llvm-project/libcxx/include/functional

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

3241 lines
102 KiB
Plaintext
Raw Normal View History

2010-05-12 03:42:16 +08:00
// -*- C++ -*-
//===------------------------ functional ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
2010-05-12 03:42:16 +08:00
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUNCTIONAL
#define _LIBCPP_FUNCTIONAL
/*
functional synopsis
namespace std
{
template <class Arg, class Result>
struct unary_function
{
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template <class T>
2010-05-12 03:42:16 +08:00
class reference_wrapper
: public unary_function<T1, R> // if wrapping a unary functor
: public binary_function<T1, T2, R> // if wraping a binary functor
{
public:
// types
typedef T type;
typedef see below result_type; // Not always defined
// construct/copy/destroy
template<class U>
reference_wrapper(U&&);
reference_wrapper(const reference_wrapper<T>& x) noexcept;
2010-05-12 03:42:16 +08:00
// assignment
reference_wrapper& operator=(const reference_wrapper<T>& x) noexcept;
2010-05-12 03:42:16 +08:00
// access
operator T& () const noexcept;
T& get() const noexcept;
2010-05-12 03:42:16 +08:00
// invoke
template <class... ArgTypes>
typename result_of<T&(ArgTypes&&...)>::type
2010-05-12 03:42:16 +08:00
operator() (ArgTypes&&...) const;
};
template <class T>
reference_wrapper(T&) -> reference_wrapper<T>;
template <class T> reference_wrapper<T> ref(T& t) noexcept;
template <class T> void ref(const T&& t) = delete;
template <class T> reference_wrapper<T> ref(reference_wrapper<T>t) noexcept;
2010-05-12 03:42:16 +08:00
template <class T> reference_wrapper<const T> cref(const T& t) noexcept;
template <class T> void cref(const T&& t) = delete;
template <class T> reference_wrapper<const T> cref(reference_wrapper<T> t) noexcept;
2010-05-12 03:42:16 +08:00
template <class T> struct unwrap_reference; // since C++20
template <class T> struct unwrap_ref_decay : unwrap_reference<decay_t<T>> { }; // since C++20
template <class T> using unwrap_reference_t = typename unwrap_reference<T>::type; // since C++20
template <class T> using unwrap_ref_decay_t = typename unwrap_ref_decay<T>::type; // since C++20
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct plus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct minus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct multiplies : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct divides : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct modulus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct negate : unary_function<T, T>
{
T operator()(const T& x) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct equal_to : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct not_equal_to : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct greater : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct less : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct greater_equal : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct less_equal : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct logical_and : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct logical_or : binary_function<T, T, bool>
{
bool operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
2010-05-12 03:42:16 +08:00
struct logical_not : unary_function<T, bool>
{
bool operator()(const T& x) const;
};
template <class T> // <class T=void> in C++14
struct bit_and : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
struct bit_or : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T> // <class T=void> in C++14
struct bit_xor : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const;
};
template <class T=void> // C++14
struct bit_not : unary_function<T, T>
{
T operator()(const T& x) const;
};
struct identity; // C++20
2010-05-12 03:42:16 +08:00
template <class Predicate>
class unary_negate // deprecated in C++17, removed in C++20
2010-05-12 03:42:16 +08:00
: public unary_function<typename Predicate::argument_type, bool>
{
public:
explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;
};
template <class Predicate> // deprecated in C++17, removed in C++20
unary_negate<Predicate> not1(const Predicate& pred);
2010-05-12 03:42:16 +08:00
template <class Predicate>
class binary_negate // deprecated in C++17, removed in C++20
2010-05-12 03:42:16 +08:00
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type,
bool>
{
public:
explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,
const typename Predicate::second_argument_type& y) const;
};
template <class Predicate> // deprecated in C++17, removed in C++20
binary_negate<Predicate> not2(const Predicate& pred);
2010-05-12 03:42:16 +08:00
template <class F>
constexpr unspecified not_fn(F&& f); // C++17, constexpr in C++20
2010-05-12 03:42:16 +08:00
template<class T> struct is_bind_expression;
template<class T> struct is_placeholder;
// See C++14 20.9.9, Function object binders
template <class T> inline constexpr bool is_bind_expression_v
= is_bind_expression<T>::value; // C++17
template <class T> inline constexpr int is_placeholder_v
= is_placeholder<T>::value; // C++17
template<class Fn, class... BoundArgs>
constexpr unspecified bind(Fn&&, BoundArgs&&...); // constexpr in C++20
template<class R, class Fn, class... BoundArgs>
constexpr unspecified bind(Fn&&, BoundArgs&&...); // constexpr in C++20
2010-05-12 03:42:16 +08:00
template<class F, class... Args>
constexpr // constexpr in C++20
invoke_result_t<F, Args...> invoke(F&& f, Args&&... args) // C++17
noexcept(is_nothrow_invocable_v<F, Args...>);
namespace placeholders {
// M is the implementation-defined number of placeholders
2010-05-12 03:42:16 +08:00
extern unspecified _1;
extern unspecified _2;
.
.
.
extern unspecified _Mp;
2010-05-12 03:42:16 +08:00
}
template <class Operation>
class binder1st // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
: public unary_function<typename Operation::second_argument_type,
typename Operation::result_type>
{
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st(const Operation& x, const typename Operation::first_argument_type y);
typename Operation::result_type operator()( typename Operation::second_argument_type& x) const;
typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const;
};
template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template <class Operation>
class binder2nd // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
: public unary_function<typename Operation::first_argument_type,
typename Operation::result_type>
{
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& x, const typename Operation::second_argument_type y);
typename Operation::result_type operator()( typename Operation::first_argument_type& x) const;
typename Operation::result_type operator()(const typename Operation::first_argument_type& x) const;
};
template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template <class Arg, class Result> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
class pointer_to_unary_function : public unary_function<Arg, Result>
{
public:
explicit pointer_to_unary_function(Result (*f)(Arg));
Result operator()(Arg x) const;
};
template <class Arg, class Result>
pointer_to_unary_function<Arg,Result> ptr_fun(Result (*f)(Arg)); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template <class Arg1, class Arg2, class Result> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result>
{
public:
explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;
};
template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result> ptr_fun(Result (*f)(Arg1,Arg2)); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template<class S, class T> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
class mem_fun_t : public unary_function<T*, S>
{
public:
explicit mem_fun_t(S (T::*p)());
S operator()(T* p) const;
};
template<class S, class T, class A>
class mem_fun1_t : public binary_function<T*, A, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit mem_fun1_t(S (T::*p)(A));
S operator()(T* p, A x) const;
};
template<class S, class T> mem_fun_t<S,T> mem_fun(S (T::*f)()); // deprecated in C++11, removed in C++17
template<class S, class T, class A> mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A)); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template<class S, class T>
class mem_fun_ref_t : public unary_function<T, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit mem_fun_ref_t(S (T::*p)());
S operator()(T& p) const;
};
template<class S, class T, class A>
class mem_fun1_ref_t : public binary_function<T, A, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit mem_fun1_ref_t(S (T::*p)(A));
S operator()(T& p, A x) const;
};
template<class S, class T> mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)()); // deprecated in C++11, removed in C++17
template<class S, class T, class A> mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A)); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template <class S, class T>
class const_mem_fun_t : public unary_function<const T*, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit const_mem_fun_t(S (T::*p)() const);
S operator()(const T* p) const;
};
template <class S, class T, class A>
class const_mem_fun1_t : public binary_function<const T*, A, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;
};
template <class S, class T> const_mem_fun_t<S,T> mem_fun(S (T::*f)() const); // deprecated in C++11, removed in C++17
template <class S, class T, class A> const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit const_mem_fun_ref_t(S (T::*p)() const);
S operator()(const T& p) const;
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function<T, A, S> // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
{
public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
S operator()(const T& p, A x) const;
};
template <class S, class T> const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const); // deprecated in C++11, removed in C++17
template <class S, class T, class A> const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const); // deprecated in C++11, removed in C++17
2010-05-12 03:42:16 +08:00
template<class R, class T>
constexpr unspecified mem_fn(R T::*); // constexpr in C++20
2010-05-12 03:42:16 +08:00
class bad_function_call
: public exception
{
};
template<class> class function; // undefined
2010-05-12 03:42:16 +08:00
template<class R, class... ArgTypes>
2010-05-12 03:42:16 +08:00
class function<R(ArgTypes...)>
: public unary_function<T1, R> // iff sizeof...(ArgTypes) == 1 and
// ArgTypes contains T1
: public binary_function<T1, T2, R> // iff sizeof...(ArgTypes) == 2 and
// ArgTypes contains T1 and T2
{
public:
typedef R result_type;
// construct/copy/destroy:
function() noexcept;
function(nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
function(const function&);
function(function&&) noexcept;
2010-05-12 03:42:16 +08:00
template<class F>
function(F);
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&) noexcept; // removed in C++17
2010-05-12 03:42:16 +08:00
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, nullptr_t) noexcept; // removed in C++17
2010-05-12 03:42:16 +08:00
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, const function&); // removed in C++17
2010-05-12 03:42:16 +08:00
template<Allocator Alloc>
function(allocator_arg_t, const Alloc&, function&&); // removed in C++17
2010-05-12 03:42:16 +08:00
template<class F, Allocator Alloc>
function(allocator_arg_t, const Alloc&, F); // removed in C++17
2010-05-12 03:42:16 +08:00
function& operator=(const function&);
function& operator=(function&&) noexcept;
function& operator=(nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
template<class F>
function& operator=(F&&);
2010-05-12 03:42:16 +08:00
template<class F>
function& operator=(reference_wrapper<F>) noexcept;
2010-05-12 03:42:16 +08:00
~function();
// function modifiers:
void swap(function&) noexcept;
template<class F, class Alloc>
void assign(F&&, const Alloc&); // Removed in C++17
2010-05-12 03:42:16 +08:00
// function capacity:
explicit operator bool() const noexcept;
2010-05-12 03:42:16 +08:00
// function invocation:
2010-05-12 03:42:16 +08:00
R operator()(ArgTypes...) const;
// function target access:
const std::type_info& target_type() const noexcept;
template <typename T> T* target() noexcept;
template <typename T> const T* target() const noexcept;
};
// Deduction guides
template<class R, class ...Args>
function(R(*)(Args...)) -> function<R(Args...)>; // since C++17
template<class F>
function(F) -> function<see-below>; // since C++17
// Null pointer comparisons:
template <class R, class ... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
template <class R, class ... ArgTypes>
bool operator==(nullptr_t, const function<R(ArgTypes...)>&) noexcept;
2010-05-12 03:42:16 +08:00
template <class R, class ... ArgTypes>
bool operator!=(const function<R(ArgTypes...)>&, nullptr_t) noexcept;
2010-05-12 03:42:16 +08:00
template <class R, class ... ArgTypes>
bool operator!=(nullptr_t, const function<R(ArgTypes...)>&) noexcept;
2010-05-12 03:42:16 +08:00
// specialized algorithms:
template <class R, class ... ArgTypes>
void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;
2010-05-12 03:42:16 +08:00
template <class T> struct hash;
template <> struct hash<bool>;
template <> struct hash<char>;
template <> struct hash<signed char>;
template <> struct hash<unsigned char>;
template <> struct hash<char8_t>; // since C++20
2010-05-12 03:42:16 +08:00
template <> struct hash<char16_t>;
template <> struct hash<char32_t>;
template <> struct hash<wchar_t>;
template <> struct hash<short>;
template <> struct hash<unsigned short>;
template <> struct hash<int>;
template <> struct hash<unsigned int>;
template <> struct hash<long>;
template <> struct hash<long long>;
template <> struct hash<unsigned long>;
template <> struct hash<unsigned long long>;
template <> struct hash<float>;
template <> struct hash<double>;
template <> struct hash<long double>;
template<class T> struct hash<T*>;
template <> struct hash<nullptr_t>; // C++17
2010-05-12 03:42:16 +08:00
} // std
POLICY: For non-variadic implementations, the number of arguments is limited
to 3. It is hoped that the need for non-variadic implementations
will be minimal.
