
%a = alloca %PR13916.struct, align 1
br i1 undef, label %if.then, label %if.end
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
if.then:
%tmp0 = bitcast %PR13916.struct* %a to i8*
%tmp1 = bitcast %PR13916.struct* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i1 false)
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
br label %if.end
Revert the business end of r164636 and try again. I'll come in again. ;] This should really, really fix PR13916. For real this time. The underlying bug is... a bit more subtle than I had imagined. The setup is a code pattern that leads to an @llvm.memcpy call with two equal pointers to an alloca in the source and dest. Now, not any pattern will do. The alloca needs to be formed just so, and both pointers should be wrapped in different bitcasts etc. When this precise pattern hits, a funny sequence of events transpires. First, we correctly detect the potential for overlap, and correctly optimize the memcpy. The first time. However, we do simplify the set of users of the alloca, and that causes us to run the alloca back through the SROA pass in case there are knock-on simplifications. At this point, a curious thing has happened. If we happen to have an i8 alloca, we have direct i8 pointer values. So we don't bother creating a cast, we rewrite the arguments to the memcpy to dircetly refer to the alloca. Now, in an unrelated area of the pass, we have clever logic which ensures that when visiting each User of a particular pointer derived from an alloca, we only visit that User once, and directly inspect all of its operands which refer to that particular pointer value. However, the mechanism used to detect memcpy's with the potential to overlap relied upon getting visited once per *Use*, not once per *User*. This is always true *unless* the same exact value is both source and dest. It turns out that almost nothing actually produces that pattern though. We can hand craft test cases that more directly test this behavior of course, and those are included. Also, note that there is a significant missed optimization here -- we prove in many cases that there is a non-volatile memcpy call with identical source and dest addresses. We shouldn't prevent splitting the alloca in that case, and in fact we should just remove such memcpy calls eagerly. I'll address that in a subsequent commit. llvm-svn: 164669
2012-09-26 15:41:40 +08:00
if.end:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
%tmp2 = load i8, i8* %gep
ret void
}
define void @PR13990() {
; Ensure we can handle cases where processing one alloca causes the other
; alloca to become dead and get deleted. This might crash or fail under
; Valgrind if we regress.
; CHECK-LABEL: @PR13990(
; CHECK-NOT: alloca
; CHECK: unreachable
; CHECK: unreachable
entry:
%tmp1 = alloca i8*
%tmp2 = alloca i8*
br i1 undef, label %bb1, label %bb2
bb1:
store i8* undef, i8** %tmp2
br i1 undef, label %bb2, label %bb3
bb2:
%tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
br i1 undef, label %bb3, label %bb4
bb3:
unreachable
bb4:
unreachable
}
define double @PR13969(double %x) {
; Check that we detect when promotion will un-escape an alloca and iterate to
; re-try running SROA over that alloca. Without that, the two allocas that are
; stored into a dead alloca don't get rewritten and promoted.
; CHECK-LABEL: @PR13969(
entry:
%a = alloca double
%b = alloca double*
%c = alloca double
; CHECK-NOT: alloca
store double %x, double* %a
store double* %c, double** %b
store double* %a, double** %b
store double %x, double* %c
%ret = load double, double* %a
; CHECK-NOT: store
; CHECK-NOT: load
ret double %ret
; CHECK: ret double %x
}
%PR14034.struct = type { { {} }, i32, %PR14034.list }
%PR14034.list = type { %PR14034.list*, %PR14034.list* }
define void @PR14034() {
; This test case tries to form GEPs into the empty leading struct members, and
; subsequently crashed (under valgrind) before we fixed the PR. The important
; thing is to handle empty structs gracefully.
; CHECK-LABEL: @PR14034(
entry:
%a = alloca %PR14034.struct
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
%prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
store %PR14034.list* undef, %PR14034.list** %prev
%cast0 = bitcast %PR14034.struct* undef to i8*
%cast1 = bitcast %PR14034.struct* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i1 false)
ret void
}
define i32 @test22(i32 %x) {
; Test that SROA and promotion is not confused by a grab bax mixture of pointer
; types involving wrapper aggregates and zero-length aggregate members.
; CHECK-LABEL: @test22(
entry:
%a1 = alloca { { [1 x { i32 }] } }
%a2 = alloca { {}, { float }, [0 x i8] }
%a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
; CHECK-NOT: alloca
%wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
%ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
%load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
%unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
%wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
%ptrcast2 = bitcast float* %gep3 to <4 x i8>*
%load3 = load <4 x i8>, <4 x i8>* %ptrcast2
%valcast1 = bitcast <4 x i8> %load3 to i32
%wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
%wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
%ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
%ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
%load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
%unwrap2 = extractvalue { {}, float, {} } %load4, 1
%valcast2 = bitcast float %unwrap2 to i32
ret i32 %valcast2
; CHECK: ret i32
}
First major step toward addressing PR14059. This teaches SROA to handle cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
2012-10-15 16:40:30 +08:00
define void @PR14059.1(double* %d) {
; In PR14059 a peculiar construct was identified as something that is used
; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
; of doubles via an array of i32 in order to place the data into integer
; registers. This in turn was missed as an optimization by SROA due to the
; partial loads and stores of integers to the double alloca we were trying to
; form and promote. The solution is to widen the integer operations to be
; whole-alloca operations, and perform the appropriate bitcasting on the
; *values* rather than the pointers. When this works, partial reads and writes
; via integers can be promoted away.
; CHECK: @PR14059.1
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%X.sroa.0.i = alloca double, align 8
%0 = bitcast double* %X.sroa.0.i to i8*
call void @llvm.lifetime.start.p0i8(i64 -1, i8* %0)
; Store to the low 32-bits...
First major step toward addressing PR14059. This teaches SROA to handle cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
2012-10-15 16:40:30 +08:00
%X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
; Also use a memset to the middle 32-bits for fun.
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i1 false)
; Or a memset of the whole thing.
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i1 false)
; Write to the high 32-bits with a memcpy.
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
%d.raw = bitcast double* %d to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i1 false)
; Store to the high 32-bits...
First major step toward addressing PR14059. This teaches SROA to handle cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
2012-10-15 16:40:30 +08:00
%X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
; Do the actual math...
%X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
%accum.real.i = load double, double* %d, align 8
First major step toward addressing PR14059. This teaches SROA to handle cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
2012-10-15 16:40:30 +08:00
%add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
store double %add.r.i, double* %d, align 8
call void @llvm.lifetime.end.p0i8(i64 -1, i8* %0)
First major step toward addressing PR14059. This teaches SROA to handle cases where we have partial integer loads and stores to an otherwise promotable alloca to widen[1] those loads and stores to cover the entire alloca and bitcast them into the appropriate type such that promotion can proceed. These partial loads and stores stem from an annoying confluence of ARM's calling convention and ABI lowering and the FCA pre-splitting which takes place in SROA. Clang lowers a { double, double } in-register function argument as a [4 x i32] function argument to ensure it is placed into integer 32-bit registers (a really unnerving implicit contract between Clang and the ARM backend I would add). This results in a FCA load of [4 x i32]* from the { double, double } alloca, and SROA decomposes this into a sequence of i32 loads and stores. Inlining proceeds, code gets folded, but at the end of the day, we still have i32 stores to the low and high halves of a double alloca. Widening these to be i64 operations, and bitcasting them to double prior to loading or storing allows promotion to proceed for these allocas. I looked quite a bit changing the IR which Clang produces for this case to be more friendly, but small changes seem unlikely to help. I think the best representation we could use currently would be to pass 4 i32 arguments thereby avoiding any FCAs, but that would still require this fix. It seems like it might eventually be nice to somehow encode the ABI register selection choices outside of the parameter type system so that the parameter can be a { double, double }, but the CC register annotations indicate that this should be passed via 4 integer registers. This patch does not address the second problem in PR14059, which is the reverse: when a struct alloca is loaded as a *larger* single integer. This patch also does not address some of the code quality issues with the FCA-splitting. Those don't actually impede any optimizations really, but they're on my list to clean up. [1]: Pedantic footnote: for those concerned about memory model issues here, this is safe. For the alloca to be promotable, it cannot escape or have any use of its address that could allow these loads or stores to be racing. Thus, widening is always safe. llvm-svn: 165928
2012-10-15 16:40:30 +08:00
ret void
}
define i64 @PR14059.2({ float, float }* %phi) {
; Check that SROA can split up alloca-wide integer loads and stores where the
; underlying alloca has smaller components that are accessed independently. This
; shows up particularly with ABI lowering patterns coming out of Clang that rely
; on the particular register placement of a single large integer return value.
; CHECK: @PR14059.2
entry:
%retval = alloca { float, float }, align 4
; CHECK-NOT: alloca
%0 = bitcast { float, float }* %retval to i64*
store i64 0, i64* %0
; CHECK-NOT: store
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
%phi.real = load float, float* %phi.realp
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
%phi.imag = load float, float* %phi.imagp
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
%imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
store float %phi.real, float* %real
store float %phi.imag, float* %imag
; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
%1 = load i64, i64* %0, align 1
ret i64 %1
; CHECK-NEXT: ret i64 %[[real_insert]]
}
define void @PR14105({ [16 x i8] }* %ptr) {
; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
; sign as negative. We use a volatile memcpy to ensure promotion never actually
; occurs.
; CHECK-LABEL: @PR14105(
entry:
%a = alloca { [16 x i8] }, align 8
; CHECK: alloca [16 x i8], align 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
%cast1 = bitcast { [16 x i8 ] }* %gep to i8*
%cast2 = bitcast { [16 x i8 ] }* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
ret void
; CHECK: ret
}
define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
; Make sure this the right address space pointer is used for type check.
