llvm-project/llvm/test/CodeGen/X86/sse-intrinsics-x86.ll

686 lines
27 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=i386-apple-darwin -mattr=-avx,+sse -show-mc-encoding | FileCheck %s --check-prefix=SSE
; RUN: llc < %s -mtriple=i386-apple-darwin -mattr=+avx2 -show-mc-encoding | FileCheck %s --check-prefix=VCHECK --check-prefix=AVX2
; RUN: llc < %s -mtriple=i386-apple-darwin -mcpu=skx -show-mc-encoding | FileCheck %s --check-prefix=VCHECK --check-prefix=SKX
define <4 x float> @test_x86_sse_cmp_ps(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_cmp_ps:
; SSE: ## %bb.0:
; SSE-NEXT: cmpordps %xmm1, %xmm0 ## encoding: [0x0f,0xc2,0xc1,0x07]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_cmp_ps:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: vcmpordps %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0xc2,0xc1,0x07]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.cmp.ps(<4 x float> %a0, <4 x float> %a1, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.cmp.ps(<4 x float>, <4 x float>, i8) nounwind readnone
define <4 x float> @test_x86_sse_cmp_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_cmp_ss:
; SSE: ## %bb.0:
; SSE-NEXT: cmpordss %xmm1, %xmm0 ## encoding: [0xf3,0x0f,0xc2,0xc1,0x07]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_cmp_ss:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: vcmpordss %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0xc2,0xc1,0x07]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.cmp.ss(<4 x float> %a0, <4 x float> %a1, i8 7) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.cmp.ss(<4 x float>, <4 x float>, i8) nounwind readnone
define i32 @test_x86_sse_comieq_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_comieq_ss:
; SSE: ## %bb.0:
; SSE-NEXT: comiss %xmm1, %xmm0 ## encoding: [0x0f,0x2f,0xc1]
; SSE-NEXT: setnp %al ## encoding: [0x0f,0x9b,0xc0]
; SSE-NEXT: sete %cl ## encoding: [0x0f,0x94,0xc1]
; SSE-NEXT: andb %al, %cl ## encoding: [0x20,0xc1]
; SSE-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_comieq_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vcomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2f,0xc1]
; AVX2-NEXT: setnp %al ## encoding: [0x0f,0x9b,0xc0]
; AVX2-NEXT: sete %cl ## encoding: [0x0f,0x94,0xc1]
; AVX2-NEXT: andb %al, %cl ## encoding: [0x20,0xc1]
; AVX2-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_comieq_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vcomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2f,0xc1]
; SKX-NEXT: setnp %al ## encoding: [0x0f,0x9b,0xc0]
; SKX-NEXT: sete %cl ## encoding: [0x0f,0x94,0xc1]
; SKX-NEXT: andb %al, %cl ## encoding: [0x20,0xc1]
; SKX-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.comieq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comieq.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comige_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_comige_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: comiss %xmm1, %xmm0 ## encoding: [0x0f,0x2f,0xc1]
; SSE-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_comige_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vcomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2f,0xc1]
; AVX2-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_comige_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vcomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2f,0xc1]
; SKX-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.comige.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comige.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comigt_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_comigt_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: comiss %xmm1, %xmm0 ## encoding: [0x0f,0x2f,0xc1]
; SSE-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_comigt_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vcomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2f,0xc1]
; AVX2-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_comigt_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vcomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2f,0xc1]
; SKX-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.comigt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comigt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comile_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_comile_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: comiss %xmm0, %xmm1 ## encoding: [0x0f,0x2f,0xc8]