*/
#include <__config>
#include <__debug>
#include <__functional_base>
#include <__functional/search.h>
#include <concepts>
2010-05-12 03:42:16 +08:00
#include <exception>
#include <memory>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <utility>
#include <version>
2010-05-12 03:42:16 +08:00
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
2010-05-12 03:42:16 +08:00
#pragma GCC system_header
#endif
2010-05-12 03:42:16 +08:00
_LIBCPP_BEGIN_NAMESPACE_STD
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS plus : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x + __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS plus<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) + _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS minus : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x - __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS minus<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) - _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS multiplies : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x * __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS multiplies<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) * _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS divides : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x / __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS divides<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) / _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS modulus : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x % __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS modulus<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) % _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS negate : unary_function<_Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x) const
2010-05-12 03:42:16 +08:00
{return -__x;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS negate<void>
{
template <class _Tp>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_Tp&& __x) const
_NOEXCEPT_(noexcept(- _VSTD::forward<_Tp>(__x)))
-> decltype (- _VSTD::forward<_Tp>(__x))
{ return - _VSTD::forward<_Tp>(__x); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS equal_to : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x == __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS equal_to<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) == _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS not_equal_to : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x != __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS not_equal_to<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) != _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS greater : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x > __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS greater<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) > _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
// less in <__functional_base>
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS greater_equal : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x >= __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS greater_equal<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) >= _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS less_equal : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x <= __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS less_equal<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) <= _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS logical_and : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x && __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS logical_and<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) && _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS logical_or : binary_function<_Tp, _Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x || __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS logical_or<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) || _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS logical_not : unary_function<_Tp, bool>
2010-05-12 03:42:16 +08:00
{
typedef bool __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x) const
2010-05-12 03:42:16 +08:00
{return !__x;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS logical_not<void>
{
template <class _Tp>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_Tp&& __x) const
_NOEXCEPT_(noexcept(!_VSTD::forward<_Tp>(__x)))
-> decltype (!_VSTD::forward<_Tp>(__x))
{ return !_VSTD::forward<_Tp>(__x); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS bit_and : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x & __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS bit_and<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) & _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS bit_or : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x | __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS bit_or<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) | _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
2010-05-12 03:42:16 +08:00
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS bit_xor : binary_function<_Tp, _Tp, _Tp>
2010-05-12 03:42:16 +08:00
{
typedef _Tp __result_type; // used by valarray
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x, const _Tp& __y) const
2010-05-12 03:42:16 +08:00
{return __x ^ __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS bit_xor<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) ^ _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
struct _LIBCPP_TEMPLATE_VIS bit_not : unary_function<_Tp, _Tp>
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
_Tp operator()(const _Tp& __x) const
{return ~__x;}
};
template <>
struct _LIBCPP_TEMPLATE_VIS bit_not<void>
{
template <class _Tp>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_Tp&& __x) const
_NOEXCEPT_(noexcept(~_VSTD::forward<_Tp>(__x)))
-> decltype (~_VSTD::forward<_Tp>(__x))
{ return ~_VSTD::forward<_Tp>(__x); }
typedef void is_transparent;
};
#endif
#if _LIBCPP_STD_VER <= 17 || defined(_LIBCPP_ENABLE_CXX20_REMOVED_NEGATORS)
2010-05-12 03:42:16 +08:00
template <class _Predicate>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 unary_negate
2010-05-12 03:42:16 +08:00
: public unary_function<typename _Predicate::argument_type, bool>
{
_Predicate __pred_;
public:
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
explicit unary_negate(const _Predicate& __pred)
2010-05-12 03:42:16 +08:00
: __pred_(__pred) {}
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const typename _Predicate::argument_type& __x) const
2010-05-12 03:42:16 +08:00
{return !__pred_(__x);}
};
template <class _Predicate>
_LIBCPP_DEPRECATED_IN_CXX17 inline _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
unary_negate<_Predicate>
not1(const _Predicate& __pred) {return unary_negate<_Predicate>(__pred);}
template <class _Predicate>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 binary_negate
2010-05-12 03:42:16 +08:00
: public binary_function<typename _Predicate::first_argument_type,
typename _Predicate::second_argument_type,
bool>
{
_Predicate __pred_;
public:
_LIBCPP_INLINE_VISIBILITY explicit _LIBCPP_CONSTEXPR_AFTER_CXX11
binary_negate(const _Predicate& __pred) : __pred_(__pred) {}
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const typename _Predicate::first_argument_type& __x,
2010-05-12 03:42:16 +08:00
const typename _Predicate::second_argument_type& __y) const
{return !__pred_(__x, __y);}
};
template <class _Predicate>
_LIBCPP_DEPRECATED_IN_CXX17 inline _LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
binary_negate<_Predicate>
not2(const _Predicate& __pred) {return binary_negate<_Predicate>(__pred);}
#endif // _LIBCPP_STD_VER <= 17 || defined(_LIBCPP_ENABLE_CXX20_REMOVED_NEGATORS)
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER <= 14 || defined(_LIBCPP_ENABLE_CXX17_REMOVED_BINDERS)
2010-05-12 03:42:16 +08:00
template <class __Operation>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 binder1st
2010-05-12 03:42:16 +08:00
: public unary_function<typename __Operation::second_argument_type,
typename __Operation::result_type>
{
protected:
__Operation op;
typename __Operation::first_argument_type value;
public:
_LIBCPP_INLINE_VISIBILITY binder1st(const __Operation& __x,
const typename __Operation::first_argument_type __y)
: op(__x), value(__y) {}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(typename __Operation::second_argument_type& __x) const
{return op(value, __x);}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(const typename __Operation::second_argument_type& __x) const
{return op(value, __x);}
};
template <class __Operation, class _Tp>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
binder1st<__Operation>
bind1st(const __Operation& __op, const _Tp& __x)
{return binder1st<__Operation>(__op, __x);}
template <class __Operation>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 binder2nd
2010-05-12 03:42:16 +08:00
: public unary_function<typename __Operation::first_argument_type,
typename __Operation::result_type>
{
protected:
__Operation op;
typename __Operation::second_argument_type value;
public:
_LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
binder2nd(const __Operation& __x, const typename __Operation::second_argument_type __y)
: op(__x), value(__y) {}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
( typename __Operation::first_argument_type& __x) const
{return op(__x, value);}
_LIBCPP_INLINE_VISIBILITY typename __Operation::result_type operator()
(const typename __Operation::first_argument_type& __x) const
{return op(__x, value);}
};
template <class __Operation, class _Tp>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
binder2nd<__Operation>
bind2nd(const __Operation& __op, const _Tp& __x)
{return binder2nd<__Operation>(__op, __x);}
template <class _Arg, class _Result>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 pointer_to_unary_function
: public unary_function<_Arg, _Result>
2010-05-12 03:42:16 +08:00
{
_Result (*__f_)(_Arg);
public:
_LIBCPP_INLINE_VISIBILITY explicit pointer_to_unary_function(_Result (*__f)(_Arg))
: __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg __x) const
{return __f_(__x);}
};
template <class _Arg, class _Result>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
pointer_to_unary_function<_Arg,_Result>
ptr_fun(_Result (*__f)(_Arg))
{return pointer_to_unary_function<_Arg,_Result>(__f);}
template <class _Arg1, class _Arg2, class _Result>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 pointer_to_binary_function
: public binary_function<_Arg1, _Arg2, _Result>
2010-05-12 03:42:16 +08:00
{
_Result (*__f_)(_Arg1, _Arg2);
public:
_LIBCPP_INLINE_VISIBILITY explicit pointer_to_binary_function(_Result (*__f)(_Arg1, _Arg2))
: __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY _Result operator()(_Arg1 __x, _Arg2 __y) const
{return __f_(__x, __y);}
};
template <class _Arg1, class _Arg2, class _Result>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