; CHECK-LABEL: @PR14105_as1(
entry:
%a = alloca { [16 x i8] }, align 8
; CHECK: alloca [16 x i8], align 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i16 -1, i32 0, i16 0
%cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
%cast2 = bitcast { [16 x i8 ] }* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
ret void
; CHECK: ret
}
define void @PR14465() {
; Ensure that we don't crash when analyzing a alloca larger than the maximum
; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
; CHECK-LABEL: @PR14465(
%stack = alloca [1048576 x i32], align 16
; CHECK: alloca [1048576 x i32]
%cast = bitcast [1048576 x i32]* %stack to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i64(i8* align 16 %cast, i8 -2, i64 4194304, i1 false)
ret void
; CHECK: ret
}
define void @PR14548(i1 %x) {
; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
; pattern caused crashes and invalid output in the PR, and its nature will
; trigger a mixture in several permutations as we resolve each alloca
; iteratively.
; Note that we don't do a particularly good *job* of handling these mixtures,
; but the hope is that this is very rare.
; CHECK-LABEL: @PR14548(
entry:
%a = alloca <{ i1 }>, align 8
%b = alloca <{ i1 }>, align 8
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
; CHECK: %[[a:.*]] = alloca i8, align 8
[SROA] Fix a nasty pile of bugs to do with big-endian, different alloca types and loads, loads or stores widened past the size of an alloca, etc. This started off with a bug report about big-endian behavior with bitfields and loads and stores to a { i32, i24 } struct. An initial attempt to fix this was sent for review in D10357, but that didn't really get to the root of the problem. The core issue was that canConvertValue and convertValue in SROA were handling different bitwidth integers by doing a zext of the integer. It wouldn't do a trunc though, only a zext! This would in turn lead SROA to form an i24 load from an i24 alloca, zext it to i32, and then use it. This would at least produce the wrong value for big-endian systems. One of my many false starts here was to correct the computation for big-endian systems by shifting. But this doesn't actually work because the original code has a 64-bit store to the entire 8 bytes, and a 32-bit load of the last 4 bytes, and because the alloc size is 8 bytes, we can't lose that last (least significant if bigendian) byte! The real problem here is that we're forming an i24 load in SROA which is actually not sufficiently wide to load all of the necessary bits here. The source has an i32 load, and SROA needs to form that as well. The straightforward way to do this is to disable the zext logic in canConvertValue and convertValue, forcing us to actually load all 32-bits. This seems like a really good change, but it in turn breaks several other parts of SROA. First in the chain of knock-on failures, we had places where we were doing integer-widening promotion even though some of the integer loads or stores extended *past the end* of the alloca's memory! There was even a comment about preventing this, but it only prevented the case where the type had a different bit size from its store size. So I added checks to handle the cases where we actually have a widened load or store and to avoid trying to special integer widening promotion in those cases. Second, we actually rely on the ability to promote in the face of loads past the end of an alloca! This is important so that we can (for example) speculate loads around PHI nodes to do more promotion. The bits loaded are garbage, but as long as they aren't used and the alignment is suitable high (which it wasn't in the test case!) this is "fine". And we can't stop promoting here, lots of things stop working well if we do. So we need to add specific logic to handle the extension (and truncation) case, but *only* where that extension or truncation are over bytes that *are outside the alloca's allocated storage* and thus totally bogus to load or store. And of course, once we add back this correct handling of extension or truncation, we need to correctly handle bigendian systems to avoid re-introducing the exact bug that started us off on this chain of misery in the first place, but this time even more subtle as it only happens along speculated loads atop a PHI node. I've ported an existing test for PHI speculation to the big-endian test file and checked that we get that part correct, and I've added several more interesting big-endian test cases that should help check that we're getting this correct. Fun times. llvm-svn: 242869
2015-07-22 11:32:42 +08:00
; CHECK-NEXT: %[[b:.*]] = alloca i8, align 8
%b.i1 = bitcast <{ i1 }>* %b to i1*
store i1 %x, i1* %b.i1, align 8
%b.i8 = bitcast <{ i1 }>* %b to i8*
%foo = load i8, i8* %b.i8, align 1
[SROA] Fix a nasty pile of bugs to do with big-endian, different alloca types and loads, loads or stores widened past the size of an alloca, etc. This started off with a bug report about big-endian behavior with bitfields and loads and stores to a { i32, i24 } struct. An initial attempt to fix this was sent for review in D10357, but that didn't really get to the root of the problem. The core issue was that canConvertValue and convertValue in SROA were handling different bitwidth integers by doing a zext of the integer. It wouldn't do a trunc though, only a zext! This would in turn lead SROA to form an i24 load from an i24 alloca, zext it to i32, and then use it. This would at least produce the wrong value for big-endian systems. One of my many false starts here was to correct the computation for big-endian systems by shifting. But this doesn't actually work because the original code has a 64-bit store to the entire 8 bytes, and a 32-bit load of the last 4 bytes, and because the alloc size is 8 bytes, we can't lose that last (least significant if bigendian) byte! The real problem here is that we're forming an i24 load in SROA which is actually not sufficiently wide to load all of the necessary bits here. The source has an i32 load, and SROA needs to form that as well. The straightforward way to do this is to disable the zext logic in canConvertValue and convertValue, forcing us to actually load all 32-bits. This seems like a really good change, but it in turn breaks several other parts of SROA. First in the chain of knock-on failures, we had places where we were doing integer-widening promotion even though some of the integer loads or stores extended *past the end* of the alloca's memory! There was even a comment about preventing this, but it only prevented the case where the type had a different bit size from its store size. So I added checks to handle the cases where we actually have a widened load or store and to avoid trying to special integer widening promotion in those cases. Second, we actually rely on the ability to promote in the face of loads past the end of an alloca! This is important so that we can (for example) speculate loads around PHI nodes to do more promotion. The bits loaded are garbage, but as long as they aren't used and the alignment is suitable high (which it wasn't in the test case!) this is "fine". And we can't stop promoting here, lots of things stop working well if we do. So we need to add specific logic to handle the extension (and truncation) case, but *only* where that extension or truncation are over bytes that *are outside the alloca's allocated storage* and thus totally bogus to load or store. And of course, once we add back this correct handling of extension or truncation, we need to correctly handle bigendian systems to avoid re-introducing the exact bug that started us off on this chain of misery in the first place, but this time even more subtle as it only happens along speculated loads atop a PHI node. I've ported an existing test for PHI speculation to the big-endian test file and checked that we get that part correct, and I've added several more interesting big-endian test cases that should help check that we're getting this correct. Fun times. llvm-svn: 242869
2015-07-22 11:32:42 +08:00
; CHECK-NEXT: %[[b_cast:.*]] = bitcast i8* %[[b]] to i1*
; CHECK-NEXT: store i1 %x, i1* %[[b_cast]], align 8
; CHECK-NEXT: {{.*}} = load i8, i8* %[[b]], align 8
%a.i8 = bitcast <{ i1 }>* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i1 false) nounwind
%bar = load i8, i8* %a.i8, align 1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
%baz = load i1, i1* %a.i1, align 1
[SROA] Fix a nasty pile of bugs to do with big-endian, different alloca types and loads, loads or stores widened past the size of an alloca, etc. This started off with a bug report about big-endian behavior with bitfields and loads and stores to a { i32, i24 } struct. An initial attempt to fix this was sent for review in D10357, but that didn't really get to the root of the problem. The core issue was that canConvertValue and convertValue in SROA were handling different bitwidth integers by doing a zext of the integer. It wouldn't do a trunc though, only a zext! This would in turn lead SROA to form an i24 load from an i24 alloca, zext it to i32, and then use it. This would at least produce the wrong value for big-endian systems. One of my many false starts here was to correct the computation for big-endian systems by shifting. But this doesn't actually work because the original code has a 64-bit store to the entire 8 bytes, and a 32-bit load of the last 4 bytes, and because the alloc size is 8 bytes, we can't lose that last (least significant if bigendian) byte! The real problem here is that we're forming an i24 load in SROA which is actually not sufficiently wide to load all of the necessary bits here. The source has an i32 load, and SROA needs to form that as well. The straightforward way to do this is to disable the zext logic in canConvertValue and convertValue, forcing us to actually load all 32-bits. This seems like a really good change, but it in turn breaks several other parts of SROA. First in the chain of knock-on failures, we had places where we were doing integer-widening promotion even though some of the integer loads or stores extended *past the end* of the alloca's memory! There was even a comment about preventing this, but it only prevented the case where the type had a different bit size from its store size. So I added checks to handle the cases where we actually have a widened load or store and to avoid trying to special integer widening promotion in those cases. Second, we actually rely on the ability to promote in the face of loads past the end of an alloca! This is important so that we can (for example) speculate loads around PHI nodes to do more promotion. The bits loaded are garbage, but as long as they aren't used and the alignment is suitable high (which it wasn't in the test case!) this is "fine". And we can't stop promoting here, lots of things stop working well if we do. So we need to add specific logic to handle the extension (and truncation) case, but *only* where that extension or truncation are over bytes that *are outside the alloca's allocated storage* and thus totally bogus to load or store. And of course, once we add back this correct handling of extension or truncation, we need to correctly handle bigendian systems to avoid re-introducing the exact bug that started us off on this chain of misery in the first place, but this time even more subtle as it only happens along speculated loads atop a PHI node. I've ported an existing test for PHI speculation to the big-endian test file and checked that we get that part correct, and I've added several more interesting big-endian test cases that should help check that we're getting this correct. Fun times. llvm-svn: 242869
2015-07-22 11:32:42 +08:00
; CHECK-NEXT: %[[copy:.*]] = load i8, i8* %[[b]], align 8
; CHECK-NEXT: store i8 %[[copy]], i8* %[[a]], align 8
; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8
PR14972: SROA vs. GVN exposed a really bad bug in SROA. The fundamental problem is that SROA didn't allow for overly wide loads where the bits past the end of the alloca were masked away and the load was sufficiently aligned to ensure there is no risk of page fault, or other trapping behavior. With such widened loads, SROA would delete the load entirely rather than clamping it to the size of the alloca in order to allow mem2reg to fire. This was exposed by a test case that neatly arranged for GVN to run first, widening certain loads, followed by an inline step, and then SROA which miscompiles the code. However, I see no reason why this hasn't been plaguing us in other contexts. It seems deeply broken. Diagnosing all of the above took all of 10 minutes of debugging. The really annoying aspect is that fixing this completely breaks the pass. ;] There was an implicit reliance on the fact that no loads or stores extended past the alloca once we decided to rewrite them in the final stage of SROA. This was used to encode information about whether the loads and stores had been split across multiple partitions of the original alloca. That required threading explicit tracking of whether a *use* of a partition is split across multiple partitions. Once that was done, another problem arose: we allowed splitting of integer loads and stores iff they were loads and stores to the entire alloca. This is a really arbitrary limitation, and splitting at least some integer loads and stores is crucial to maximize promotion opportunities. My first attempt was to start removing the restriction entirely, but currently that does Very Bad Things by causing *many* common alloca patterns to be fully decomposed into i8 operations and lots of or-ing together to produce larger integers on demand. The code bloat is terrifying. That is still the right end-goal, but substantial work must be done to either merge partitions or ensure that small i8 values are eagerly merged in some other pass. Sadly, figuring all this out took essentially all the time and effort here. So the end result is that we allow splitting only when the load or store at least covers the alloca. That ensures widened loads and stores don't hurt SROA, and that we don't rampantly decompose operations more than we have previously. All of this was already fairly well tested, and so I've just updated the tests to cover the wide load behavior. I can add a test that crafts the pass ordering magic which caused the original PR, but that seems really brittle and to provide little benefit. The fundamental problem is that widened loads should Just Work. llvm-svn: 177055
2013-03-14 19:32:24 +08:00
ret void
}
define <3 x i8> @PR14572.1(i32 %x) {
; Ensure that a split integer store which is wider than the type size of the
; alloca (relying on the alloc size padding) doesn't trigger an assert.