; SSE-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_comile_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vcomiss %xmm0, %xmm1 ## encoding: [0xc5,0xf8,0x2f,0xc8]
; AVX2-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_comile_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vcomiss %xmm0, %xmm1 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2f,0xc8]
; SKX-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.comile.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comile.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comilt_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_comilt_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: comiss %xmm0, %xmm1 ## encoding: [0x0f,0x2f,0xc8]
; SSE-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_comilt_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vcomiss %xmm0, %xmm1 ## encoding: [0xc5,0xf8,0x2f,0xc8]
; AVX2-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_comilt_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vcomiss %xmm0, %xmm1 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2f,0xc8]
; SKX-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.comilt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comilt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_comineq_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_comineq_ss:
; SSE: ## %bb.0:
; SSE-NEXT: comiss %xmm1, %xmm0 ## encoding: [0x0f,0x2f,0xc1]
; SSE-NEXT: setp %al ## encoding: [0x0f,0x9a,0xc0]
; SSE-NEXT: setne %cl ## encoding: [0x0f,0x95,0xc1]
; SSE-NEXT: orb %al, %cl ## encoding: [0x08,0xc1]
; SSE-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_comineq_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vcomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2f,0xc1]
; AVX2-NEXT: setp %al ## encoding: [0x0f,0x9a,0xc0]
; AVX2-NEXT: setne %cl ## encoding: [0x0f,0x95,0xc1]
; AVX2-NEXT: orb %al, %cl ## encoding: [0x08,0xc1]
; AVX2-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_comineq_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vcomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2f,0xc1]
; SKX-NEXT: setp %al ## encoding: [0x0f,0x9a,0xc0]
; SKX-NEXT: setne %cl ## encoding: [0x0f,0x95,0xc1]
; SKX-NEXT: orb %al, %cl ## encoding: [0x08,0xc1]
; SKX-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.comineq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.comineq.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_cvtss2si(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_cvtss2si:
; SSE: ## %bb.0:
; SSE-NEXT: cvtss2si %xmm0, %eax ## encoding: [0xf3,0x0f,0x2d,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_cvtss2si:
; AVX2: ## %bb.0:
; AVX2-NEXT: vcvtss2si %xmm0, %eax ## encoding: [0xc5,0xfa,0x2d,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_cvtss2si:
; SKX: ## %bb.0:
; SKX-NEXT: vcvtss2si %xmm0, %eax ## EVEX TO VEX Compression encoding: [0xc5,0xfa,0x2d,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.cvtss2si(<4 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.cvtss2si(<4 x float>) nounwind readnone
define i32 @test_x86_sse_cvttss2si(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_cvttss2si:
; SSE: ## %bb.0:
; SSE-NEXT: cvttss2si %xmm0, %eax ## encoding: [0xf3,0x0f,0x2c,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_cvttss2si:
; AVX2: ## %bb.0:
; AVX2-NEXT: vcvttss2si %xmm0, %eax ## encoding: [0xc5,0xfa,0x2c,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_cvttss2si:
; SKX: ## %bb.0:
; SKX-NEXT: vcvttss2si %xmm0, %eax ## EVEX TO VEX Compression encoding: [0xc5,0xfa,0x2c,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.cvttss2si(<4 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.cvttss2si(<4 x float>) nounwind readnone
define void @test_x86_sse_ldmxcsr(i8* %a0) {
; SSE-LABEL: test_x86_sse_ldmxcsr:
; SSE: ## %bb.0:
; SSE-NEXT: movl {{[0-9]+}}(%esp), %eax ## encoding: [0x8b,0x44,0x24,0x04]
; SSE-NEXT: ldmxcsr (%eax) ## encoding: [0x0f,0xae,0x10]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_ldmxcsr:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: movl {{[0-9]+}}(%esp), %eax ## encoding: [0x8b,0x44,0x24,0x04]
; VCHECK-NEXT: vldmxcsr (%eax) ## encoding: [0xc5,0xf8,0xae,0x10]
; VCHECK-NEXT: retl ## encoding: [0xc3]
call void @llvm.x86.sse.ldmxcsr(i8* %a0)
ret void
}
declare void @llvm.x86.sse.ldmxcsr(i8*) nounwind