pointer_to_binary_function<_Arg1,_Arg2,_Result>
ptr_fun(_Result (*__f)(_Arg1,_Arg2))
{return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__f);}
template<class _Sp, class _Tp>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 mem_fun_t
: public unary_function<_Tp*, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)();
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun_t(_Sp (_Tp::*__p)())
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p) const
{return (__p->*__p_)();}
};
template<class _Sp, class _Tp, class _Ap>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 mem_fun1_t
: public binary_function<_Tp*, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap);
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun1_t(_Sp (_Tp::*__p)(_Ap))
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp* __p, _Ap __x) const
{return (__p->*__p_)(__x);}
};
template<class _Sp, class _Tp>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
mem_fun_t<_Sp,_Tp>
mem_fun(_Sp (_Tp::*__f)())
{return mem_fun_t<_Sp,_Tp>(__f);}
template<class _Sp, class _Tp, class _Ap>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
mem_fun1_t<_Sp,_Tp,_Ap>
mem_fun(_Sp (_Tp::*__f)(_Ap))
{return mem_fun1_t<_Sp,_Tp,_Ap>(__f);}
template<class _Sp, class _Tp>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 mem_fun_ref_t
: public unary_function<_Tp, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)();
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun_ref_t(_Sp (_Tp::*__p)())
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p) const
{return (__p.*__p_)();}
};
template<class _Sp, class _Tp, class _Ap>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 mem_fun1_ref_t
: public binary_function<_Tp, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap);
public:
_LIBCPP_INLINE_VISIBILITY explicit mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap))
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(_Tp& __p, _Ap __x) const
{return (__p.*__p_)(__x);}
};
template<class _Sp, class _Tp>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
mem_fun_ref_t<_Sp,_Tp>
mem_fun_ref(_Sp (_Tp::*__f)())
{return mem_fun_ref_t<_Sp,_Tp>(__f);}
template<class _Sp, class _Tp, class _Ap>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
mem_fun1_ref_t<_Sp,_Tp,_Ap>
mem_fun_ref(_Sp (_Tp::*__f)(_Ap))
{return mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);}
template <class _Sp, class _Tp>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 const_mem_fun_t
: public unary_function<const _Tp*, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)() const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_t(_Sp (_Tp::*__p)() const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p) const
{return (__p->*__p_)();}
};
template <class _Sp, class _Tp, class _Ap>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 const_mem_fun1_t
: public binary_function<const _Tp*, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap) const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_t(_Sp (_Tp::*__p)(_Ap) const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp* __p, _Ap __x) const
{return (__p->*__p_)(__x);}
};
template <class _Sp, class _Tp>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
const_mem_fun_t<_Sp,_Tp>
mem_fun(_Sp (_Tp::*__f)() const)
{return const_mem_fun_t<_Sp,_Tp>(__f);}
template <class _Sp, class _Tp, class _Ap>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
const_mem_fun1_t<_Sp,_Tp,_Ap>
mem_fun(_Sp (_Tp::*__f)(_Ap) const)
{return const_mem_fun1_t<_Sp,_Tp,_Ap>(__f);}
template <class _Sp, class _Tp>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 const_mem_fun_ref_t
: public unary_function<_Tp, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)() const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun_ref_t(_Sp (_Tp::*__p)() const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p) const
{return (__p.*__p_)();}
};
template <class _Sp, class _Tp, class _Ap>
class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX11 const_mem_fun1_ref_t
: public binary_function<_Tp, _Ap, _Sp>
2010-05-12 03:42:16 +08:00
{
_Sp (_Tp::*__p_)(_Ap) const;
public:
_LIBCPP_INLINE_VISIBILITY explicit const_mem_fun1_ref_t(_Sp (_Tp::*__p)(_Ap) const)
: __p_(__p) {}
_LIBCPP_INLINE_VISIBILITY _Sp operator()(const _Tp& __p, _Ap __x) const
{return (__p.*__p_)(__x);}
};
template <class _Sp, class _Tp>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
const_mem_fun_ref_t<_Sp,_Tp>
mem_fun_ref(_Sp (_Tp::*__f)() const)
{return const_mem_fun_ref_t<_Sp,_Tp>(__f);}
template <class _Sp, class _Tp, class _Ap>
_LIBCPP_DEPRECATED_IN_CXX11 inline _LIBCPP_INLINE_VISIBILITY
2010-05-12 03:42:16 +08:00
const_mem_fun1_ref_t<_Sp,_Tp,_Ap>
mem_fun_ref(_Sp (_Tp::*__f)(_Ap) const)
{return const_mem_fun1_ref_t<_Sp,_Tp,_Ap>(__f);}
#endif
2010-05-12 03:42:16 +08:00
////////////////////////////////////////////////////////////////////////////////
// MEMFUN
//==============================================================================
2010-05-12 03:42:16 +08:00
template <class _Tp>
class __mem_fn
: public __weak_result_type<_Tp>
{
public:
// types
typedef _Tp type;
private:
type __f_;
public:
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
__mem_fn(type __f) _NOEXCEPT : __f_(__f) {}
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
// invoke
template <class... _ArgTypes>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
typename __invoke_return<type, _ArgTypes...>::type
operator() (_ArgTypes&&... __args) const {
return _VSTD::__invoke(__f_, _VSTD::forward<_ArgTypes>(__args)...);
}
#else
template <class _A0>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return0<type, _A0>::type
operator() (_A0& __a0) const {
return _VSTD::__invoke(__f_, __a0);
}
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
template <class _A0>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return0<type, _A0 const>::type
operator() (_A0 const& __a0) const {
return _VSTD::__invoke(__f_, __a0);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0, _A1>::type
operator() (_A0& __a0, _A1& __a1) const {
return _VSTD::__invoke(__f_, __a0, __a1);
}
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0 const, _A1>::type
operator() (_A0 const& __a0, _A1& __a1) const {
return _VSTD::__invoke(__f_, __a0, __a1);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0, _A1 const>::type
operator() (_A0& __a0, _A1 const& __a1) const {
return _VSTD::__invoke(__f_, __a0, __a1);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0 const, _A1 const>::type
operator() (_A0 const& __a0, _A1 const& __a1) const {
return _VSTD::__invoke(__f_, __a0, __a1);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1, _A2>::type
operator() (_A0& __a0, _A1& __a1, _A2& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
}
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1, _A2>::type
operator() (_A0 const& __a0, _A1& __a1, _A2& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1 const, _A2>::type
operator() (_A0& __a0, _A1 const& __a1, _A2& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1, _A2 const>::type
operator() (_A0& __a0, _A1& __a1, _A2 const& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1 const, _A2>::type
operator() (_A0 const& __a0, _A1 const& __a1, _A2& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1, _A2 const>::type
operator() (_A0 const& __a0, _A1& __a1, _A2 const& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1 const, _A2 const>::type
operator() (_A0& __a0, _A1 const& __a1, _A2 const& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1 const, _A2 const>::type
operator() (_A0 const& __a0, _A1 const& __a1, _A2 const& __a2) const {
return _VSTD::__invoke(__f_, __a0, __a1, __a2);
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
}
#endif
2010-05-12 03:42:16 +08:00
};
template<class _Rp, class _Tp>
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
__mem_fn<_Rp _Tp::*>
mem_fn(_Rp _Tp::* __pm) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return __mem_fn<_Rp _Tp::*>(__pm);
2010-05-12 03:42:16 +08:00
}
////////////////////////////////////////////////////////////////////////////////
// FUNCTION
//==============================================================================
2010-05-12 03:42:16 +08:00
// bad_function_call
class _LIBCPP_EXCEPTION_ABI bad_function_call
2010-05-12 03:42:16 +08:00
: public exception
{
#ifdef _LIBCPP_ABI_BAD_FUNCTION_CALL_KEY_FUNCTION
public:
virtual ~bad_function_call() _NOEXCEPT;
virtual const char* what() const _NOEXCEPT;
#endif
2010-05-12 03:42:16 +08:00
};
_LIBCPP_NORETURN inline _LIBCPP_INLINE_VISIBILITY
void __throw_bad_function_call()
{
#ifndef _LIBCPP_NO_EXCEPTIONS
throw bad_function_call();
#else
_VSTD::abort();
#endif
}
#if defined(_LIBCPP_CXX03_LANG) && !defined(_LIBCPP_DISABLE_DEPRECATION_WARNINGS) && __has_attribute(deprecated)
# define _LIBCPP_DEPRECATED_CXX03_FUNCTION \
__attribute__((deprecated("Using std::function in C++03 is not supported anymore. Please upgrade to C++11 or later, or use a different type")))
#else
# define _LIBCPP_DEPRECATED_CXX03_FUNCTION /* nothing */
#endif
template<class _Fp> class _LIBCPP_DEPRECATED_CXX03_FUNCTION _LIBCPP_TEMPLATE_VIS function; // undefined
2010-05-12 03:42:16 +08:00
namespace __function
{
template<class _Rp>
2010-05-12 03:42:16 +08:00
struct __maybe_derive_from_unary_function
{
};
template<class _Rp, class _A1>
struct __maybe_derive_from_unary_function<_Rp(_A1)>
: public unary_function<_A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template<class _Rp>
2010-05-12 03:42:16 +08:00
struct __maybe_derive_from_binary_function
{
};
template<class _Rp, class _A1, class _A2>
struct __maybe_derive_from_binary_function<_Rp(_A1, _A2)>
: public binary_function<_A1, _A2, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Fp>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Fp const&) { return true; }
template <class _Fp>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Fp* __ptr) { return __ptr; }
template <class _Ret, class _Class>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Ret _Class::*__ptr) { return __ptr; }
template <class _Fp>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(function<_Fp> const& __f) { return !!__f; }
#ifdef _LIBCPP_HAS_EXTENSION_BLOCKS
template <class _Rp, class ..._Args>
_LIBCPP_INLINE_VISIBILITY
bool __not_null(_Rp (^__p)(_Args...)) { return __p; }
#endif
} // namespace __function
#ifndef _LIBCPP_CXX03_LANG
namespace __function {
// __alloc_func holds a functor and an allocator.
template <class _Fp, class _Ap, class _FB> class __alloc_func;
template <class _Fp, class _FB>
class __default_alloc_func;
template <class _Fp, class _Ap, class _Rp, class... _ArgTypes>
class __alloc_func<_Fp, _Ap, _Rp(_ArgTypes...)>
{
__compressed_pair<_Fp, _Ap> __f_;
public:
typedef _LIBCPP_NODEBUG_TYPE _Fp _Target;
typedef _LIBCPP_NODEBUG_TYPE _Ap _Alloc;
_LIBCPP_INLINE_VISIBILITY
const _Target& __target() const { return __f_.first(); }
// WIN32 APIs may define __allocator, so use __get_allocator instead.