; CHECK: @PR14572.1
entry:
%a = alloca <3 x i8>, align 4
; CHECK-NOT: alloca
%cast = bitcast <3 x i8>* %a to i32*
store i32 %x, i32* %cast, align 1
%y = load <3 x i8>, <3 x i8>* %a, align 4
ret <3 x i8> %y
; CHECK: ret <3 x i8>
}
define i32 @PR14572.2(<3 x i8> %x) {
; Ensure that a split integer load which is wider than the type size of the
; alloca (relying on the alloc size padding) doesn't trigger an assert.
; CHECK: @PR14572.2
entry:
%a = alloca <3 x i8>, align 4
; CHECK-NOT: alloca
store <3 x i8> %x, <3 x i8>* %a, align 1
%cast = bitcast <3 x i8>* %a to i32*
%y = load i32, i32* %cast, align 4
ret i32 %y
; CHECK: ret i32
}
define i32 @PR14601(i32 %x) {
; Don't try to form a promotable integer alloca when there is a variable length
; memory intrinsic.
; CHECK-LABEL: @PR14601(
entry:
%a = alloca i32
; CHECK: alloca
%a.i8 = bitcast i32* %a to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i1 false)
%v = load i32, i32* %a
ret i32 %v
}
define void @PR15674(i8* %data, i8* %src, i32 %size) {
; Arrange (via control flow) to have unmerged stores of a particular width to
; an alloca where we incrementally store from the end of the array toward the
; beginning of the array. Ensure that the final integer store, despite being
; convertable to the integer type that we end up promoting this alloca toward,
; doesn't get widened to a full alloca store.
; CHECK-LABEL: @PR15674(
entry:
%tmp = alloca [4 x i8], align 1
; CHECK: alloca i32
switch i32 %size, label %end [
i32 4, label %bb4
i32 3, label %bb3
i32 2, label %bb2
i32 1, label %bb1
]
bb4:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
%src.3 = load i8, i8* %src.gep3
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
store i8 %src.3, i8* %tmp.gep3
; CHECK: store i8
br label %bb3
bb3:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
%src.2 = load i8, i8* %src.gep2
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
store i8 %src.2, i8* %tmp.gep2
; CHECK: store i8
br label %bb2
bb2:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
%src.1 = load i8, i8* %src.gep1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
store i8 %src.1, i8* %tmp.gep1
; CHECK: store i8
br label %bb1
bb1:
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
%src.0 = load i8, i8* %src.gep0
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
store i8 %src.0, i8* %tmp.gep0
; CHECK: store i8
br label %end
end:
%tmp.raw = bitcast [4 x i8]* %tmp to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i1 false)
ret void
; CHECK: ret void
}
define void @PR15805(i1 %a, i1 %b) {
; CHECK-LABEL: @PR15805(
; CHECK-NOT: alloca
; CHECK: ret void
%c = alloca i64, align 8
%p.0.c = select i1 undef, i64* %c, i64* %c
%cond.in = select i1 undef, i64* %p.0.c, i64* %c
%cond = load i64, i64* %cond.in, align 8
ret void
}
[SROA] Fix another instability in SROA with respect to the slice ordering. The fundamental problem that we're hitting here is that the use-def chain ordering is *itself* not a stable thing to be relying on in the rewriting for SROA. Further, we use a non-stable sort over the slices to arrange them based on the section of the alloca they're operating on. With a debugging STL implementation (or different implementations in stage2 and stage3) this can cause stage2 != stage3. The specific aspect of this problem fixed in this commit deals with the rewriting and load-speculation around PHIs and Selects. This, like many other aspects of the use-rewriting in SROA, is really part of the "strong SSA-formation" that is doen by SROA where it works very hard to canonicalize loads and stores in *just* the right way to satisfy the needs of mem2reg[1]. When we have a select (or a PHI) with 2 uses of the same alloca, we test that loads downstream of the select are speculatable around it twice. If only one of the operands to the select needs to be rewritten, then if we get lucky we rewrite that one first and the select is immediately speculatable. This can cause the order of operand visitation, and thus the order of slices to be rewritten, to change an alloca from promotable to non-promotable and vice versa. The fix is to defer all of the speculation until *after* the rewrite phase is done. Once we've rewritten everything, we can accurately test for whether speculation will work (once, instead of twice!) and the order ceases to matter. This also happens to simplify the other subtlety of speculation -- we need to *not* speculate anything unless the result of speculating will make the alloca fully promotable by mem2reg. I had a previous attempt at simplifying this, but it was still pretty horrible. There is actually already a *really* nice test case for this in basictest.ll, but on multiple STL implementations and inputs, we just got "lucky". Fortunately, the test case is very small and we can essentially build it in exactly the opposite way to get reasonable coverage in both directions even from normal STL implementations. llvm-svn: 202092
2014-02-25 08:07:09 +08:00
define void @PR15805.1(i1 %a, i1 %b) {
; Same as the normal PR15805, but rigged to place the use before the def inside
; of looping unreachable code. This helps ensure that we aren't sensitive to the
; order in which the uses of the alloca are visited.
;
; CHECK-LABEL: @PR15805.1(
; CHECK-NOT: alloca
; CHECK: ret void
%c = alloca i64, align 8
br label %exit
loop:
%cond.in = select i1 undef, i64* %c, i64* %p.0.c
%p.0.c = select i1 undef, i64* %c, i64* %c
%cond = load i64, i64* %cond.in, align 8
[SROA] Fix another instability in SROA with respect to the slice ordering. The fundamental problem that we're hitting here is that the use-def chain ordering is *itself* not a stable thing to be relying on in the rewriting for SROA. Further, we use a non-stable sort over the slices to arrange them based on the section of the alloca they're operating on. With a debugging STL implementation (or different implementations in stage2 and stage3) this can cause stage2 != stage3. The specific aspect of this problem fixed in this commit deals with the rewriting and load-speculation around PHIs and Selects. This, like many other aspects of the use-rewriting in SROA, is really part of the "strong SSA-formation" that is doen by SROA where it works very hard to canonicalize loads and stores in *just* the right way to satisfy the needs of mem2reg[1]. When we have a select (or a PHI) with 2 uses of the same alloca, we test that loads downstream of the select are speculatable around it twice. If only one of the operands to the select needs to be rewritten, then if we get lucky we rewrite that one first and the select is immediately speculatable. This can cause the order of operand visitation, and thus the order of slices to be rewritten, to change an alloca from promotable to non-promotable and vice versa. The fix is to defer all of the speculation until *after* the rewrite phase is done. Once we've rewritten everything, we can accurately test for whether speculation will work (once, instead of twice!) and the order ceases to matter. This also happens to simplify the other subtlety of speculation -- we need to *not* speculate anything unless the result of speculating will make the alloca fully promotable by mem2reg. I had a previous attempt at simplifying this, but it was still pretty horrible. There is actually already a *really* nice test case for this in basictest.ll, but on multiple STL implementations and inputs, we just got "lucky". Fortunately, the test case is very small and we can essentially build it in exactly the opposite way to get reasonable coverage in both directions even from normal STL implementations. llvm-svn: 202092
2014-02-25 08:07:09 +08:00
br i1 undef, label %loop, label %exit
exit:
ret void
}
define void @PR16651.1(i8* %a) {
; This test case caused a crash due to the volatile memcpy in combination with
; lowering to integer loads and stores of a width other than that of the original
; memcpy.
;
; CHECK-LABEL: @PR16651.1(
; CHECK: alloca i16
; CHECK: alloca i8
; CHECK: alloca i8
; CHECK: unreachable
entry:
%b = alloca i32, align 4
%b.cast = bitcast i32* %b to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %b.cast, i8* align 4 %a, i32 4, i1 true)
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
load i8, i8* %b.gep, align 2
unreachable
}
define void @PR16651.2() {
; This test case caused a crash due to failing to promote given a select that
; can't be speculated. It shouldn't be promoted, but we missed that fact when
; analyzing whether we could form a vector promotion because that code didn't
; bail on select instructions.
