llvm-project/llvm/test/Transforms/LoopInterchange/interchange-flow-dep-outer.ll

77 lines
3.0 KiB
LLVM
Raw Normal View History

DA: remove uses of GEP, only ask SCEV It's been quite some time the Dependence Analysis (DA) is broken, as it uses the GEP representation to "identify" multi-dimensional arrays. It even wrongly detects multi-dimensional arrays in single nested loops: from test/Analysis/DependenceAnalysis/Coupled.ll, example @couple6 ;; for (long int i = 0; i < 50; i++) { ;; A[i][3*i - 6] = i; ;; *B++ = A[i][i]; DA used to detect two subscripts, which makes no sense in the LLVM IR or in C/C++ semantics, as there are no guarantees as in Fortran of subscripts not overlapping into a next array dimension: maximum nesting levels = 1 SrcPtrSCEV = %A DstPtrSCEV = %A using GEPs subscript 0 src = {0,+,1}<nuw><nsw><%for.body> dst = {0,+,1}<nuw><nsw><%for.body> class = 1 loops = {1} subscript 1 src = {-6,+,3}<nsw><%for.body> dst = {0,+,1}<nuw><nsw><%for.body> class = 1 loops = {1} Separable = {} Coupled = {1} With the current patch, DA will correctly work on only one dimension: maximum nesting levels = 1 SrcSCEV = {(-2424 + %A)<nsw>,+,1212}<%for.body> DstSCEV = {%A,+,404}<%for.body> subscript 0 src = {(-2424 + %A)<nsw>,+,1212}<%for.body> dst = {%A,+,404}<%for.body> class = 1 loops = {1} Separable = {0} Coupled = {} This change removes all uses of GEP from DA, and we now only rely on the SCEV representation. The patch does not turn on -da-delinearize by default, and so the DA analysis will be more conservative in the case of multi-dimensional memory accesses in nested loops. I disabled some interchange tests, as the DA is not able to disambiguate the dependence anymore. To make DA stronger, we may need to compute a bound on the number of iterations based on the access functions and array dimensions. The patch cleans up all the CHECKs in test/Transforms/LoopInterchange/*.ll to avoid checking for snippets of LLVM IR: this form of checking is very hard to maintain. Instead, we now check for output of the pass that are more meaningful than dozens of lines of LLVM IR. Some tests now require -debug messages and thus only enabled with asserts. Patch written by Sebastian Pop and Aditya Kumar. Differential Revision: https://reviews.llvm.org/D35430 llvm-svn: 326837
2018-03-07 05:55:59 +08:00
; REQUIRES: asserts
; RUN: opt < %s -basicaa -loop-interchange -verify-dom-info -verify-loop-info \
; RUN: -S -debug 2>&1 | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
@A = common global [100 x [100 x i32]] zeroinitializer
@B = common global [100 x i32] zeroinitializer
@C = common global [100 x [100 x i32]] zeroinitializer
@D = common global [100 x [100 x [100 x i32]]] zeroinitializer
;; Test that a flow dependency in outer loop doesn't prevent interchange in
;; loops i and j.