_LIBCPP_INLINE_VISIBILITY
const _Alloc& __get_allocator() const { return __f_.second(); }
_LIBCPP_INLINE_VISIBILITY
explicit __alloc_func(_Target&& __f)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)),
_VSTD::forward_as_tuple())
{
}
_LIBCPP_INLINE_VISIBILITY
explicit __alloc_func(const _Target& __f, const _Alloc& __a)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(__f),
_VSTD::forward_as_tuple(__a))
{
}
_LIBCPP_INLINE_VISIBILITY
explicit __alloc_func(const _Target& __f, _Alloc&& __a)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(__f),
_VSTD::forward_as_tuple(_VSTD::move(__a)))
{
}
_LIBCPP_INLINE_VISIBILITY
explicit __alloc_func(_Target&& __f, _Alloc&& __a)
: __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)),
_VSTD::forward_as_tuple(_VSTD::move(__a)))
{
}
_LIBCPP_INLINE_VISIBILITY
_Rp operator()(_ArgTypes&&... __arg)
{
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(__f_.first(),
_VSTD::forward<_ArgTypes>(__arg)...);
}
_LIBCPP_INLINE_VISIBILITY
__alloc_func* __clone() const
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef
typename __rebind_alloc_helper<__alloc_traits, __alloc_func>::type
_AA;
_AA __a(__f_.second());
typedef __allocator_destructor<_AA> _Dp;
unique_ptr<__alloc_func, _Dp> __hold(__a.allocate(1), _Dp(__a, 1));
::new ((void*)__hold.get()) __alloc_func(__f_.first(), _Alloc(__a));
return __hold.release();
}
_LIBCPP_INLINE_VISIBILITY
void destroy() _NOEXCEPT { __f_.~__compressed_pair<_Target, _Alloc>(); }
static void __destroy_and_delete(__alloc_func* __f) {
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename __rebind_alloc_helper<__alloc_traits, __alloc_func>::type
_FunAlloc;
_FunAlloc __a(__f->__get_allocator());
__f->destroy();
__a.deallocate(__f, 1);
}
};
template <class _Fp, class _Rp, class... _ArgTypes>
class __default_alloc_func<_Fp, _Rp(_ArgTypes...)> {
_Fp __f_;
public:
typedef _LIBCPP_NODEBUG_TYPE _Fp _Target;
_LIBCPP_INLINE_VISIBILITY
const _Target& __target() const { return __f_; }
_LIBCPP_INLINE_VISIBILITY
explicit __default_alloc_func(_Target&& __f) : __f_(_VSTD::move(__f)) {}
_LIBCPP_INLINE_VISIBILITY
explicit __default_alloc_func(const _Target& __f) : __f_(__f) {}
_LIBCPP_INLINE_VISIBILITY
_Rp operator()(_ArgTypes&&... __arg) {
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(__f_, _VSTD::forward<_ArgTypes>(__arg)...);
}
_LIBCPP_INLINE_VISIBILITY
__default_alloc_func* __clone() const {
__builtin_new_allocator::__holder_t __hold =
__builtin_new_allocator::__allocate_type<__default_alloc_func>(1);
__default_alloc_func* __res =
::new ((void*)__hold.get()) __default_alloc_func(__f_);
(void)__hold.release();
return __res;
}
_LIBCPP_INLINE_VISIBILITY
void destroy() _NOEXCEPT { __f_.~_Target(); }
static void __destroy_and_delete(__default_alloc_func* __f) {
__f->destroy();
__builtin_new_allocator::__deallocate_type<__default_alloc_func>(__f, 1);
}
};
// __base provides an abstract interface for copyable functors.
template<class _Fp> class _LIBCPP_TEMPLATE_VIS __base;
2010-05-12 03:42:16 +08:00
template<class _Rp, class ..._ArgTypes>
class __base<_Rp(_ArgTypes...)>
2010-05-12 03:42:16 +08:00
{
__base(const __base&);
__base& operator=(const __base&);
public:
_LIBCPP_INLINE_VISIBILITY __base() {}
_LIBCPP_INLINE_VISIBILITY virtual ~__base() {}
2010-05-12 03:42:16 +08:00
virtual __base* __clone() const = 0;
virtual void __clone(__base*) const = 0;
virtual void destroy() _NOEXCEPT = 0;
virtual void destroy_deallocate() _NOEXCEPT = 0;
virtual _Rp operator()(_ArgTypes&& ...) = 0;
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const _NOEXCEPT = 0;
virtual const std::type_info& target_type() const _NOEXCEPT = 0;
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
};
// __func implements __base for a given functor type.
2010-05-12 03:42:16 +08:00
template<class _FD, class _Alloc, class _FB> class __func;
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
class __func<_Fp, _Alloc, _Rp(_ArgTypes...)>
: public __base<_Rp(_ArgTypes...)>
2010-05-12 03:42:16 +08:00
{
__alloc_func<_Fp, _Alloc, _Rp(_ArgTypes...)> __f_;
2010-05-12 03:42:16 +08:00
public:
_LIBCPP_INLINE_VISIBILITY
explicit __func(_Fp&& __f)
: __f_(_VSTD::move(__f)) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(const _Fp& __f, const _Alloc& __a)
: __f_(__f, __a) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(const _Fp& __f, _Alloc&& __a)
: __f_(__f, _VSTD::move(__a)) {}
_LIBCPP_INLINE_VISIBILITY
explicit __func(_Fp&& __f, _Alloc&& __a)
: __f_(_VSTD::move(__f), _VSTD::move(__a)) {}
virtual __base<_Rp(_ArgTypes...)>* __clone() const;
virtual void __clone(__base<_Rp(_ArgTypes...)>*) const;
virtual void destroy() _NOEXCEPT;
virtual void destroy_deallocate() _NOEXCEPT;
virtual _Rp operator()(_ArgTypes&&... __arg);
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(const type_info&) const _NOEXCEPT;
virtual const std::type_info& target_type() const _NOEXCEPT;
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
};
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
__base<_Rp(_ArgTypes...)>*
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::__clone() const
2010-05-12 03:42:16 +08:00
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename __rebind_alloc_helper<__alloc_traits, __func>::type _Ap;
_Ap __a(__f_.__get_allocator());
typedef __allocator_destructor<_Ap> _Dp;
unique_ptr<__func, _Dp> __hold(__a.allocate(1), _Dp(__a, 1));
::new ((void*)__hold.get()) __func(__f_.__target(), _Alloc(__a));
2010-05-12 03:42:16 +08:00
return __hold.release();
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::__clone(__base<_Rp(_ArgTypes...)>* __p) const
2010-05-12 03:42:16 +08:00
{
::new ((void*)__p) __func(__f_.__target(), __f_.__get_allocator());
2010-05-12 03:42:16 +08:00
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::destroy() _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
__f_.destroy();
2010-05-12 03:42:16 +08:00
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::destroy_deallocate() _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename __rebind_alloc_helper<__alloc_traits, __func>::type _Ap;
_Ap __a(__f_.__get_allocator());
__f_.destroy();
2010-05-12 03:42:16 +08:00
__a.deallocate(this, 1);
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
_Rp
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg)
2010-05-12 03:42:16 +08:00
{
return __f_(_VSTD::forward<_ArgTypes>(__arg)...);
2010-05-12 03:42:16 +08:00
}
#ifndef _LIBCPP_NO_RTTI
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
const void*
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::target(const type_info& __ti) const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
if (__ti == typeid(_Fp))
return &__f_.__target();
return nullptr;
2010-05-12 03:42:16 +08:00
}
template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
const std::type_info&
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::target_type() const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return typeid(_Fp);
2010-05-12 03:42:16 +08:00
}
#endif // _LIBCPP_NO_RTTI
// __value_func creates a value-type from a __func.
template <class _Fp> class __value_func;
template <class _Rp, class... _ArgTypes> class __value_func<_Rp(_ArgTypes...)>
{
typename aligned_storage<3 * sizeof(void*)>::type __buf_;
typedef __base<_Rp(_ArgTypes...)> __func;
__func* __f_;
_LIBCPP_NO_CFI static __func* __as_base(void* p)
{
return reinterpret_cast<__func*>(p);
}
public:
_LIBCPP_INLINE_VISIBILITY
__value_func() _NOEXCEPT : __f_(nullptr) {}
template <class _Fp, class _Alloc>
_LIBCPP_INLINE_VISIBILITY __value_func(_Fp&& __f, const _Alloc& __a)
: __f_(nullptr)
{
typedef allocator_traits<_Alloc> __alloc_traits;
typedef __function::__func<_Fp, _Alloc, _Rp(_ArgTypes...)> _Fun;
typedef typename __rebind_alloc_helper<__alloc_traits, _Fun>::type
_FunAlloc;
if (__function::__not_null(__f))
{
_FunAlloc __af(__a);
if (sizeof(_Fun) <= sizeof(__buf_) &&
is_nothrow_copy_constructible<_Fp>::value &&
is_nothrow_copy_constructible<_FunAlloc>::value)
{
__f_ =
::new ((void*)&__buf_) _Fun(_VSTD::move(__f), _Alloc(__af));
}
else
{
typedef __allocator_destructor<_FunAlloc> _Dp;
unique_ptr<__func, _Dp> __hold(__af.allocate(1), _Dp(__af, 1));
::new ((void*)__hold.get()) _Fun(_VSTD::move(__f), _Alloc(__a));
__f_ = __hold.release();
}
}
}
template <class _Fp,
class = typename enable_if<!is_same<typename decay<_Fp>::type, __value_func>::value>::type>
_LIBCPP_INLINE_VISIBILITY explicit __value_func(_Fp&& __f)
: __value_func(_VSTD::forward<_Fp>(__f), allocator<_Fp>()) {}
_LIBCPP_INLINE_VISIBILITY
__value_func(const __value_func& __f)
{
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if ((void*)__f.__f_ == &__f.__buf_)
{
__f_ = __as_base(&__buf_);
__f.__f_->__clone(__f_);
}
else
__f_ = __f.__f_->__clone();
}
_LIBCPP_INLINE_VISIBILITY
__value_func(__value_func&& __f) _NOEXCEPT
{
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if ((void*)__f.__f_ == &__f.__buf_)
{
__f_ = __as_base(&__buf_);
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = nullptr;
}
}
_LIBCPP_INLINE_VISIBILITY
~__value_func()
{
if ((void*)__f_ == &__buf_)
__f_->destroy();
else if (__f_)
__f_->destroy_deallocate();
}
_LIBCPP_INLINE_VISIBILITY
__value_func& operator=(__value_func&& __f)
{
*this = nullptr;
if (__f.__f_ == nullptr)
__f_ = nullptr;
else if ((void*)__f.__f_ == &__f.__buf_)
{
__f_ = __as_base(&__buf_);
__f.__f_->__clone(__f_);
}
else
{
__f_ = __f.__f_;
__f.__f_ = nullptr;
}
return *this;
}
_LIBCPP_INLINE_VISIBILITY
__value_func& operator=(nullptr_t)
{
__func* __f = __f_;
__f_ = nullptr;
if ((void*)__f == &__buf_)
__f->destroy();
else if (__f)
__f->destroy_deallocate();
return *this;
}
_LIBCPP_INLINE_VISIBILITY
_Rp operator()(_ArgTypes&&... __args) const
{
if (__f_ == nullptr)
__throw_bad_function_call();
return (*__f_)(_VSTD::forward<_ArgTypes>(__args)...);
}
_LIBCPP_INLINE_VISIBILITY
void swap(__value_func& __f) _NOEXCEPT
{
if (&__f == this)
return;
if ((void*)__f_ == &__buf_ && (void*)__f.__f_ == &__f.__buf_)
{
typename aligned_storage<sizeof(__buf_)>::type __tempbuf;
__func* __t = __as_base(&__tempbuf);
__f_->__clone(__t);
__f_->destroy();
__f_ = nullptr;
__f.__f_->__clone(__as_base(&__buf_));
__f.__f_->destroy();
__f.__f_ = nullptr;
__f_ = __as_base(&__buf_);
__t->__clone(__as_base(&__f.__buf_));
__t->destroy();
__f.__f_ = __as_base(&__f.__buf_);
}
else if ((void*)__f_ == &__buf_)
{
__f_->__clone(__as_base(&__f.__buf_));
__f_->destroy();
__f_ = __f.__f_;
__f.__f_ = __as_base(&__f.__buf_);
}
else if ((void*)__f.__f_ == &__f.__buf_)
{
__f.__f_->__clone(__as_base(&__buf_));
__f.__f_->destroy();
__f.__f_ = __f_;
__f_ = __as_base(&__buf_);
}
else
_VSTD::swap(__f_, __f.__f_);
}
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_EXPLICIT operator bool() const _NOEXCEPT { return __f_ != nullptr; }
#ifndef _LIBCPP_NO_RTTI
_LIBCPP_INLINE_VISIBILITY
const std::type_info& target_type() const _NOEXCEPT
{
if (__f_ == nullptr)
return typeid(void);
return __f_->target_type();
}
template <typename _Tp>
_LIBCPP_INLINE_VISIBILITY const _Tp* target() const _NOEXCEPT
{
if (__f_ == nullptr)
return nullptr;
return (const _Tp*)__f_->target(typeid(_Tp));
}
#endif // _LIBCPP_NO_RTTI
};
// Storage for a functor object, to be used with __policy to manage copy and
// destruction.