;
; CHECK-LABEL: @PR16651.2(
; CHECK: alloca <2 x float>
; CHECK: ret void
entry:
%tv1 = alloca { <2 x float>, <2 x float> }, align 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
store <2 x float> undef, <2 x float>* %0, align 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
%cond105.in.i.i = select i1 undef, float* null, float* %1
%cond105.i.i = load float, float* %cond105.in.i.i, align 8
ret void
}
define void @test23(i32 %x) {
; CHECK-LABEL: @test23(
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%a = alloca i32, align 4
store i32 %x, i32* %a, align 4
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr inbounds i32, i32* %a, i32 1
%gep0 = getelementptr inbounds i32, i32* %a, i32 0
%cast1 = bitcast i32* %gep1 to i8*
%cast0 = bitcast i32* %gep0 to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i1 false)
ret void
}
define void @PR18615() {
; CHECK-LABEL: @PR18615(
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%f = alloca i8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep = getelementptr i8, i8* %f, i64 -1
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i1 false)
ret void
}
define void @test24(i8* %src, i8* %dst) {
; CHECK-LABEL: @test24(
; CHECK: alloca i64, align 16
; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1, !tbaa [[TAG_0]]
; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16, !tbaa [[TAG_0]]
; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16, !tbaa [[TAG_3]]
; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1, !tbaa [[TAG_3]]
entry:
%a = alloca i64, align 16
%ptr = bitcast i64* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i1 true), !tbaa !0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i1 true), !tbaa !3
ret void
}
[SROA] Teach SROA how to much more intelligently handle split loads and stores. When there are accesses to an entire alloca with an integer load or store as well as accesses to small pieces of the alloca, SROA splits up the large integer accesses. In order to do that, it uses bit math to merge the small accesses into large integers. While this is effective, it produces insane IR that can cause significant problems in the rest of the optimizer: - It can cause load and store mismatches with GVN on the non-alloca side where we end up loading an i64 (or some such) rather than loading specific elements that are stored. - We can't always get rid of the integer bit math, which is why we can't always fix the loads and stores to work well with GVN. - This is especially bad when we have operations that mix poorly with integer bit math such as floating point operations. - It will block things like the vectorizer which might be able to handle the scalar stores that underly the aggregate. At the same time, we can't just directly split up these loads and stores in all cases. If there is actual integer arithmetic involved on the values, then using integer bit math is actually the perfect lowering because we can often combine it heavily with the surrounding math. The solution this patch provides is to find places where SROA is partitioning aggregates into small elements, and look for splittable loads and stores that it can split all the way to some other adjacent load and store. These are uniformly the cases where failing to split the loads and stores hurts the optimizer that I have seen, and I've looked extensively at the code produced both from more and less aggressive approaches to this problem. However, it is quite tricky to actually do this in SROA. We may have loads and stores to the same alloca, or other complex patterns that are hard to handle. This complexity leads to the somewhat subtle algorithm implemented here. We have to do this entire process as a separate pass over the partitioning of the alloca, and split up all of the loads prior to splitting the stores so that we can handle safely the cases of overlapping, including partially overlapping, loads and stores to the same alloca. We also have to reconstitute the post-split slice configuration so we can avoid iterating again over all the alloca uses (the slow part of SROA). But we also have to ensure that when we split up loads and stores to *other* allocas, we *do* re-iterate over them in SROA to adapt to the more refined partitioning now required. With this, I actually think we can fix a long-standing TODO in SROA where I avoided splitting as many loads and stores as probably should be splittable. This limitation historically mitigated the fallout of all the bad things mentioned above. Now that we have more intelligent handling, I plan to remove the FIXME and more aggressively mark integer loads and stores as splittable. I'll do that in a follow-up patch to help with bisecting any fallout. The net result of this change should be more fine-grained and accurate scalars being formed out of aggregates. At the very least, Clang now generates perfect code for this high-level test case using std::complex<float>: #include <complex> void g1(std::complex<float> &x, float a, float b) { x += std::complex<float>(a, b); } void g2(std::complex<float> &x, float a, float b) { x -= std::complex<float>(a, b); } void foo(const std::complex<float> &x, float a, float b, std::complex<float> &x1, std::complex<float> &x2) { std::complex<float> l1 = x; g1(l1, a, b); std::complex<float> l2 = x; g2(l2, a, b); x1 = l1; x2 = l2; } This code isn't just hypothetical either. It was reduced out of the hot inner loops of essentially every part of the Eigen math library when using std::complex<float>. Those loops would consistently and pervasively hop between the floating point unit and the integer unit due to bit math extraction and insertion of floating point values that were "stored" in a 64-bit integer register around the loop backedge. So far, this change has passed a bootstrap and I have done some other testing and so far, no issues. That doesn't mean there won't be though, so I'll be prepared to help with any fallout. If you performance swings in particular, please let me know. I'm very curious what all the impact of this change will be. Stay tuned for the follow-up to also split more integer loads and stores. llvm-svn: 225061
2015-01-01 19:54:38 +08:00
define float @test25() {
; Check that we split up stores in order to promote the smaller SSA values.. These types
; of patterns can arise because LLVM maps small memcpy's to integer load and
; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
; produce, but so might any language frontend), this will in many cases turn into
; an integer load and store. SROA needs to be extremely powerful to correctly
; handle these cases and form splitable and promotable SSA values.
;
; CHECK-LABEL: @test25(
; CHECK-NOT: alloca
; CHECK: %[[F1:.*]] = bitcast i32 0 to float
; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
; CHECK: ret float %[[SUM]]
entry:
%a = alloca i64
%b = alloca i64
%a.cast = bitcast i64* %a to [2 x float]*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
%a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
[SROA] Teach SROA how to much more intelligently handle split loads and stores. When there are accesses to an entire alloca with an integer load or store as well as accesses to small pieces of the alloca, SROA splits up the large integer accesses. In order to do that, it uses bit math to merge the small accesses into large integers. While this is effective, it produces insane IR that can cause significant problems in the rest of the optimizer: - It can cause load and store mismatches with GVN on the non-alloca side where we end up loading an i64 (or some such) rather than loading specific elements that are stored. - We can't always get rid of the integer bit math, which is why we can't always fix the loads and stores to work well with GVN. - This is especially bad when we have operations that mix poorly with integer bit math such as floating point operations. - It will block things like the vectorizer which might be able to handle the scalar stores that underly the aggregate. At the same time, we can't just directly split up these loads and stores in all cases. If there is actual integer arithmetic involved on the values, then using integer bit math is actually the perfect lowering because we can often combine it heavily with the surrounding math. The solution this patch provides is to find places where SROA is partitioning aggregates into small elements, and look for splittable loads and stores that it can split all the way to some other adjacent load and store. These are uniformly the cases where failing to split the loads and stores hurts the optimizer that I have seen, and I've looked extensively at the code produced both from more and less aggressive approaches to this problem. However, it is quite tricky to actually do this in SROA. We may have loads and stores to the same alloca, or other complex patterns that are hard to handle. This complexity leads to the somewhat subtle algorithm implemented here. We have to do this entire process as a separate pass over the partitioning of the alloca, and split up all of the loads prior to splitting the stores so that we can handle safely the cases of overlapping, including partially overlapping, loads and stores to the same alloca. We also have to reconstitute the post-split slice configuration so we can avoid iterating again over all the alloca uses (the slow part of SROA). But we also have to ensure that when we split up loads and stores to *other* allocas, we *do* re-iterate over them in SROA to adapt to the more refined partitioning now required. With this, I actually think we can fix a long-standing TODO in SROA where I avoided splitting as many loads and stores as probably should be splittable. This limitation historically mitigated the fallout of all the bad things mentioned above. Now that we have more intelligent handling, I plan to remove the FIXME and more aggressively mark integer loads and stores as splittable. I'll do that in a follow-up patch to help with bisecting any fallout. The net result of this change should be more fine-grained and accurate scalars being formed out of aggregates. At the very least, Clang now generates perfect code for this high-level test case using std::complex<float>: #include <complex> void g1(std::complex<float> &x, float a, float b) { x += std::complex<float>(a, b); } void g2(std::complex<float> &x, float a, float b) { x -= std::complex<float>(a, b); } void foo(const std::complex<float> &x, float a, float b, std::complex<float> &x1, std::complex<float> &x2) { std::complex<float> l1 = x; g1(l1, a, b); std::complex<float> l2 = x; g2(l2, a, b); x1 = l1; x2 = l2; } This code isn't just hypothetical either. It was reduced out of the hot inner loops of essentially every part of the Eigen math library when using std::complex<float>. Those loops would consistently and pervasively hop between the floating point unit and the integer unit due to bit math extraction and insertion of floating point values that were "stored" in a 64-bit integer register around the loop backedge. So far, this change has passed a bootstrap and I have done some other testing and so far, no issues. That doesn't mean there won't be though, so I'll be prepared to help with any fallout. If you performance swings in particular, please let me know. I'm very curious what all the impact of this change will be. Stay tuned for the follow-up to also split more integer loads and stores. llvm-svn: 225061
2015-01-01 19:54:38 +08:00
%b.cast = bitcast i64* %b to [2 x float]*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
%b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