define <4 x float> @test_x86_sse_max_ps(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_max_ps:
; SSE: ## %bb.0:
; SSE-NEXT: maxps %xmm1, %xmm0 ## encoding: [0x0f,0x5f,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_max_ps:
; AVX2: ## %bb.0:
; AVX2-NEXT: vmaxps %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x5f,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_max_ps:
; SKX: ## %bb.0:
; SKX-NEXT: vmaxps %xmm1, %xmm0, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x5f,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.max.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_max_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_max_ss:
; SSE: ## %bb.0:
; SSE-NEXT: maxss %xmm1, %xmm0 ## encoding: [0xf3,0x0f,0x5f,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_max_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vmaxss %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x5f,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_max_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vmaxss %xmm1, %xmm0, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xfa,0x5f,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.max.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_min_ps(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_min_ps:
; SSE: ## %bb.0:
; SSE-NEXT: minps %xmm1, %xmm0 ## encoding: [0x0f,0x5d,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_min_ps:
; AVX2: ## %bb.0:
; AVX2-NEXT: vminps %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x5d,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_min_ps:
; SKX: ## %bb.0:
; SKX-NEXT: vminps %xmm1, %xmm0, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x5d,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.min.ps(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_min_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_min_ss:
; SSE: ## %bb.0:
; SSE-NEXT: minss %xmm1, %xmm0 ## encoding: [0xf3,0x0f,0x5d,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_min_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vminss %xmm1, %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x5d,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_min_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vminss %xmm1, %xmm0, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xfa,0x5d,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.min.ss(<4 x float> %a0, <4 x float> %a1) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_movmsk_ps(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_movmsk_ps:
; SSE: ## %bb.0:
; SSE-NEXT: movmskps %xmm0, %eax ## encoding: [0x0f,0x50,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_movmsk_ps:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: vmovmskps %xmm0, %eax ## encoding: [0xc5,0xf8,0x50,0xc0]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %a0) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rcp_ps(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_rcp_ps:
; SSE: ## %bb.0:
; SSE-NEXT: rcpps %xmm0, %xmm0 ## encoding: [0x0f,0x53,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; VCHECK-LABEL: test_x86_sse_rcp_ps:
; VCHECK: ## %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; VCHECK-NEXT: vrcpps %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x53,0xc0]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.rcp.ps(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rcp_ss(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_rcp_ss:
; SSE: ## %bb.0:
; SSE-NEXT: rcpss %xmm0, %xmm0 ## encoding: [0xf3,0x0f,0x53,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_rcp_ss:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: vrcpss %xmm0, %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x53,0xc0]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rsqrt_ps(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_rsqrt_ps:
; SSE: ## %bb.0:
; SSE-NEXT: rsqrtps %xmm0, %xmm0 ## encoding: [0x0f,0x52,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; VCHECK-LABEL: test_x86_sse_rsqrt_ps:
; VCHECK: ## %bb.0:
[X86] Don't use RCP14 and RSQRT14 for reciprocal estimations or for legacy SSE rcp/rsqrt intrinsics when AVX512 features are enabled. Summary: AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement. Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt. I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed. As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here. This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions. Going forward I think our focus should be on -Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14. -Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER -Supporting double precision. Reviewers: zvi, DavidKreitzer, RKSimon Reviewed By: RKSimon Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D39583 llvm-svn: 317413