union __policy_storage
{
mutable char __small[sizeof(void*) * 2];
void* __large;
};
// True if _Fun can safely be held in __policy_storage.__small.
template <typename _Fun>
struct __use_small_storage
: public integral_constant<
bool, sizeof(_Fun) <= sizeof(__policy_storage) &&
_LIBCPP_ALIGNOF(_Fun) <= _LIBCPP_ALIGNOF(__policy_storage) &&
is_trivially_copy_constructible<_Fun>::value &&
is_trivially_destructible<_Fun>::value> {};
// Policy contains information about how to copy, destroy, and move the
// underlying functor. You can think of it as a vtable of sorts.
struct __policy
{
// Used to copy or destroy __large values. null for trivial objects.
void* (*const __clone)(const void*);
void (*const __destroy)(void*);
// True if this is the null policy (no value).
const bool __is_null;
// The target type. May be null if RTTI is disabled.
const std::type_info* const __type_info;
// Returns a pointer to a static policy object suitable for the functor
// type.
template <typename _Fun>
_LIBCPP_INLINE_VISIBILITY static const __policy* __create()
{
return __choose_policy<_Fun>(__use_small_storage<_Fun>());
}
_LIBCPP_INLINE_VISIBILITY
static const __policy* __create_empty()
{
static const _LIBCPP_CONSTEXPR __policy __policy_ = {nullptr, nullptr,
true,
#ifndef _LIBCPP_NO_RTTI
&typeid(void)
#else
nullptr
#endif
};
return &__policy_;
}
private:
template <typename _Fun> static void* __large_clone(const void* __s)
{
const _Fun* __f = static_cast<const _Fun*>(__s);
return __f->__clone();
}
template <typename _Fun>
static void __large_destroy(void* __s) {
_Fun::__destroy_and_delete(static_cast<_Fun*>(__s));
}
template <typename _Fun>
_LIBCPP_INLINE_VISIBILITY static const __policy*
__choose_policy(/* is_small = */ false_type) {
static const _LIBCPP_CONSTEXPR __policy __policy_ = {
&__large_clone<_Fun>, &__large_destroy<_Fun>, false,
#ifndef _LIBCPP_NO_RTTI
&typeid(typename _Fun::_Target)
#else
nullptr
#endif
};
return &__policy_;
}
template <typename _Fun>
_LIBCPP_INLINE_VISIBILITY static const __policy*
__choose_policy(/* is_small = */ true_type)
{
static const _LIBCPP_CONSTEXPR __policy __policy_ = {
nullptr, nullptr, false,
#ifndef _LIBCPP_NO_RTTI
&typeid(typename _Fun::_Target)
#else
nullptr
#endif
};
return &__policy_;
}
};
// Used to choose between perfect forwarding or pass-by-value. Pass-by-value is
// faster for types that can be passed in registers.
template <typename _Tp>
using __fast_forward =
typename conditional<is_scalar<_Tp>::value, _Tp, _Tp&&>::type;
// __policy_invoker calls an instance of __alloc_func held in __policy_storage.
template <class _Fp> struct __policy_invoker;
template <class _Rp, class... _ArgTypes>
struct __policy_invoker<_Rp(_ArgTypes...)>
{
typedef _Rp (*__Call)(const __policy_storage*,
__fast_forward<_ArgTypes>...);
__Call __call_;
// Creates an invoker that throws bad_function_call.
_LIBCPP_INLINE_VISIBILITY
__policy_invoker() : __call_(&__call_empty) {}
// Creates an invoker that calls the given instance of __func.
template <typename _Fun>
_LIBCPP_INLINE_VISIBILITY static __policy_invoker __create()
{
return __policy_invoker(&__call_impl<_Fun>);
}
private:
_LIBCPP_INLINE_VISIBILITY
explicit __policy_invoker(__Call __c) : __call_(__c) {}
static _Rp __call_empty(const __policy_storage*,
__fast_forward<_ArgTypes>...)
{
__throw_bad_function_call();
}
template <typename _Fun>
static _Rp __call_impl(const __policy_storage* __buf,
__fast_forward<_ArgTypes>... __args)
{
_Fun* __f = reinterpret_cast<_Fun*>(__use_small_storage<_Fun>::value
? &__buf->__small
: __buf->__large);
return (*__f)(_VSTD::forward<_ArgTypes>(__args)...);
}
};
// __policy_func uses a __policy and __policy_invoker to create a type-erased,
// copyable functor.
template <class _Fp> class __policy_func;
template <class _Rp, class... _ArgTypes> class __policy_func<_Rp(_ArgTypes...)>
{
// Inline storage for small objects.
__policy_storage __buf_;
// Calls the value stored in __buf_. This could technically be part of
// policy, but storing it here eliminates a level of indirection inside
// operator().
typedef __function::__policy_invoker<_Rp(_ArgTypes...)> __invoker;
__invoker __invoker_;
// The policy that describes how to move / copy / destroy __buf_. Never
// null, even if the function is empty.
const __policy* __policy_;
public:
_LIBCPP_INLINE_VISIBILITY
__policy_func() : __policy_(__policy::__create_empty()) {}
template <class _Fp, class _Alloc>
_LIBCPP_INLINE_VISIBILITY __policy_func(_Fp&& __f, const _Alloc& __a)
: __policy_(__policy::__create_empty())
{
typedef __alloc_func<_Fp, _Alloc, _Rp(_ArgTypes...)> _Fun;
typedef allocator_traits<_Alloc> __alloc_traits;
typedef typename __rebind_alloc_helper<__alloc_traits, _Fun>::type
_FunAlloc;
if (__function::__not_null(__f))
{
__invoker_ = __invoker::template __create<_Fun>();
__policy_ = __policy::__create<_Fun>();
_FunAlloc __af(__a);
if (__use_small_storage<_Fun>())
{
::new ((void*)&__buf_.__small)
_Fun(_VSTD::move(__f), _Alloc(__af));
}
else
{
typedef __allocator_destructor<_FunAlloc> _Dp;
unique_ptr<_Fun, _Dp> __hold(__af.allocate(1), _Dp(__af, 1));
::new ((void*)__hold.get())
_Fun(_VSTD::move(__f), _Alloc(__af));
__buf_.__large = __hold.release();
}
}
}
template <class _Fp, class = typename enable_if<!is_same<typename decay<_Fp>::type, __policy_func>::value>::type>
_LIBCPP_INLINE_VISIBILITY explicit __policy_func(_Fp&& __f)
: __policy_(__policy::__create_empty()) {
typedef __default_alloc_func<_Fp, _Rp(_ArgTypes...)> _Fun;
if (__function::__not_null(__f)) {
__invoker_ = __invoker::template __create<_Fun>();
__policy_ = __policy::__create<_Fun>();
if (__use_small_storage<_Fun>()) {
::new ((void*)&__buf_.__small) _Fun(_VSTD::move(__f));
} else {
__builtin_new_allocator::__holder_t __hold =
__builtin_new_allocator::__allocate_type<_Fun>(1);
__buf_.__large = ::new ((void*)__hold.get()) _Fun(_VSTD::move(__f));
(void)__hold.release();
}
}
}
_LIBCPP_INLINE_VISIBILITY
__policy_func(const __policy_func& __f)
: __buf_(__f.__buf_), __invoker_(__f.__invoker_),
__policy_(__f.__policy_)
{
if (__policy_->__clone)
__buf_.__large = __policy_->__clone(__f.__buf_.__large);
}
_LIBCPP_INLINE_VISIBILITY
__policy_func(__policy_func&& __f)
: __buf_(__f.__buf_), __invoker_(__f.__invoker_),
__policy_(__f.__policy_)
{
if (__policy_->__destroy)
{
__f.__policy_ = __policy::__create_empty();
__f.__invoker_ = __invoker();
}
}
_LIBCPP_INLINE_VISIBILITY
~__policy_func()
{
if (__policy_->__destroy)
__policy_->__destroy(__buf_.__large);
}
_LIBCPP_INLINE_VISIBILITY
__policy_func& operator=(__policy_func&& __f)
{
*this = nullptr;
__buf_ = __f.__buf_;
__invoker_ = __f.__invoker_;
__policy_ = __f.__policy_;
__f.__policy_ = __policy::__create_empty();
__f.__invoker_ = __invoker();
return *this;
}
_LIBCPP_INLINE_VISIBILITY
__policy_func& operator=(nullptr_t)
{
const __policy* __p = __policy_;
__policy_ = __policy::__create_empty();
__invoker_ = __invoker();
if (__p->__destroy)
__p->__destroy(__buf_.__large);
return *this;
}
_LIBCPP_INLINE_VISIBILITY
_Rp operator()(_ArgTypes&&... __args) const
{
return __invoker_.__call_(_VSTD::addressof(__buf_),
_VSTD::forward<_ArgTypes>(__args)...);
}
_LIBCPP_INLINE_VISIBILITY
void swap(__policy_func& __f)
{
_VSTD::swap(__invoker_, __f.__invoker_);
_VSTD::swap(__policy_, __f.__policy_);
_VSTD::swap(__buf_, __f.__buf_);
}
_LIBCPP_INLINE_VISIBILITY
explicit operator bool() const _NOEXCEPT
{
return !__policy_->__is_null;
}
#ifndef _LIBCPP_NO_RTTI
_LIBCPP_INLINE_VISIBILITY
const std::type_info& target_type() const _NOEXCEPT
{
return *__policy_->__type_info;
}
template <typename _Tp>
_LIBCPP_INLINE_VISIBILITY const _Tp* target() const _NOEXCEPT
{
if (__policy_->__is_null || typeid(_Tp) != *__policy_->__type_info)
return nullptr;
if (__policy_->__clone) // Out of line storage.