[SROA] Teach SROA how to much more intelligently handle split loads and stores. When there are accesses to an entire alloca with an integer load or store as well as accesses to small pieces of the alloca, SROA splits up the large integer accesses. In order to do that, it uses bit math to merge the small accesses into large integers. While this is effective, it produces insane IR that can cause significant problems in the rest of the optimizer: - It can cause load and store mismatches with GVN on the non-alloca side where we end up loading an i64 (or some such) rather than loading specific elements that are stored. - We can't always get rid of the integer bit math, which is why we can't always fix the loads and stores to work well with GVN. - This is especially bad when we have operations that mix poorly with integer bit math such as floating point operations. - It will block things like the vectorizer which might be able to handle the scalar stores that underly the aggregate. At the same time, we can't just directly split up these loads and stores in all cases. If there is actual integer arithmetic involved on the values, then using integer bit math is actually the perfect lowering because we can often combine it heavily with the surrounding math. The solution this patch provides is to find places where SROA is partitioning aggregates into small elements, and look for splittable loads and stores that it can split all the way to some other adjacent load and store. These are uniformly the cases where failing to split the loads and stores hurts the optimizer that I have seen, and I've looked extensively at the code produced both from more and less aggressive approaches to this problem. However, it is quite tricky to actually do this in SROA. We may have loads and stores to the same alloca, or other complex patterns that are hard to handle. This complexity leads to the somewhat subtle algorithm implemented here. We have to do this entire process as a separate pass over the partitioning of the alloca, and split up all of the loads prior to splitting the stores so that we can handle safely the cases of overlapping, including partially overlapping, loads and stores to the same alloca. We also have to reconstitute the post-split slice configuration so we can avoid iterating again over all the alloca uses (the slow part of SROA). But we also have to ensure that when we split up loads and stores to *other* allocas, we *do* re-iterate over them in SROA to adapt to the more refined partitioning now required. With this, I actually think we can fix a long-standing TODO in SROA where I avoided splitting as many loads and stores as probably should be splittable. This limitation historically mitigated the fallout of all the bad things mentioned above. Now that we have more intelligent handling, I plan to remove the FIXME and more aggressively mark integer loads and stores as splittable. I'll do that in a follow-up patch to help with bisecting any fallout. The net result of this change should be more fine-grained and accurate scalars being formed out of aggregates. At the very least, Clang now generates perfect code for this high-level test case using std::complex<float>: #include <complex> void g1(std::complex<float> &x, float a, float b) { x += std::complex<float>(a, b); } void g2(std::complex<float> &x, float a, float b) { x -= std::complex<float>(a, b); } void foo(const std::complex<float> &x, float a, float b, std::complex<float> &x1, std::complex<float> &x2) { std::complex<float> l1 = x; g1(l1, a, b); std::complex<float> l2 = x; g2(l2, a, b); x1 = l1; x2 = l2; } This code isn't just hypothetical either. It was reduced out of the hot inner loops of essentially every part of the Eigen math library when using std::complex<float>. Those loops would consistently and pervasively hop between the floating point unit and the integer unit due to bit math extraction and insertion of floating point values that were "stored" in a 64-bit integer register around the loop backedge. So far, this change has passed a bootstrap and I have done some other testing and so far, no issues. That doesn't mean there won't be though, so I'll be prepared to help with any fallout. If you performance swings in particular, please let me know. I'm very curious what all the impact of this change will be. Stay tuned for the follow-up to also split more integer loads and stores. llvm-svn: 225061
2015-01-01 19:54:38 +08:00
store float 0.0, float* %a.gep1
store float 1.0, float* %a.gep2
%v = load i64, i64* %a
[SROA] Teach SROA how to much more intelligently handle split loads and stores. When there are accesses to an entire alloca with an integer load or store as well as accesses to small pieces of the alloca, SROA splits up the large integer accesses. In order to do that, it uses bit math to merge the small accesses into large integers. While this is effective, it produces insane IR that can cause significant problems in the rest of the optimizer: - It can cause load and store mismatches with GVN on the non-alloca side where we end up loading an i64 (or some such) rather than loading specific elements that are stored. - We can't always get rid of the integer bit math, which is why we can't always fix the loads and stores to work well with GVN. - This is especially bad when we have operations that mix poorly with integer bit math such as floating point operations. - It will block things like the vectorizer which might be able to handle the scalar stores that underly the aggregate. At the same time, we can't just directly split up these loads and stores in all cases. If there is actual integer arithmetic involved on the values, then using integer bit math is actually the perfect lowering because we can often combine it heavily with the surrounding math. The solution this patch provides is to find places where SROA is partitioning aggregates into small elements, and look for splittable loads and stores that it can split all the way to some other adjacent load and store. These are uniformly the cases where failing to split the loads and stores hurts the optimizer that I have seen, and I've looked extensively at the code produced both from more and less aggressive approaches to this problem. However, it is quite tricky to actually do this in SROA. We may have loads and stores to the same alloca, or other complex patterns that are hard to handle. This complexity leads to the somewhat subtle algorithm implemented here. We have to do this entire process as a separate pass over the partitioning of the alloca, and split up all of the loads prior to splitting the stores so that we can handle safely the cases of overlapping, including partially overlapping, loads and stores to the same alloca. We also have to reconstitute the post-split slice configuration so we can avoid iterating again over all the alloca uses (the slow part of SROA). But we also have to ensure that when we split up loads and stores to *other* allocas, we *do* re-iterate over them in SROA to adapt to the more refined partitioning now required. With this, I actually think we can fix a long-standing TODO in SROA where I avoided splitting as many loads and stores as probably should be splittable. This limitation historically mitigated the fallout of all the bad things mentioned above. Now that we have more intelligent handling, I plan to remove the FIXME and more aggressively mark integer loads and stores as splittable. I'll do that in a follow-up patch to help with bisecting any fallout. The net result of this change should be more fine-grained and accurate scalars being formed out of aggregates. At the very least, Clang now generates perfect code for this high-level test case using std::complex<float>: #include <complex> void g1(std::complex<float> &x, float a, float b) { x += std::complex<float>(a, b); } void g2(std::complex<float> &x, float a, float b) { x -= std::complex<float>(a, b); } void foo(const std::complex<float> &x, float a, float b, std::complex<float> &x1, std::complex<float> &x2) { std::complex<float> l1 = x; g1(l1, a, b); std::complex<float> l2 = x; g2(l2, a, b); x1 = l1; x2 = l2; } This code isn't just hypothetical either. It was reduced out of the hot inner loops of essentially every part of the Eigen math library when using std::complex<float>. Those loops would consistently and pervasively hop between the floating point unit and the integer unit due to bit math extraction and insertion of floating point values that were "stored" in a 64-bit integer register around the loop backedge. So far, this change has passed a bootstrap and I have done some other testing and so far, no issues. That doesn't mean there won't be though, so I'll be prepared to help with any fallout. If you performance swings in particular, please let me know. I'm very curious what all the impact of this change will be. Stay tuned for the follow-up to also split more integer loads and stores. llvm-svn: 225061
2015-01-01 19:54:38 +08:00
store i64 %v, i64* %b
%f1 = load float, float* %b.gep1
%f2 = load float, float* %b.gep2
[SROA] Teach SROA how to much more intelligently handle split loads and stores. When there are accesses to an entire alloca with an integer load or store as well as accesses to small pieces of the alloca, SROA splits up the large integer accesses. In order to do that, it uses bit math to merge the small accesses into large integers. While this is effective, it produces insane IR that can cause significant problems in the rest of the optimizer: - It can cause load and store mismatches with GVN on the non-alloca side where we end up loading an i64 (or some such) rather than loading specific elements that are stored. - We can't always get rid of the integer bit math, which is why we can't always fix the loads and stores to work well with GVN. - This is especially bad when we have operations that mix poorly with integer bit math such as floating point operations. - It will block things like the vectorizer which might be able to handle the scalar stores that underly the aggregate. At the same time, we can't just directly split up these loads and stores in all cases. If there is actual integer arithmetic involved on the values, then using integer bit math is actually the perfect lowering because we can often combine it heavily with the surrounding math. The solution this patch provides is to find places where SROA is partitioning aggregates into small elements, and look for splittable loads and stores that it can split all the way to some other adjacent load and store. These are uniformly the cases where failing to split the loads and stores hurts the optimizer that I have seen, and I've looked extensively at the code produced both from more and less aggressive approaches to this problem. However, it is quite tricky to actually do this in SROA. We may have loads and stores to the same alloca, or other complex patterns that are hard to handle. This complexity leads to the somewhat subtle algorithm implemented here. We have to do this entire process as a separate pass over the partitioning of the alloca, and split up all of the loads prior to splitting the stores so that we can handle safely the cases of overlapping, including partially overlapping, loads and stores to the same alloca. We also have to reconstitute the post-split slice configuration so we can avoid iterating again over all the alloca uses (the slow part of SROA). But we also have to ensure that when we split up loads and stores to *other* allocas, we *do* re-iterate over them in SROA to adapt to the more refined partitioning now required. With this, I actually think we can fix a long-standing TODO in SROA where I avoided splitting as many loads and stores as probably should be splittable. This limitation historically mitigated the fallout of all the bad things mentioned above. Now that we have more intelligent handling, I plan to remove the FIXME and more aggressively mark integer loads and stores as splittable. I'll do that in a follow-up patch to help with bisecting any fallout. The net result of this change should be more fine-grained and accurate scalars being formed out of aggregates. At the very least, Clang now generates perfect code for this high-level test case using std::complex<float>: #include <complex> void g1(std::complex<float> &x, float a, float b) { x += std::complex<float>(a, b); } void g2(std::complex<float> &x, float a, float b) { x -= std::complex<float>(a, b); } void foo(const std::complex<float> &x, float a, float b, std::complex<float> &x1, std::complex<float> &x2) { std::complex<float> l1 = x; g1(l1, a, b); std::complex<float> l2 = x; g2(l2, a, b); x1 = l1; x2 = l2; } This code isn't just hypothetical either. It was reduced out of the hot inner loops of essentially every part of the Eigen math library when using std::complex<float>. Those loops would consistently and pervasively hop between the floating point unit and the integer unit due to bit math extraction and insertion of floating point values that were "stored" in a 64-bit integer register around the loop backedge. So far, this change has passed a bootstrap and I have done some other testing and so far, no issues. That doesn't mean there won't be though, so I'll be prepared to help with any fallout. If you performance swings in particular, please let me know. I'm very curious what all the impact of this change will be. Stay tuned for the follow-up to also split more integer loads and stores. llvm-svn: 225061
2015-01-01 19:54:38 +08:00
%ret = fadd float %f1, %f2
ret float %ret
}
@complex1 = external global [2 x float]
@complex2 = external global [2 x float]
define void @test26() {
; Test a case of splitting up loads and stores against a globals.
