llvm-project/llvm/test/Transforms/FunctionAttrs/norecurse.ll

92 lines
2.2 KiB
LLVM
Raw Normal View History

; RUN: opt < %s -basicaa -functionattrs -rpo-functionattrs -S | FileCheck %s
; RUN: opt < %s -aa-pipeline=basic-aa -passes='cgscc(function-attrs),rpo-functionattrs' -S | FileCheck %s
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: norecurse nounwind readnone
; CHECK-NEXT: define i32 @leaf()
define i32 @leaf() {
ret i32 1
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: readnone
; CHECK-NOT: norecurse
; CHECK-NEXT: define i32 @self_rec()
define i32 @self_rec() {
%a = call i32 @self_rec()
ret i32 4
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: readnone
; CHECK-NOT: norecurse
; CHECK-NEXT: define i32 @indirect_rec()
define i32 @indirect_rec() {
%a = call i32 @indirect_rec2()
ret i32 %a
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: readnone
; CHECK-NOT: norecurse
; CHECK-NEXT: define i32 @indirect_rec2()
define i32 @indirect_rec2() {
%a = call i32 @indirect_rec()
ret i32 %a
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: readnone
; CHECK-NOT: norecurse
; CHECK-NEXT: define i32 @extern()
define i32 @extern() {
%a = call i32 @k()
ret i32 %a
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-NEXT: declare i32 @k()
declare i32 @k() readnone
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: nounwind
; CHECK-NOT: norecurse
; CHECK-NEXT: define void @intrinsic(i8* nocapture %dest, i8* nocapture readonly %src, i32 %len)
define void @intrinsic(i8* %dest, i8* %src, i32 %len) {
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 %len, i1 false)
ret void
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-NEXT: declare void @llvm.memcpy.p0i8.p0i8.i32
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1) Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965
2018-01-20 01:13:12 +08:00
declare void @llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i1)
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: norecurse readnone
; CHECK-NEXT: define internal i32 @called_by_norecurse()
define internal i32 @called_by_norecurse() {
%a = call i32 @k()
ret i32 %a
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-NEXT: define void @m()
define void @m() norecurse {
%a = call i32 @called_by_norecurse()
ret void
}
[PM][FunctionAttrs] add NoUnwind attribute inference to PostOrderFunctionAttrs pass Summary: This was motivated by absence of PrunEH functionality in new PM. It was decided that a proper way to do PruneEH is to add NoUnwind inference into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top. This change generalizes attribute handling implemented for (a removal of) Convergent attribute, by introducing a generic builder-like class AttributeInferer It registers all the attribute inference requests, storing per-attribute predicates into a vector, and then goes through an SCC Node, scanning all the instructions for not breaking attribute assumptions. The main idea is that as soon all the instructions from all the functions of SCC Node conform to attribute assumptions then we are free to infer the attribute as set for all the functions of SCC Node. It handles two distinct cases of attributes: - those that might break due to derefinement of the function code for these attributes we are allowed to apply inference only if all the functions are "exact definitions". Example - NoUnwind. - those that do not care about derefinement for these attributes we are allowed to apply inference as soon as we see any function definition. Example - removal of Convergent attribute. Also in this commit: * Converted all the FunctionAttrs tests to use FileCheck and added new-PM invocations to them * FunctionAttrs/convergent.ll test demonstrates a difference in behavior between new and old PM implementations. Marked with FIXME. * PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg combo as intended * some of "other" tests were updated since function-attrs now infers 'nounwind' even for old PM pipeline * -disable-nounwind-inference hidden option added as a possible workaround for a supposedly rare case when nounwind being inferred by default presents a problem Reviewers: chandlerc, jlebar Reviewed By: jlebar Subscribers: eraman, llvm-commits Differential Revision: https://reviews.llvm.org/D44415 llvm-svn: 328377
2018-03-24 05:46:16 +08:00
; CHECK: Function Attrs
; CHECK-SAME: norecurse readnone
; CHECK-NEXT: define internal i32 @called_by_norecurse_indirectly()
define internal i32 @called_by_norecurse_indirectly() {
%a = call i32 @k()
ret i32 %a
}
define internal void @o() {
%a = call i32 @called_by_norecurse_indirectly()
ret void
}
define void @p() norecurse {
call void @o()
ret void
}