return reinterpret_cast<const _Tp*>(__buf_.__large);
else
return reinterpret_cast<const _Tp*>(&__buf_.__small);
}
#endif // _LIBCPP_NO_RTTI
};
#if defined(_LIBCPP_HAS_BLOCKS_RUNTIME) && !defined(_LIBCPP_HAS_OBJC_ARC)
extern "C" void *_Block_copy(const void *);
extern "C" void _Block_release(const void *);
template<class _Rp1, class ..._ArgTypes1, class _Alloc, class _Rp, class ..._ArgTypes>
class __func<_Rp1(^)(_ArgTypes1...), _Alloc, _Rp(_ArgTypes...)>
: public __base<_Rp(_ArgTypes...)>
{
typedef _Rp1(^__block_type)(_ArgTypes1...);
__block_type __f_;
public:
_LIBCPP_INLINE_VISIBILITY
explicit __func(__block_type const& __f)
: __f_(reinterpret_cast<__block_type>(__f ? _Block_copy(__f) : nullptr))
{ }
// [TODO] add && to save on a retain
_LIBCPP_INLINE_VISIBILITY
explicit __func(__block_type __f, const _Alloc& /* unused */)
: __f_(reinterpret_cast<__block_type>(__f ? _Block_copy(__f) : nullptr))
{ }
virtual __base<_Rp(_ArgTypes...)>* __clone() const {
_LIBCPP_ASSERT(false,
"Block pointers are just pointers, so they should always fit into "
"std::function's small buffer optimization. This function should "
"never be invoked.");
return nullptr;
}
virtual void __clone(__base<_Rp(_ArgTypes...)>* __p) const {
::new ((void*)__p) __func(__f_);
}
virtual void destroy() _NOEXCEPT {
if (__f_)
_Block_release(__f_);
__f_ = 0;
}
virtual void destroy_deallocate() _NOEXCEPT {
_LIBCPP_ASSERT(false,
"Block pointers are just pointers, so they should always fit into "
"std::function's small buffer optimization. This function should "
"never be invoked.");
}
virtual _Rp operator()(_ArgTypes&& ... __arg) {
return _VSTD::__invoke(__f_, _VSTD::forward<_ArgTypes>(__arg)...);
}
#ifndef _LIBCPP_NO_RTTI
virtual const void* target(type_info const& __ti) const _NOEXCEPT {
if (__ti == typeid(__func::__block_type))
return &__f_;
return (const void*)nullptr;
}
virtual const std::type_info& target_type() const _NOEXCEPT {
return typeid(__func::__block_type);
}
#endif // _LIBCPP_NO_RTTI
};
#endif // _LIBCPP_HAS_EXTENSION_BLOCKS && !_LIBCPP_HAS_OBJC_ARC
2010-05-12 03:42:16 +08:00
} // __function
template<class _Rp, class ..._ArgTypes>
class _LIBCPP_TEMPLATE_VIS function<_Rp(_ArgTypes...)>
: public __function::__maybe_derive_from_unary_function<_Rp(_ArgTypes...)>,
public __function::__maybe_derive_from_binary_function<_Rp(_ArgTypes...)>
2010-05-12 03:42:16 +08:00
{
#ifndef _LIBCPP_ABI_OPTIMIZED_FUNCTION
typedef __function::__value_func<_Rp(_ArgTypes...)> __func;
#else
typedef __function::__policy_func<_Rp(_ArgTypes...)> __func;
#endif
2010-05-12 03:42:16 +08:00
__func __f_;
template <class _Fp, bool = _And<
_IsNotSame<__uncvref_t<_Fp>, function>,
__invokable<_Fp, _ArgTypes...>
>::value>
struct __callable;
template <class _Fp>
struct __callable<_Fp, true>
{
static const bool value = is_void<_Rp>::value ||
__is_core_convertible<typename __invoke_of<_Fp, _ArgTypes...>::type,
_Rp>::value;
};
template <class _Fp>
struct __callable<_Fp, false>
{
static const bool value = false;
};
template <class _Fp>
using _EnableIfLValueCallable = typename enable_if<__callable<_Fp&>::value>::type;
2010-05-12 03:42:16 +08:00
public:
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
// construct/copy/destroy:
_LIBCPP_INLINE_VISIBILITY
function() _NOEXCEPT { }
_LIBCPP_INLINE_VISIBILITY
function(nullptr_t) _NOEXCEPT {}
2010-05-12 03:42:16 +08:00
function(const function&);
function(function&&) _NOEXCEPT;
template<class _Fp, class = _EnableIfLValueCallable<_Fp>>
function(_Fp);
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER <= 14
template<class _Alloc>
_LIBCPP_INLINE_VISIBILITY
function(allocator_arg_t, const _Alloc&) _NOEXCEPT {}
template<class _Alloc>
_LIBCPP_INLINE_VISIBILITY
function(allocator_arg_t, const _Alloc&, nullptr_t) _NOEXCEPT {}
template<class _Alloc>
function(allocator_arg_t, const _Alloc&, const function&);
template<class _Alloc>
function(allocator_arg_t, const _Alloc&, function&&);
template<class _Fp, class _Alloc, class = _EnableIfLValueCallable<_Fp>>
function(allocator_arg_t, const _Alloc& __a, _Fp __f);
#endif
2010-05-12 03:42:16 +08:00
function& operator=(const function&);
function& operator=(function&&) _NOEXCEPT;
function& operator=(nullptr_t) _NOEXCEPT;
template<class _Fp, class = _EnableIfLValueCallable<typename decay<_Fp>::type>>
function& operator=(_Fp&&);
2010-05-12 03:42:16 +08:00
~function();
// function modifiers:
void swap(function&) _NOEXCEPT;
#if _LIBCPP_STD_VER <= 14
template<class _Fp, class _Alloc>
_LIBCPP_INLINE_VISIBILITY
void assign(_Fp&& __f, const _Alloc& __a)
{function(allocator_arg, __a, _VSTD::forward<_Fp>(__f)).swap(*this);}
#endif
2010-05-12 03:42:16 +08:00
// function capacity:
_LIBCPP_INLINE_VISIBILITY
_LIBCPP_EXPLICIT operator bool() const _NOEXCEPT {
return static_cast<bool>(__f_);
}
2010-05-12 03:42:16 +08:00
// deleted overloads close possible hole in the type system
template<class _R2, class... _ArgTypes2>
bool operator==(const function<_R2(_ArgTypes2...)>&) const = delete;
2010-05-12 03:42:16 +08:00
template<class _R2, class... _ArgTypes2>
bool operator!=(const function<_R2(_ArgTypes2...)>&) const = delete;
2010-05-12 03:42:16 +08:00
public:
// function invocation:
_Rp operator()(_ArgTypes...) const;
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_NO_RTTI
// function target access:
const std::type_info& target_type() const _NOEXCEPT;
template <typename _Tp> _Tp* target() _NOEXCEPT;
template <typename _Tp> const _Tp* target() const _NOEXCEPT;
#endif // _LIBCPP_NO_RTTI
2010-05-12 03:42:16 +08:00
};
#ifndef _LIBCPP_HAS_NO_DEDUCTION_GUIDES
template<class _Rp, class ..._Ap>
function(_Rp(*)(_Ap...)) -> function<_Rp(_Ap...)>;
template<class _Fp>
struct __strip_signature;
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...)> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) volatile> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const volatile> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) &> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const &> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) volatile &> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const volatile &> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) volatile noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const volatile noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) & noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const & noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) volatile & noexcept> { using type = _Rp(_Ap...); };
template<class _Rp, class _Gp, class ..._Ap>
struct __strip_signature<_Rp (_Gp::*) (_Ap...) const volatile & noexcept> { using type = _Rp(_Ap...); };
template<class _Fp, class _Stripped = typename __strip_signature<decltype(&_Fp::operator())>::type>
function(_Fp) -> function<_Stripped>;
#endif // !_LIBCPP_HAS_NO_DEDUCTION_GUIDES
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>::function(const function& __f) : __f_(__f.__f_) {}
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER <= 14
template<class _Rp, class ..._ArgTypes>
template <class _Alloc>
function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&,
const function& __f) : __f_(__f.__f_) {}
#endif
template <class _Rp, class... _ArgTypes>
function<_Rp(_ArgTypes...)>::function(function&& __f) _NOEXCEPT
: __f_(_VSTD::move(__f.__f_)) {}
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER <= 14
template<class _Rp, class ..._ArgTypes>
template <class _Alloc>
function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc&,
function&& __f)
: __f_(_VSTD::move(__f.__f_)) {}
#endif
template <class _Rp, class... _ArgTypes>
template <class _Fp, class>
function<_Rp(_ArgTypes...)>::function(_Fp __f) : __f_(_VSTD::move(__f)) {}
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER <= 14
template <class _Rp, class... _ArgTypes>
template <class _Fp, class _Alloc, class>
function<_Rp(_ArgTypes...)>::function(allocator_arg_t, const _Alloc& __a,
_Fp __f)
: __f_(_VSTD::move(__f), __a) {}
#endif
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(const function& __f)
2010-05-12 03:42:16 +08:00
{
function(__f).swap(*this);
return *this;
}
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(function&& __f) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
__f_ = _VSTD::move(__f.__f_);
return *this;
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(nullptr_t) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
__f_ = nullptr;
return *this;
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
template <class _Fp, class>
function<_Rp(_ArgTypes...)>&
function<_Rp(_ArgTypes...)>::operator=(_Fp&& __f)
2010-05-12 03:42:16 +08:00
{
function(_VSTD::forward<_Fp>(__f)).swap(*this);
2010-05-12 03:42:16 +08:00
return *this;
}
template<class _Rp, class ..._ArgTypes>
function<_Rp(_ArgTypes...)>::~function() {}
2010-05-12 03:42:16 +08:00
template<class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
void