;
; CHECK-LABEL: @test26(
; CHECK-NOT: alloca
; CHECK: %[[L1:.*]] = load i32, i32* bitcast
; CHECK: %[[L2:.*]] = load i32, i32* bitcast
; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
; CHECK: store i32 %[[C1]], i32* bitcast
; CHECK: store i32 %[[C2]], i32* bitcast
; CHECK: ret void
entry:
%a = alloca i64
%a.cast = bitcast i64* %a to [2 x float]*
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
%a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
%v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
store i64 %v1, i64* %a
%f1 = load float, float* %a.gep1
%f2 = load float, float* %a.gep2
%sum = fadd float %f1, %f2
store float %sum, float* %a.gep1
store float %sum, float* %a.gep2
%v2 = load i64, i64* %a
store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
ret void
}
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
define float @test27() {
; Another, more complex case of splittable i64 loads and stores. This example
; is a particularly challenging one because the load and store both point into
; the alloca SROA is processing, and they overlap but at an offset.
;
; CHECK-LABEL: @test27(
; CHECK-NOT: alloca
; CHECK: %[[F1:.*]] = bitcast i32 0 to float
; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
; CHECK: ret float %[[SUM]]
entry:
%a = alloca [12 x i8]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
%gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
%gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
%iptr1 = bitcast i8* %gep1 to i64*
%iptr2 = bitcast i8* %gep2 to i64*
%fptr1 = bitcast i8* %gep1 to float*
%fptr2 = bitcast i8* %gep2 to float*
%fptr3 = bitcast i8* %gep3 to float*
store float 0.0, float* %fptr1
store float 1.0, float* %fptr2
%v = load i64, i64* %iptr1
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
store i64 %v, i64* %iptr2
%f1 = load float, float* %fptr2
%f2 = load float, float* %fptr3
[SROA] Teach SROA to be more aggressive in splitting now that we have a pre-splitting pass over loads and stores. Historically, splitting could cause enough problems that I hamstrung the entire process with a requirement that splittable integer loads and stores must cover the entire alloca. All smaller loads and stores were unsplittable to prevent chaos from ensuing. With the new pre-splitting logic that does load/store pair splitting I introduced in r225061, we can now very nicely handle arbitrarily splittable loads and stores. In order to fully benefit from these smarts, we need to mark all of the integer loads and stores as splittable. However, we don't actually want to rewrite partitions with all integer loads and stores marked as splittable. This will fail to extract scalar integers from aggregates, which is kind of the point of SROA. =] In order to resolve this, what we really want to do is only do pre-splitting on the alloca slices with integer loads and stores fully splittable. This allows us to uncover all non-integer uses of the alloca that would benefit from a split in an integer load or store (and where introducing the split is safe because it is just memory transfer from a load to a store). Once done, we make all the non-whole-alloca integer loads and stores unsplittable just as they have historically been, repartition and rewrite. The result is that when there are integer loads and stores anywhere within an alloca (such as from a memcpy of a sub-object of a larger object), we can split them up if there are non-integer components to the aggregate hiding beneath. I've added the challenging test cases to demonstrate how this is able to promote to scalars even a case where we have even *partially* overlapping loads and stores. This restores the single-store behavior for small arrays of i8s which is really nice. I've restored both the little endian testing and big endian testing for these exactly as they were prior to r225061. It also forced me to be more aggressive in an alignment test to actually defeat SROA. =] Without the added volatiles there, we actually split up the weird i16 loads and produce nice double allocas with better alignment. This also uncovered a number of bugs where we failed to handle splittable load and store slices which didn't have a begininng offset of zero. Those fixes are included, and without them the existing test cases explode in glorious fireworks. =] I've kept support for leaving whole-alloca integer loads and stores as splittable even for the purpose of rewriting, but I think that's likely no longer needed. With the new pre-splitting, we might be able to remove all the splitting support for loads and stores from the rewriter. Not doing that in this patch to try to isolate any performance regressions that causes in an easy to find and revert chunk. llvm-svn: 225074
2015-01-02 11:55:54 +08:00
%ret = fadd float %f1, %f2
ret float %ret
}
[SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an assert out of the new pre-splitting in SROA. This fix makes the code do what was originally intended -- when we have a store of a load both dealing in the same alloca, we force them to both be pre-split with identical offsets. This is really quite hard to do because we can keep discovering problems as we go along. We have to track every load over the current alloca which for any resaon becomes invalid for pre-splitting, and go back to remove all stores of those loads. I've included a couple of test cases derived from PR22093 that cover the different ways this can happen. While that PR only really triggered the first of these two, its the same fundamental issue. The other challenge here is documented in a FIXME now. We end up being quite a bit more aggressive for pre-splitting when loads and stores don't refer to the same alloca. This aggressiveness comes at the cost of introducing potentially redundant loads. It isn't clear that this is the right balance. It might be considerably better to require that we only do pre-splitting when we can presplit every load and store involved in the entire operation. That would give more consistent if conservative results. Unfortunately, it requires a non-trivial change to the actual pre-splitting operation in order to correctly handle cases where we end up pre-splitting stores out-of-order. And it isn't 100% clear that this is the right direction, although I'm starting to suspect that it is. llvm-svn: 225149
2015-01-05 12:17:53 +08:00
define i32 @PR22093() {
; Test that we don't try to pre-split a splittable store of a splittable but
; not pre-splittable load over the same alloca. We "handle" this case when the
; load is unsplittable but unrelated to this alloca by just generating extra
; loads without touching the original, but when the original load was out of
; this alloca we need to handle it specially to ensure the splits line up
; properly for rewriting.
;
; CHECK-LABEL: @PR22093(
; CHECK-NOT: alloca
; CHECK: alloca i16
; CHECK-NOT: alloca
; CHECK: store volatile i16
entry:
%a = alloca i32
%a.cast = bitcast i32* %a to i16*
store volatile i16 42, i16* %a.cast
%load = load i32, i32* %a
[SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an assert out of the new pre-splitting in SROA. This fix makes the code do what was originally intended -- when we have a store of a load both dealing in the same alloca, we force them to both be pre-split with identical offsets. This is really quite hard to do because we can keep discovering problems as we go along. We have to track every load over the current alloca which for any resaon becomes invalid for pre-splitting, and go back to remove all stores of those loads. I've included a couple of test cases derived from PR22093 that cover the different ways this can happen. While that PR only really triggered the first of these two, its the same fundamental issue. The other challenge here is documented in a FIXME now. We end up being quite a bit more aggressive for pre-splitting when loads and stores don't refer to the same alloca. This aggressiveness comes at the cost of introducing potentially redundant loads. It isn't clear that this is the right balance. It might be considerably better to require that we only do pre-splitting when we can presplit every load and store involved in the entire operation. That would give more consistent if conservative results. Unfortunately, it requires a non-trivial change to the actual pre-splitting operation in order to correctly handle cases where we end up pre-splitting stores out-of-order. And it isn't 100% clear that this is the right direction, although I'm starting to suspect that it is. llvm-svn: 225149
2015-01-05 12:17:53 +08:00
store i32 %load, i32* %a
ret i32 %load
}
define void @PR22093.2() {
; Another way that we end up being unable to split a particular set of loads
; and stores can even have ordering importance. Here we have a load which is
; pre-splittable by itself, and the first store is also compatible. But the
; second store of the load makes the load unsplittable because of a mismatch of
; splits. Because this makes the load unsplittable, we also have to go back and
; remove the first store from the presplit candidates as its load won't be
; presplit.
;
; CHECK-LABEL: @PR22093.2(
; CHECK-NOT: alloca
; CHECK: alloca i16
; CHECK-NEXT: alloca i8
; CHECK-NOT: alloca
; CHECK: store volatile i16
; CHECK: store volatile i8
entry:
%a = alloca i64
%a.cast1 = bitcast i64* %a to i32*
%a.cast2 = bitcast i64* %a to i16*
store volatile i16 42, i16* %a.cast2
%load = load i32, i32* %a.cast1
[SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an assert out of the new pre-splitting in SROA. This fix makes the code do what was originally intended -- when we have a store of a load both dealing in the same alloca, we force them to both be pre-split with identical offsets. This is really quite hard to do because we can keep discovering problems as we go along. We have to track every load over the current alloca which for any resaon becomes invalid for pre-splitting, and go back to remove all stores of those loads. I've included a couple of test cases derived from PR22093 that cover the different ways this can happen. While that PR only really triggered the first of these two, its the same fundamental issue. The other challenge here is documented in a FIXME now. We end up being quite a bit more aggressive for pre-splitting when loads and stores don't refer to the same alloca. This aggressiveness comes at the cost of introducing potentially redundant loads. It isn't clear that this is the right balance. It might be considerably better to require that we only do pre-splitting when we can presplit every load and store involved in the entire operation. That would give more consistent if conservative results. Unfortunately, it requires a non-trivial change to the actual pre-splitting operation in order to correctly handle cases where we end up pre-splitting stores out-of-order. And it isn't 100% clear that this is the right direction, although I'm starting to suspect that it is. llvm-svn: 225149
2015-01-05 12:17:53 +08:00
store i32 %load, i32* %a.cast1
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-28 03:29:02 +08:00
%a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
[SROA] Apply a somewhat heavy and unpleasant hammer to fix PR22093, an assert out of the new pre-splitting in SROA. This fix makes the code do what was originally intended -- when we have a store of a load both dealing in the same alloca, we force them to both be pre-split with identical offsets. This is really quite hard to do because we can keep discovering problems as we go along. We have to track every load over the current alloca which for any resaon becomes invalid for pre-splitting, and go back to remove all stores of those loads. I've included a couple of test cases derived from PR22093 that cover the different ways this can happen. While that PR only really triggered the first of these two, its the same fundamental issue. The other challenge here is documented in a FIXME now. We end up being quite a bit more aggressive for pre-splitting when loads and stores don't refer to the same alloca. This aggressiveness comes at the cost of introducing potentially redundant loads. It isn't clear that this is the right balance. It might be considerably better to require that we only do pre-splitting when we can presplit every load and store involved in the entire operation. That would give more consistent if conservative results. Unfortunately, it requires a non-trivial change to the actual pre-splitting operation in order to correctly handle cases where we end up pre-splitting stores out-of-order. And it isn't 100% clear that this is the right direction, although I'm starting to suspect that it is. llvm-svn: 225149
2015-01-05 12:17:53 +08:00
%a.cast3 = bitcast i32* %a.gep1 to i8*
store volatile i8 13, i8* %a.cast3
store i32 %load, i32* %a.gep1
ret void
}
define void @PR23737() {
; CHECK-LABEL: @PR23737(
; CHECK: store atomic volatile {{.*}} seq_cst
; CHECK: load atomic volatile {{.*}} seq_cst
entry:
%ptr = alloca i64, align 8
store atomic volatile i64 0, i64* %ptr seq_cst, align 8
%load = load atomic volatile i64, i64* %ptr seq_cst, align 8
ret void
}
define i16 @PR24463() {
; Ensure we can handle a very interesting case where there is an integer-based
; rewrite of the uses of the alloca, but where one of the integers in that is
; a sub-integer that requires extraction *and* extends past the end of the
; alloca. SROA can split the alloca to avoid shift or trunc.