2017-11-05 02:26:41 +08:00
; VCHECK-NEXT: vrsqrtps %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x52,0xc0]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_rsqrt_ss(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_rsqrt_ss:
; SSE: ## %bb.0:
; SSE-NEXT: rsqrtss %xmm0, %xmm0 ## encoding: [0xf3,0x0f,0x52,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_rsqrt_ss:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: vrsqrtss %xmm0, %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x52,0xc0]
; VCHECK-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_sqrt_ps(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_sqrt_ps:
; SSE: ## %bb.0:
; SSE-NEXT: sqrtps %xmm0, %xmm0 ## encoding: [0x0f,0x51,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_sqrt_ps:
; AVX2: ## %bb.0:
; AVX2-NEXT: vsqrtps %xmm0, %xmm0 ## encoding: [0xc5,0xf8,0x51,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_sqrt_ps:
; SKX: ## %bb.0:
; SKX-NEXT: vsqrtps %xmm0, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x51,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone
define <4 x float> @test_x86_sse_sqrt_ss(<4 x float> %a0) {
; SSE-LABEL: test_x86_sse_sqrt_ss:
; SSE: ## %bb.0:
; SSE-NEXT: sqrtss %xmm0, %xmm0 ## encoding: [0xf3,0x0f,0x51,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_sqrt_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vsqrtss %xmm0, %xmm0, %xmm0 ## encoding: [0xc5,0xfa,0x51,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_sqrt_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vsqrtss %xmm0, %xmm0, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xfa,0x51,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %a0) ; <<4 x float>> [#uses=1]
ret <4 x float> %res
}
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
define void @test_x86_sse_stmxcsr(i8* %a0) {
; SSE-LABEL: test_x86_sse_stmxcsr:
; SSE: ## %bb.0:
; SSE-NEXT: movl {{[0-9]+}}(%esp), %eax ## encoding: [0x8b,0x44,0x24,0x04]
; SSE-NEXT: stmxcsr (%eax) ## encoding: [0x0f,0xae,0x18]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: test_x86_sse_stmxcsr:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: movl {{[0-9]+}}(%esp), %eax ## encoding: [0x8b,0x44,0x24,0x04]
; VCHECK-NEXT: vstmxcsr (%eax) ## encoding: [0xc5,0xf8,0xae,0x18]
; VCHECK-NEXT: retl ## encoding: [0xc3]
call void @llvm.x86.sse.stmxcsr(i8* %a0)
ret void
}
declare void @llvm.x86.sse.stmxcsr(i8*) nounwind
define i32 @test_x86_sse_ucomieq_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_ucomieq_ss:
; SSE: ## %bb.0:
; SSE-NEXT: ucomiss %xmm1, %xmm0 ## encoding: [0x0f,0x2e,0xc1]
; SSE-NEXT: setnp %al ## encoding: [0x0f,0x9b,0xc0]
; SSE-NEXT: sete %cl ## encoding: [0x0f,0x94,0xc1]
; SSE-NEXT: andb %al, %cl ## encoding: [0x20,0xc1]
; SSE-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_ucomieq_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vucomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2e,0xc1]
; AVX2-NEXT: setnp %al ## encoding: [0x0f,0x9b,0xc0]
; AVX2-NEXT: sete %cl ## encoding: [0x0f,0x94,0xc1]
; AVX2-NEXT: andb %al, %cl ## encoding: [0x20,0xc1]
; AVX2-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_ucomieq_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vucomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2e,0xc1]
; SKX-NEXT: setnp %al ## encoding: [0x0f,0x9b,0xc0]
; SKX-NEXT: sete %cl ## encoding: [0x0f,0x94,0xc1]
; SKX-NEXT: andb %al, %cl ## encoding: [0x20,0xc1]
; SKX-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.ucomieq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomieq.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomige_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_ucomige_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: ucomiss %xmm1, %xmm0 ## encoding: [0x0f,0x2e,0xc1]
; SSE-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_ucomige_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vucomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2e,0xc1]