function<_Rp(_ArgTypes...)>::swap(function& __f) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
__f_.swap(__f.__f_);
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
_Rp
function<_Rp(_ArgTypes...)>::operator()(_ArgTypes... __arg) const
2010-05-12 03:42:16 +08:00
{
return __f_(_VSTD::forward<_ArgTypes>(__arg)...);
2010-05-12 03:42:16 +08:00
}
#ifndef _LIBCPP_NO_RTTI
template<class _Rp, class ..._ArgTypes>
2010-05-12 03:42:16 +08:00
const std::type_info&
function<_Rp(_ArgTypes...)>::target_type() const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return __f_.target_type();
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
template <typename _Tp>
_Tp*
function<_Rp(_ArgTypes...)>::target() _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return (_Tp*)(__f_.template target<_Tp>());
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class ..._ArgTypes>
template <typename _Tp>
const _Tp*
function<_Rp(_ArgTypes...)>::target() const _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return __f_.template target<_Tp>();
2010-05-12 03:42:16 +08:00
}
#endif // _LIBCPP_NO_RTTI
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(const function<_Rp(_ArgTypes...)>& __f, nullptr_t) _NOEXCEPT {return !__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator==(nullptr_t, const function<_Rp(_ArgTypes...)>& __f) _NOEXCEPT {return !__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(const function<_Rp(_ArgTypes...)>& __f, nullptr_t) _NOEXCEPT {return (bool)__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
bool
operator!=(nullptr_t, const function<_Rp(_ArgTypes...)>& __f) _NOEXCEPT {return (bool)__f;}
2010-05-12 03:42:16 +08:00
template <class _Rp, class... _ArgTypes>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
void
swap(function<_Rp(_ArgTypes...)>& __x, function<_Rp(_ArgTypes...)>& __y) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{return __x.swap(__y);}
#else // _LIBCPP_CXX03_LANG
#include <__functional_03>
#endif
////////////////////////////////////////////////////////////////////////////////
// BIND
//==============================================================================
2010-05-12 03:42:16 +08:00
template<class _Tp> struct __is_bind_expression : public false_type {};
template<class _Tp> struct _LIBCPP_TEMPLATE_VIS is_bind_expression
2010-05-12 03:42:16 +08:00
: public __is_bind_expression<typename remove_cv<_Tp>::type> {};
#if _LIBCPP_STD_VER > 14
template <class _Tp>
_LIBCPP_INLINE_VAR constexpr size_t is_bind_expression_v = is_bind_expression<_Tp>::value;
#endif
2010-05-12 03:42:16 +08:00
template<class _Tp> struct __is_placeholder : public integral_constant<int, 0> {};
template<class _Tp> struct _LIBCPP_TEMPLATE_VIS is_placeholder
2010-05-12 03:42:16 +08:00
: public __is_placeholder<typename remove_cv<_Tp>::type> {};
#if _LIBCPP_STD_VER > 14
template <class _Tp>
_LIBCPP_INLINE_VAR constexpr size_t is_placeholder_v = is_placeholder<_Tp>::value;
#endif
2010-05-12 03:42:16 +08:00
namespace placeholders
{
template <int _Np> struct __ph {};
2010-05-12 03:42:16 +08:00
#if defined(_LIBCPP_CXX03_LANG) || defined(_LIBCPP_BUILDING_LIBRARY)
_LIBCPP_FUNC_VIS extern const __ph<1> _1;
_LIBCPP_FUNC_VIS extern const __ph<2> _2;
_LIBCPP_FUNC_VIS extern const __ph<3> _3;
_LIBCPP_FUNC_VIS extern const __ph<4> _4;
_LIBCPP_FUNC_VIS extern const __ph<5> _5;
_LIBCPP_FUNC_VIS extern const __ph<6> _6;
_LIBCPP_FUNC_VIS extern const __ph<7> _7;
_LIBCPP_FUNC_VIS extern const __ph<8> _8;
_LIBCPP_FUNC_VIS extern const __ph<9> _9;
_LIBCPP_FUNC_VIS extern const __ph<10> _10;
#else
/* _LIBCPP_INLINE_VAR */ constexpr __ph<1> _1{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<2> _2{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<3> _3{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<4> _4{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<5> _5{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<6> _6{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<7> _7{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<8> _8{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<9> _9{};
/* _LIBCPP_INLINE_VAR */ constexpr __ph<10> _10{};
#endif // defined(_LIBCPP_CXX03_LANG) || defined(_LIBCPP_BUILDING_LIBRARY)
2010-05-12 03:42:16 +08:00
} // placeholders
template<int _Np>
struct __is_placeholder<placeholders::__ph<_Np> >
: public integral_constant<int, _Np> {};
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
template <class _Tp, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
_Tp&
__mu(reference_wrapper<_Tp> __t, _Uj&)
{
return __t.get();
}
template <class _Ti, class ..._Uj, size_t ..._Indx>
inline _LIBCPP_INLINE_VISIBILITY
typename __invoke_of<_Ti&, _Uj...>::type
__mu_expand(_Ti& __ti, tuple<_Uj...>& __uj, __tuple_indices<_Indx...>)
2010-05-12 03:42:16 +08:00
{
return __ti(_VSTD::forward<_Uj>(_VSTD::get<_Indx>(__uj))...);
2010-05-12 03:42:16 +08:00
}
template <class _Ti, class ..._Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename _EnableIf
2010-05-12 03:42:16 +08:00
<
is_bind_expression<_Ti>::value,
__invoke_of<_Ti&, _Uj...>
2010-05-12 03:42:16 +08:00
>::type
__mu(_Ti& __ti, tuple<_Uj...>& __uj)
{
typedef typename __make_tuple_indices<sizeof...(_Uj)>::type __indices;
return _VSTD::__mu_expand(__ti, __uj, __indices());
2010-05-12 03:42:16 +08:00
}
template <bool IsPh, class _Ti, class _Uj>
struct __mu_return2 {};
template <class _Ti, class _Uj>
struct __mu_return2<true, _Ti, _Uj>
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1, _Uj>::type type;
};
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
0 < is_placeholder<_Ti>::value,
typename __mu_return2<0 < is_placeholder<_Ti>::value, _Ti, _Uj>::type
>::type
__mu(_Ti&, _Uj& __uj)
{
const size_t _Indx = is_placeholder<_Ti>::value - 1;
return _VSTD::forward<typename tuple_element<_Indx, _Uj>::type>(_VSTD::get<_Indx>(__uj));
2010-05-12 03:42:16 +08:00
}
template <class _Ti, class _Uj>
inline _LIBCPP_INLINE_VISIBILITY
typename enable_if
<
!is_bind_expression<_Ti>::value &&
is_placeholder<_Ti>::value == 0 &&
!__is_reference_wrapper<_Ti>::value,
_Ti&
>::type
__mu(_Ti& __ti, _Uj&)
2010-05-12 03:42:16 +08:00
{
return __ti;
}
template <class _Ti, bool IsReferenceWrapper, bool IsBindEx, bool IsPh,
class _TupleUj>
struct __mu_return_impl;
2010-05-12 03:42:16 +08:00
template <bool _Invokable, class _Ti, class ..._Uj>
struct __mu_return_invokable // false
{
typedef __nat type;
};
2010-05-12 03:42:16 +08:00
template <class _Ti, class ..._Uj>
struct __mu_return_invokable<true, _Ti, _Uj...>
2010-05-12 03:42:16 +08:00
{
typedef typename __invoke_of<_Ti&, _Uj...>::type type;
2010-05-12 03:42:16 +08:00
};
template <class _Ti, class ..._Uj>
struct __mu_return_impl<_Ti, false, true, false, tuple<_Uj...> >
: public __mu_return_invokable<__invokable<_Ti&, _Uj...>::value, _Ti, _Uj...>
{
};
2010-05-12 03:42:16 +08:00
template <class _Ti, class _TupleUj>
struct __mu_return_impl<_Ti, false, false, true, _TupleUj>
2010-05-12 03:42:16 +08:00
{
typedef typename tuple_element<is_placeholder<_Ti>::value - 1,
_TupleUj>::type&& type;
};
template <class _Ti, class _TupleUj>
struct __mu_return_impl<_Ti, true, false, false, _TupleUj>
{
typedef typename _Ti::type& type;
};
template <class _Ti, class _TupleUj>
struct __mu_return_impl<_Ti, false, false, false, _TupleUj>
2010-05-12 03:42:16 +08:00
{
typedef _Ti& type;
};
template <class _Ti, class _TupleUj>
struct __mu_return
: public __mu_return_impl<_Ti,
__is_reference_wrapper<_Ti>::value,
is_bind_expression<_Ti>::value,
0 < is_placeholder<_Ti>::value &&
is_placeholder<_Ti>::value <= tuple_size<_TupleUj>::value,
_TupleUj>
2010-05-12 03:42:16 +08:00
{
};
template <class _Fp, class _BoundArgs, class _TupleUj>
struct __is_valid_bind_return
{
static const bool value = false;
};
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __is_valid_bind_return<_Fp, tuple<_BoundArgs...>, _TupleUj>
{
static const bool value = __invokable<_Fp,
typename __mu_return<_BoundArgs, _TupleUj>::type...>::value;
};
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __is_valid_bind_return<_Fp, const tuple<_BoundArgs...>, _TupleUj>
{
static const bool value = __invokable<_Fp,
typename __mu_return<const _BoundArgs, _TupleUj>::type...>::value;
};
template <class _Fp, class _BoundArgs, class _TupleUj,
bool = __is_valid_bind_return<_Fp, _BoundArgs, _TupleUj>::value>
2010-05-12 03:42:16 +08:00
struct __bind_return;
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_Fp, tuple<_BoundArgs...>, _TupleUj, true>
2010-05-12 03:42:16 +08:00
{
typedef typename __invoke_of
2010-05-12 03:42:16 +08:00
<
_Fp&,
2010-05-12 03:42:16 +08:00
typename __mu_return
<
_BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _Fp, class ..._BoundArgs, class _TupleUj>
struct __bind_return<_Fp, const tuple<_BoundArgs...>, _TupleUj, true>
2010-05-12 03:42:16 +08:00
{
typedef typename __invoke_of
2010-05-12 03:42:16 +08:00
<
_Fp&,
2010-05-12 03:42:16 +08:00
typename __mu_return
<
const _BoundArgs,
_TupleUj
>::type...