;
; CHECK-LABEL: @PR24463(
; CHECK-NOT: alloca
; CHECK-NOT: trunc
; CHECK-NOT: lshr
; CHECK: %[[ZEXT:.*]] = zext i8 {{.*}} to i16
; CHECK: ret i16 %[[ZEXT]]
entry:
%alloca = alloca [3 x i8]
%gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1
%bc1 = bitcast i8* %gep1 to i16*
store i16 0, i16* %bc1
%gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2
%bc2 = bitcast i8* %gep2 to i16*
%load = load i16, i16* %bc2
ret i16 %load
}
[SROA] Fix PR25873, which Andrea Di Biagio analyzed the daylights out of, and I misdiagnosed for months and months. Andrea has had a patch for this forever, but I just couldn't see how it was fixing the root cause of the problem. It didn't make sense to me, even though the patch was perfectly good and the analysis of the actual failure event was *fantastic*. Well, I came back to it today because the patch has sat for *far* too long and needs attention and decided I wouldn't let it go until I really understood what was going on. After quite some time in the debugger, I finally realized that in fact I had just missed an important case with my previous attempt to fix PR22093 in r225149. Not only do we need to handle loads that won't be split, but stores-of-loads that we won't split. We *do* actually have enough logic in the presplitting to form new slices for split stores.... *unless* we decided not to split them! I'm so sorry that it took me this long to come to the realization that this is the issue. It seems so obvious in hind sight (of course). Anyways, the fix becomes *much* smaller and more focused. The fact that we're left doing integer smashing is related to the FIXME in my original commit: fundamentally, we're not aggressive about pre-splitting for loads and stores to the same alloca. If we want to get aggressive about this, it'll need both what Andrea had put into the proposed fix, but also a *lot* more logic to essentially iteratively pre-split the alloca until we can't do any more. As I said in that commit log, its really unclear that this is the right call. Instead, the integer blending and letting targets lower this to narrower stores seems slightly better. But we definitely shouldn't really go down that path just to fix this bug. Again, tons of thanks are owed to Andrea and others at Sony for working on this bug. I really should have seen what was going on here and re-directed them sooner. =//// llvm-svn: 263121
2016-03-10 23:31:17 +08:00
%struct.STest = type { %struct.SPos, %struct.SPos }
%struct.SPos = type { float, float }
define void @PR25873(%struct.STest* %outData) {
; CHECK-LABEL: @PR25873(
; CHECK: store i32 1123418112
; CHECK: store i32 1139015680
; CHECK: %[[HIZEXT:.*]] = zext i32 1139015680 to i64
; CHECK: %[[HISHL:.*]] = shl i64 %[[HIZEXT]], 32
; CHECK: %[[HIMASK:.*]] = and i64 undef, 4294967295
; CHECK: %[[HIINSERT:.*]] = or i64 %[[HIMASK]], %[[HISHL]]
; CHECK: %[[LOZEXT:.*]] = zext i32 1123418112 to i64
; CHECK: %[[LOMASK:.*]] = and i64 %[[HIINSERT]], -4294967296
; CHECK: %[[LOINSERT:.*]] = or i64 %[[LOMASK]], %[[LOZEXT]]
; CHECK: store i64 %[[LOINSERT]]
entry:
%tmpData = alloca %struct.STest, align 8
%0 = bitcast %struct.STest* %tmpData to i8*
call void @llvm.lifetime.start.p0i8(i64 16, i8* %0)
[SROA] Fix PR25873, which Andrea Di Biagio analyzed the daylights out of, and I misdiagnosed for months and months. Andrea has had a patch for this forever, but I just couldn't see how it was fixing the root cause of the problem. It didn't make sense to me, even though the patch was perfectly good and the analysis of the actual failure event was *fantastic*. Well, I came back to it today because the patch has sat for *far* too long and needs attention and decided I wouldn't let it go until I really understood what was going on. After quite some time in the debugger, I finally realized that in fact I had just missed an important case with my previous attempt to fix PR22093 in r225149. Not only do we need to handle loads that won't be split, but stores-of-loads that we won't split. We *do* actually have enough logic in the presplitting to form new slices for split stores.... *unless* we decided not to split them! I'm so sorry that it took me this long to come to the realization that this is the issue. It seems so obvious in hind sight (of course). Anyways, the fix becomes *much* smaller and more focused. The fact that we're left doing integer smashing is related to the FIXME in my original commit: fundamentally, we're not aggressive about pre-splitting for loads and stores to the same alloca. If we want to get aggressive about this, it'll need both what Andrea had put into the proposed fix, but also a *lot* more logic to essentially iteratively pre-split the alloca until we can't do any more. As I said in that commit log, its really unclear that this is the right call. Instead, the integer blending and letting targets lower this to narrower stores seems slightly better. But we definitely shouldn't really go down that path just to fix this bug. Again, tons of thanks are owed to Andrea and others at Sony for working on this bug. I really should have seen what was going on here and re-directed them sooner. =//// llvm-svn: 263121
2016-03-10 23:31:17 +08:00
%x = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 0, i32 0
store float 1.230000e+02, float* %x, align 8
%y = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 0, i32 1
store float 4.560000e+02, float* %y, align 4
%m_posB = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 1
%1 = bitcast %struct.STest* %tmpData to i64*
%2 = bitcast %struct.SPos* %m_posB to i64*
%3 = load i64, i64* %1, align 8
store i64 %3, i64* %2, align 8
%4 = bitcast %struct.STest* %outData to i8*
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %4, i8* align 4 %0, i64 16, i1 false)
call void @llvm.lifetime.end.p0i8(i64 16, i8* %0)
[SROA] Fix PR25873, which Andrea Di Biagio analyzed the daylights out of, and I misdiagnosed for months and months. Andrea has had a patch for this forever, but I just couldn't see how it was fixing the root cause of the problem. It didn't make sense to me, even though the patch was perfectly good and the analysis of the actual failure event was *fantastic*. Well, I came back to it today because the patch has sat for *far* too long and needs attention and decided I wouldn't let it go until I really understood what was going on. After quite some time in the debugger, I finally realized that in fact I had just missed an important case with my previous attempt to fix PR22093 in r225149. Not only do we need to handle loads that won't be split, but stores-of-loads that we won't split. We *do* actually have enough logic in the presplitting to form new slices for split stores.... *unless* we decided not to split them! I'm so sorry that it took me this long to come to the realization that this is the issue. It seems so obvious in hind sight (of course). Anyways, the fix becomes *much* smaller and more focused. The fact that we're left doing integer smashing is related to the FIXME in my original commit: fundamentally, we're not aggressive about pre-splitting for loads and stores to the same alloca. If we want to get aggressive about this, it'll need both what Andrea had put into the proposed fix, but also a *lot* more logic to essentially iteratively pre-split the alloca until we can't do any more. As I said in that commit log, its really unclear that this is the right call. Instead, the integer blending and letting targets lower this to narrower stores seems slightly better. But we definitely shouldn't really go down that path just to fix this bug. Again, tons of thanks are owed to Andrea and others at Sony for working on this bug. I really should have seen what was going on here and re-directed them sooner. =//// llvm-svn: 263121
2016-03-10 23:31:17 +08:00
ret void
}
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i1) nounwind
define void @PR27999() unnamed_addr {