; AVX2-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_ucomige_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vucomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2e,0xc1]
; SKX-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.ucomige.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomige.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomigt_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_ucomigt_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: ucomiss %xmm1, %xmm0 ## encoding: [0x0f,0x2e,0xc1]
; SSE-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_ucomigt_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vucomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2e,0xc1]
; AVX2-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_ucomigt_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vucomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2e,0xc1]
; SKX-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.ucomigt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomigt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomile_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_ucomile_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: ucomiss %xmm0, %xmm1 ## encoding: [0x0f,0x2e,0xc8]
; SSE-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_ucomile_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vucomiss %xmm0, %xmm1 ## encoding: [0xc5,0xf8,0x2e,0xc8]
; AVX2-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_ucomile_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vucomiss %xmm0, %xmm1 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2e,0xc8]
; SKX-NEXT: setae %al ## encoding: [0x0f,0x93,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.ucomile.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomile.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomilt_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_ucomilt_ss:
; SSE: ## %bb.0:
; SSE-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SSE-NEXT: ucomiss %xmm0, %xmm1 ## encoding: [0x0f,0x2e,0xc8]
; SSE-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_ucomilt_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; AVX2-NEXT: vucomiss %xmm0, %xmm1 ## encoding: [0xc5,0xf8,0x2e,0xc8]
; AVX2-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_ucomilt_ss:
; SKX: ## %bb.0:
; SKX-NEXT: xorl %eax, %eax ## encoding: [0x31,0xc0]
; SKX-NEXT: vucomiss %xmm0, %xmm1 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2e,0xc8]
; SKX-NEXT: seta %al ## encoding: [0x0f,0x97,0xc0]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.ucomilt.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomilt.ss(<4 x float>, <4 x float>) nounwind readnone
define i32 @test_x86_sse_ucomineq_ss(<4 x float> %a0, <4 x float> %a1) {
; SSE-LABEL: test_x86_sse_ucomineq_ss:
; SSE: ## %bb.0:
; SSE-NEXT: ucomiss %xmm1, %xmm0 ## encoding: [0x0f,0x2e,0xc1]
; SSE-NEXT: setp %al ## encoding: [0x0f,0x9a,0xc0]
; SSE-NEXT: setne %cl ## encoding: [0x0f,0x95,0xc1]
; SSE-NEXT: orb %al, %cl ## encoding: [0x08,0xc1]
; SSE-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; AVX2-LABEL: test_x86_sse_ucomineq_ss:
; AVX2: ## %bb.0:
; AVX2-NEXT: vucomiss %xmm1, %xmm0 ## encoding: [0xc5,0xf8,0x2e,0xc1]
; AVX2-NEXT: setp %al ## encoding: [0x0f,0x9a,0xc0]
; AVX2-NEXT: setne %cl ## encoding: [0x0f,0x95,0xc1]
; AVX2-NEXT: orb %al, %cl ## encoding: [0x08,0xc1]
; AVX2-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; AVX2-NEXT: retl ## encoding: [0xc3]
;
; SKX-LABEL: test_x86_sse_ucomineq_ss:
; SKX: ## %bb.0:
; SKX-NEXT: vucomiss %xmm1, %xmm0 ## EVEX TO VEX Compression encoding: [0xc5,0xf8,0x2e,0xc1]
; SKX-NEXT: setp %al ## encoding: [0x0f,0x9a,0xc0]
; SKX-NEXT: setne %cl ## encoding: [0x0f,0x95,0xc1]
; SKX-NEXT: orb %al, %cl ## encoding: [0x08,0xc1]
; SKX-NEXT: movzbl %cl, %eax ## encoding: [0x0f,0xb6,0xc1]
; SKX-NEXT: retl ## encoding: [0xc3]
%res = call i32 @llvm.x86.sse.ucomineq.ss(<4 x float> %a0, <4 x float> %a1) ; <i32> [#uses=1]
ret i32 %res
}
declare i32 @llvm.x86.sse.ucomineq.ss(<4 x float>, <4 x float>) nounwind readnone
define void @sfence() nounwind {
; SSE-LABEL: sfence:
; SSE: ## %bb.0:
; SSE-NEXT: sfence ## encoding: [0x0f,0xae,0xf8]
; SSE-NEXT: retl ## encoding: [0xc3]
;
; VCHECK-LABEL: sfence:
; VCHECK: ## %bb.0:
; VCHECK-NEXT: sfence ## encoding: [0x0f,0xae,0xf8]
; VCHECK-NEXT: retl ## encoding: [0xc3]
tail call void @llvm.x86.sse.sfence()
ret void
}
declare void @llvm.x86.sse.sfence() nounwind