;;
;; for (int k = 0; k < 100; ++k) {
;; T[k] = fn1();
;; for (int i = 0; i < 1000; ++i)
;; for(int j = 1; j < 1000; ++j)
;; Arr[j][i] = Arr[j][i]+k;
;; fn2(T[k]);
;; }
DA: remove uses of GEP, only ask SCEV It's been quite some time the Dependence Analysis (DA) is broken, as it uses the GEP representation to "identify" multi-dimensional arrays. It even wrongly detects multi-dimensional arrays in single nested loops: from test/Analysis/DependenceAnalysis/Coupled.ll, example @couple6 ;; for (long int i = 0; i < 50; i++) { ;; A[i][3*i - 6] = i; ;; *B++ = A[i][i]; DA used to detect two subscripts, which makes no sense in the LLVM IR or in C/C++ semantics, as there are no guarantees as in Fortran of subscripts not overlapping into a next array dimension: maximum nesting levels = 1 SrcPtrSCEV = %A DstPtrSCEV = %A using GEPs subscript 0 src = {0,+,1}<nuw><nsw><%for.body> dst = {0,+,1}<nuw><nsw><%for.body> class = 1 loops = {1} subscript 1 src = {-6,+,3}<nsw><%for.body> dst = {0,+,1}<nuw><nsw><%for.body> class = 1 loops = {1} Separable = {} Coupled = {1} With the current patch, DA will correctly work on only one dimension: maximum nesting levels = 1 SrcSCEV = {(-2424 + %A)<nsw>,+,1212}<%for.body> DstSCEV = {%A,+,404}<%for.body> subscript 0 src = {(-2424 + %A)<nsw>,+,1212}<%for.body> dst = {%A,+,404}<%for.body> class = 1 loops = {1} Separable = {0} Coupled = {} This change removes all uses of GEP from DA, and we now only rely on the SCEV representation. The patch does not turn on -da-delinearize by default, and so the DA analysis will be more conservative in the case of multi-dimensional memory accesses in nested loops. I disabled some interchange tests, as the DA is not able to disambiguate the dependence anymore. To make DA stronger, we may need to compute a bound on the number of iterations based on the access functions and array dimensions. The patch cleans up all the CHECKs in test/Transforms/LoopInterchange/*.ll to avoid checking for snippets of LLVM IR: this form of checking is very hard to maintain. Instead, we now check for output of the pass that are more meaningful than dozens of lines of LLVM IR. Some tests now require -debug messages and thus only enabled with asserts. Patch written by Sebastian Pop and Aditya Kumar. Differential Revision: https://reviews.llvm.org/D35430 llvm-svn: 326837
2018-03-07 05:55:59 +08:00
; CHECK: Processing Inner Loop Id = 2 and OuterLoopId = 1
; CHECK: Loops interchanged.
; CHECK: Processing Inner Loop Id = 1 and OuterLoopId = 0
; CHECK: Not interchanging loops. Cannot prove legality.
@T = internal global [100 x double] zeroinitializer, align 4
@Arr = internal global [1000 x [1000 x i32]] zeroinitializer, align 4
define void @interchange_09(i32 %k) {
entry:
br label %for.body
for.cond.cleanup: ; preds = %for.cond.cleanup4
ret void
for.body: ; preds = %for.cond.cleanup4, %entry
%indvars.iv45 = phi i64 [ 0, %entry ], [ %indvars.iv.next46, %for.cond.cleanup4 ]
%call = call double @fn1()
%arrayidx = getelementptr inbounds [100 x double], [100 x double]* @T, i64 0, i64 %indvars.iv45
store double %call, double* %arrayidx, align 8
br label %for.cond6.preheader
for.cond6.preheader: ; preds = %for.cond.cleanup8, %for.body
%indvars.iv42 = phi i64 [ 0, %for.body ], [ %indvars.iv.next43, %for.cond.cleanup8 ]
br label %for.body9
for.cond.cleanup4: ; preds = %for.cond.cleanup8
%tmp = load double, double* %arrayidx, align 8
call void @fn2(double %tmp)
%indvars.iv.next46 = add nuw nsw i64 %indvars.iv45, 1
%exitcond47 = icmp ne i64 %indvars.iv.next46, 100
br i1 %exitcond47, label %for.body, label %for.cond.cleanup
for.cond.cleanup8: ; preds = %for.body9
%indvars.iv.next43 = add nuw nsw i64 %indvars.iv42, 1
%exitcond44 = icmp ne i64 %indvars.iv.next43, 1000
br i1 %exitcond44, label %for.cond6.preheader, label %for.cond.cleanup4
for.body9: ; preds = %for.body9, %for.cond6.preheader
%indvars.iv = phi i64 [ 1, %for.cond6.preheader ], [ %indvars.iv.next, %for.body9 ]
%arrayidx13 = getelementptr inbounds [1000 x [1000 x i32]], [1000 x [1000 x i32]]* @Arr, i64 0, i64 %indvars.iv, i64 %indvars.iv42
%tmp1 = load i32, i32* %arrayidx13, align 4
%tmp2 = trunc i64 %indvars.iv45 to i32
%add = add nsw i32 %tmp1, %tmp2
store i32 %add, i32* %arrayidx13, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp ne i64 %indvars.iv.next, 1000
br i1 %exitcond, label %for.body9, label %for.cond.cleanup8
}
declare double @fn1() readnone
declare void @fn2(double) readnone