; CHECK-LABEL: @PR27999(
; CHECK: entry-block:
; CHECK-NEXT: ret void
entry-block:
%0 = alloca [2 x i64], align 8
%1 = bitcast [2 x i64]* %0 to i8*
call void @llvm.lifetime.start.p0i8(i64 16, i8* %1)
%2 = getelementptr inbounds [2 x i64], [2 x i64]* %0, i32 0, i32 1
%3 = bitcast i64* %2 to i8*
call void @llvm.lifetime.end.p0i8(i64 8, i8* %3)
ret void
}
define void @PR29139() {
; CHECK-LABEL: @PR29139(
; CHECK: bb1:
; CHECK-NEXT: ret void
bb1:
%e.7.sroa.6.i = alloca i32, align 1
%e.7.sroa.6.0.load81.i = load i32, i32* %e.7.sroa.6.i, align 1
%0 = bitcast i32* %e.7.sroa.6.i to i8*
call void @llvm.lifetime.end.p0i8(i64 2, i8* %0)
ret void
}
; PR35657 reports assertion failure with this code
define void @PR35657(i64 %v) {
; CHECK-LABEL: @PR35657
; CHECK: call void @callee16(i16 %{{.*}})
; CHECK: call void @callee48(i48 %{{.*}})
; CHECK: ret void
entry:
%a48 = alloca i48
%a48.cast64 = bitcast i48* %a48 to i64*
store i64 %v, i64* %a48.cast64
%a48.cast16 = bitcast i48* %a48 to i16*
%b0_15 = load i16, i16* %a48.cast16
%a48.cast8 = bitcast i48* %a48 to i8*
%a48_offset2 = getelementptr inbounds i8, i8* %a48.cast8, i64 2
%a48_offset2.cast48 = bitcast i8* %a48_offset2 to i48*
%b16_63 = load i48, i48* %a48_offset2.cast48, align 2
call void @callee16(i16 %b0_15)
call void @callee48(i48 %b16_63)
ret void
}
declare void @callee16(i16 %a)
declare void @callee48(i48 %a)
define void @test28(i64 %v) #0 {
; SROA should split the first i64 store to avoid additional and/or instructions
; when storing into i32 fields
; CHECK-LABEL: @test28(
; CHECK-NOT: alloca
; CHECK-NOT: and
; CHECK-NOT: or
; CHECK: %[[shift:.*]] = lshr i64 %v, 32
; CHECK-NEXT: %{{.*}} = trunc i64 %[[shift]] to i32
; CHECK-NEXT: ret void
entry:
%t = alloca { i64, i32, i32 }
%b = getelementptr { i64, i32, i32 }, { i64, i32, i32 }* %t, i32 0, i32 1
%0 = bitcast i32* %b to i64*
store i64 %v, i64* %0
%1 = load i32, i32* %b
%c = getelementptr { i64, i32, i32 }, { i64, i32, i32 }* %t, i32 0, i32 2
store i32 %1, i32* %c
ret void
}
!0 = !{!1, !1, i64 0, i64 1}
!1 = !{!2, i64 1, !"type_0"}
!2 = !{!"root"}
!3 = !{!4, !4, i64 0, i64 1}
!4 = !{!2, i64 1, !"type_3"}
!5 = !{!6, !6, i64 0, i64 1}
!6 = !{!2, i64 1, !"type_5"}
!7 = !{!8, !8, i64 0, i64 1}
!8 = !{!2, i64 1, !"type_7"}
!9 = !{!10, !10, i64 0, i64 1}
!10 = !{!2, i64 1, !"type_9"}
!11 = !{!12, !12, i64 0, i64 1}
!12 = !{!2, i64 1, !"type_11"}
!13 = !{!14, !14, i64 0, i64 1}
!14 = !{!2, i64 1, !"type_13"}
!15 = !{!16, !16, i64 0, i64 1}
!16 = !{!2, i64 1, !"type_15"}
!17 = !{!18, !18, i64 0, i64 1}
!18 = !{!2, i64 1, !"type_17"}
!19 = !{!20, !20, i64 0, i64 1}
!20 = !{!2, i64 1, !"type_19"}
!21 = !{!22, !22, i64 0, i64 1}
!22 = !{!2, i64 1, !"type_21"}
!23 = !{!24, !24, i64 0, i64 1}
!24 = !{!2, i64 1, !"type_23"}
!25 = !{!26, !26, i64 0, i64 1}
!26 = !{!2, i64 1, !"type_25"}
!27 = !{!28, !28, i64 0, i64 1}
!28 = !{!2, i64 1, !"type_27"}
!29 = !{!30, !30, i64 0, i64 1}
!30 = !{!2, i64 1, !"type_29"}
!31 = !{!32, !32, i64 0, i64 1}
!32 = !{!2, i64 1, !"type_31"}
!33 = !{!34, !34, i64 0, i64 1}
!34 = !{!2, i64 1, !"type_33"}
!35 = !{!36, !36, i64 0, i64 1}
!36 = !{!2, i64 1, !"type_35"}
!37 = !{!38, !38, i64 0, i64 1}
!38 = !{!2, i64 1, !"type_37"}
!39 = !{!40, !40, i64 0, i64 1}
!40 = !{!2, i64 1, !"type_39"}
!41 = !{!42, !42, i64 0, i64 1}
!42 = !{!2, i64 1, !"type_41"}
!43 = !{!44, !44, i64 0, i64 1}
!44 = !{!2, i64 1, !"type_43"}
!45 = !{!46, !46, i64 0, i64 1}
!46 = !{!2, i64 1, !"type_45"}
!47 = !{!48, !48, i64 0, i64 1}
!48 = !{!2, i64 1, !"type_47"}
!49 = !{!50, !50, i64 0, i64 1}
!50 = !{!2, i64 1, !"type_49"}
!51 = !{!52, !52, i64 0, i64 1}
!52 = !{!2, i64 1, !"type_51"}
!53 = !{!54, !54, i64 0, i64 1}
!54 = !{!2, i64 1, !"type_53"}
!55 = !{!56, !56, i64 0, i64 1}
!56 = !{!2, i64 1, !"type_55"}
!57 = !{!58, !58, i64 0, i64 1}
!58 = !{!2, i64 1, !"type_57"}
!59 = !{!60, !60, i64 0, i64 1}
!60 = !{!2, i64 1, !"type_59"}
; CHECK-DAG: [[TYPE_0:!.*]] = !{{{.*}}, !"type_0"}
; CHECK-DAG: [[TAG_0]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_3:!.*]] = !{{{.*}}, !"type_3"}
; CHECK-DAG: [[TAG_3]] = !{[[TYPE_3]], [[TYPE_3]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_5:!.*]] = !{{{.*}}, !"type_5"}
; CHECK-DAG: [[TAG_5]] = !{[[TYPE_5]], [[TYPE_5]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_7:!.*]] = !{{{.*}}, !"type_7"}
; CHECK-DAG: [[TAG_7]] = !{[[TYPE_7]], [[TYPE_7]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_9:!.*]] = !{{{.*}}, !"type_9"}
; CHECK-DAG: [[TAG_9]] = !{[[TYPE_9]], [[TYPE_9]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_11:!.*]] = !{{{.*}}, !"type_11"}
; CHECK-DAG: [[TAG_11]] = !{[[TYPE_11]], [[TYPE_11]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_13:!.*]] = !{{{.*}}, !"type_13"}
; CHECK-DAG: [[TAG_13]] = !{[[TYPE_13]], [[TYPE_13]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_15:!.*]] = !{{{.*}}, !"type_15"}
; CHECK-DAG: [[TAG_15]] = !{[[TYPE_15]], [[TYPE_15]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_17:!.*]] = !{{{.*}}, !"type_17"}
; CHECK-DAG: [[TAG_17]] = !{[[TYPE_17]], [[TYPE_17]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_19:!.*]] = !{{{.*}}, !"type_19"}
; CHECK-DAG: [[TAG_19]] = !{[[TYPE_19]], [[TYPE_19]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_21:!.*]] = !{{{.*}}, !"type_21"}
; CHECK-DAG: [[TAG_21]] = !{[[TYPE_21]], [[TYPE_21]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_23:!.*]] = !{{{.*}}, !"type_23"}
; CHECK-DAG: [[TAG_23]] = !{[[TYPE_23]], [[TYPE_23]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_25:!.*]] = !{{{.*}}, !"type_25"}
; CHECK-DAG: [[TAG_25]] = !{[[TYPE_25]], [[TYPE_25]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_27:!.*]] = !{{{.*}}, !"type_27"}
; CHECK-DAG: [[TAG_27]] = !{[[TYPE_27]], [[TYPE_27]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_29:!.*]] = !{{{.*}}, !"type_29"}
; CHECK-DAG: [[TAG_29]] = !{[[TYPE_29]], [[TYPE_29]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_31:!.*]] = !{{{.*}}, !"type_31"}
; CHECK-DAG: [[TAG_31]] = !{[[TYPE_31]], [[TYPE_31]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_33:!.*]] = !{{{.*}}, !"type_33"}
; CHECK-DAG: [[TAG_33]] = !{[[TYPE_33]], [[TYPE_33]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_35:!.*]] = !{{{.*}}, !"type_35"}
; CHECK-DAG: [[TAG_35]] = !{[[TYPE_35]], [[TYPE_35]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_37:!.*]] = !{{{.*}}, !"type_37"}
; CHECK-DAG: [[TAG_37]] = !{[[TYPE_37]], [[TYPE_37]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_39:!.*]] = !{{{.*}}, !"type_39"}
; CHECK-DAG: [[TAG_39]] = !{[[TYPE_39]], [[TYPE_39]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_41:!.*]] = !{{{.*}}, !"type_41"}
; CHECK-DAG: [[TAG_41]] = !{[[TYPE_41]], [[TYPE_41]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_43:!.*]] = !{{{.*}}, !"type_43"}
; CHECK-DAG: [[TAG_43]] = !{[[TYPE_43]], [[TYPE_43]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_45:!.*]] = !{{{.*}}, !"type_45"}
; CHECK-DAG: [[TAG_45]] = !{[[TYPE_45]], [[TYPE_45]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_47:!.*]] = !{{{.*}}, !"type_47"}
; CHECK-DAG: [[TAG_47]] = !{[[TYPE_47]], [[TYPE_47]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_49:!.*]] = !{{{.*}}, !"type_49"}
; CHECK-DAG: [[TAG_49]] = !{[[TYPE_49]], [[TYPE_49]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_51:!.*]] = !{{{.*}}, !"type_51"}
; CHECK-DAG: [[TAG_51]] = !{[[TYPE_51]], [[TYPE_51]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_53:!.*]] = !{{{.*}}, !"type_53"}
; CHECK-DAG: [[TAG_53]] = !{[[TYPE_53]], [[TYPE_53]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_55:!.*]] = !{{{.*}}, !"type_55"}
; CHECK-DAG: [[TAG_55]] = !{[[TYPE_55]], [[TYPE_55]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_57:!.*]] = !{{{.*}}, !"type_57"}
; CHECK-DAG: [[TAG_57]] = !{[[TYPE_57]], [[TYPE_57]], i64 0, i64 1}
; CHECK-DAG: [[TYPE_59:!.*]] = !{{{.*}}, !"type_59"}
; CHECK-DAG: [[TAG_59]] = !{[[TYPE_59]], [[TYPE_59]], i64 0, i64 1}