>::type type;
};
template <class _Fp, class _BoundArgs, size_t ..._Indx, class _Args>
2010-05-12 03:42:16 +08:00
inline _LIBCPP_INLINE_VISIBILITY
typename __bind_return<_Fp, _BoundArgs, _Args>::type
__apply_functor(_Fp& __f, _BoundArgs& __bound_args, __tuple_indices<_Indx...>,
2010-05-12 03:42:16 +08:00
_Args&& __args)
{
return _VSTD::__invoke(__f, _VSTD::__mu(_VSTD::get<_Indx>(__bound_args), __args)...);
2010-05-12 03:42:16 +08:00
}
template<class _Fp, class ..._BoundArgs>
2010-05-12 03:42:16 +08:00
class __bind
: public __weak_result_type<typename decay<_Fp>::type>
2010-05-12 03:42:16 +08:00
{
protected:
typedef typename decay<_Fp>::type _Fd;
typedef tuple<typename decay<_BoundArgs>::type...> _Td;
private:
_Fd __f_;
_Td __bound_args_;
2010-05-12 03:42:16 +08:00
typedef typename __make_tuple_indices<sizeof...(_BoundArgs)>::type __indices;
public:
template <class _Gp, class ..._BA,
class = typename enable_if
<
is_constructible<_Fd, _Gp>::value &&
!is_same<typename remove_reference<_Gp>::type,
__bind>::value
>::type>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
explicit __bind(_Gp&& __f, _BA&& ...__bound_args)
: __f_(_VSTD::forward<_Gp>(__f)),
__bound_args_(_VSTD::forward<_BA>(__bound_args)...) {}
2010-05-12 03:42:16 +08:00
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
typename __bind_return<_Fd, _Td, tuple<_Args&&...> >::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args)
{
return _VSTD::__apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(_VSTD::forward<_Args>(__args)...));
2010-05-12 03:42:16 +08:00
}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
typename __bind_return<const _Fd, const _Td, tuple<_Args&&...> >::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args) const
{
return _VSTD::__apply_functor(__f_, __bound_args_, __indices(),
tuple<_Args&&...>(_VSTD::forward<_Args>(__args)...));
2010-05-12 03:42:16 +08:00
}
};
template<class _Fp, class ..._BoundArgs>
struct __is_bind_expression<__bind<_Fp, _BoundArgs...> > : public true_type {};
2010-05-12 03:42:16 +08:00
template<class _Rp, class _Fp, class ..._BoundArgs>
2010-05-12 03:42:16 +08:00
class __bind_r
: public __bind<_Fp, _BoundArgs...>
2010-05-12 03:42:16 +08:00
{
typedef __bind<_Fp, _BoundArgs...> base;
typedef typename base::_Fd _Fd;
typedef typename base::_Td _Td;
2010-05-12 03:42:16 +08:00
public:
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
template <class _Gp, class ..._BA,
class = typename enable_if
<
is_constructible<_Fd, _Gp>::value &&
!is_same<typename remove_reference<_Gp>::type,
__bind_r>::value
>::type>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
explicit __bind_r(_Gp&& __f, _BA&& ...__bound_args)
: base(_VSTD::forward<_Gp>(__f),
_VSTD::forward<_BA>(__bound_args)...) {}
2010-05-12 03:42:16 +08:00
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
typename enable_if
<
is_convertible<typename __bind_return<_Fd, _Td, tuple<_Args&&...> >::type,
result_type>::value || is_void<_Rp>::value,
result_type
>::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args)
{
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(static_cast<base&>(*this), _VSTD::forward<_Args>(__args)...);
2010-05-12 03:42:16 +08:00
}
template <class ..._Args>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
typename enable_if
<
is_convertible<typename __bind_return<const _Fd, const _Td, tuple<_Args&&...> >::type,
result_type>::value || is_void<_Rp>::value,
result_type
>::type
2010-05-12 03:42:16 +08:00
operator()(_Args&& ...__args) const
{
typedef __invoke_void_return_wrapper<_Rp> _Invoker;
return _Invoker::__call(static_cast<base const&>(*this), _VSTD::forward<_Args>(__args)...);
2010-05-12 03:42:16 +08:00
}
};
template<class _Rp, class _Fp, class ..._BoundArgs>
struct __is_bind_expression<__bind_r<_Rp, _Fp, _BoundArgs...> > : public true_type {};
2010-05-12 03:42:16 +08:00
template<class _Fp, class ..._BoundArgs>
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
__bind<_Fp, _BoundArgs...>
bind(_Fp&& __f, _BoundArgs&&... __bound_args)
2010-05-12 03:42:16 +08:00
{
typedef __bind<_Fp, _BoundArgs...> type;
return type(_VSTD::forward<_Fp>(__f), _VSTD::forward<_BoundArgs>(__bound_args)...);
2010-05-12 03:42:16 +08:00
}
template<class _Rp, class _Fp, class ..._BoundArgs>
inline _LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
__bind_r<_Rp, _Fp, _BoundArgs...>
bind(_Fp&& __f, _BoundArgs&&... __bound_args)
2010-05-12 03:42:16 +08:00
{
typedef __bind_r<_Rp, _Fp, _BoundArgs...> type;
return type(_VSTD::forward<_Fp>(__f), _VSTD::forward<_BoundArgs>(__bound_args)...);
2010-05-12 03:42:16 +08:00
}
#endif // _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER > 14
template<class _Op, class _Tuple,
class _Idxs = typename __make_tuple_indices<tuple_size<_Tuple>::value>::type>
struct __perfect_forward_impl;
template<class _Op, class... _Bound, size_t... _Idxs>
struct __perfect_forward_impl<_Op, __tuple_types<_Bound...>, __tuple_indices<_Idxs...>>
{
tuple<_Bound...> __bound_;
template<class... _Args>
_LIBCPP_INLINE_VISIBILITY constexpr auto operator()(_Args&&... __args) &
noexcept(noexcept(_Op::__call(_VSTD::get<_Idxs>(__bound_)..., _VSTD::forward<_Args>(__args)...)))
-> decltype( _Op::__call(_VSTD::get<_Idxs>(__bound_)..., _VSTD::forward<_Args>(__args)...))
{return _Op::__call(_VSTD::get<_Idxs>(__bound_)..., _VSTD::forward<_Args>(__args)...);}
template<class... _Args>
_LIBCPP_INLINE_VISIBILITY constexpr auto operator()(_Args&&... __args) const&
noexcept(noexcept(_Op::__call(_VSTD::get<_Idxs>(__bound_)..., _VSTD::forward<_Args>(__args)...)))
-> decltype( _Op::__call(_VSTD::get<_Idxs>(__bound_)..., _VSTD::forward<_Args>(__args)...))
{return _Op::__call(_VSTD::get<_Idxs>(__bound_)..., _VSTD::forward<_Args>(__args)...);}
template<class... _Args>
_LIBCPP_INLINE_VISIBILITY constexpr auto operator()(_Args&&... __args) &&
noexcept(noexcept(_Op::__call(_VSTD::get<_Idxs>(_VSTD::move(__bound_))...,
_VSTD::forward<_Args>(__args)...)))
-> decltype( _Op::__call(_VSTD::get<_Idxs>(_VSTD::move(__bound_))...,
_VSTD::forward<_Args>(__args)...))
{return _Op::__call(_VSTD::get<_Idxs>(_VSTD::move(__bound_))...,
_VSTD::forward<_Args>(__args)...);}
template<class... _Args>
_LIBCPP_INLINE_VISIBILITY constexpr auto operator()(_Args&&... __args) const&&
noexcept(noexcept(_Op::__call(_VSTD::get<_Idxs>(_VSTD::move(__bound_))...,
_VSTD::forward<_Args>(__args)...)))
-> decltype( _Op::__call(_VSTD::get<_Idxs>(_VSTD::move(__bound_))...,
_VSTD::forward<_Args>(__args)...))
{return _Op::__call(_VSTD::get<_Idxs>(_VSTD::move(__bound_))...,
_VSTD::forward<_Args>(__args)...);}
template<class _Fn = typename tuple_element<0, tuple<_Bound...>>::type,
class = _EnableIf<is_copy_constructible_v<_Fn>>>
constexpr __perfect_forward_impl(__perfect_forward_impl const& __other)
: __bound_(__other.__bound_) {}
template<class _Fn = typename tuple_element<0, tuple<_Bound...>>::type,
class = _EnableIf<is_move_constructible_v<_Fn>>>
constexpr __perfect_forward_impl(__perfect_forward_impl && __other)
: __bound_(_VSTD::move(__other.__bound_)) {}
template<class... _BoundArgs>
explicit constexpr __perfect_forward_impl(_BoundArgs&&... __bound) :
__bound_(_VSTD::forward<_BoundArgs>(__bound)...) { }
};
template<class _Op, class... _Args>
using __perfect_forward =
__perfect_forward_impl<_Op, __tuple_types<decay_t<_Args>...>>;
struct __not_fn_op
{
template<class... _Args>
static _LIBCPP_CONSTEXPR_AFTER_CXX17 auto __call(_Args&&... __args)
noexcept(noexcept(!_VSTD::invoke(_VSTD::forward<_Args>(__args)...)))
-> decltype( !_VSTD::invoke(_VSTD::forward<_Args>(__args)...))
{ return !_VSTD::invoke(_VSTD::forward<_Args>(__args)...); }
};
template<class _Fn,
class = _EnableIf<is_constructible_v<decay_t<_Fn>, _Fn> &&
is_move_constructible_v<_Fn>>>
_LIBCPP_CONSTEXPR_AFTER_CXX17 auto not_fn(_Fn&& __f)
{
return __perfect_forward<__not_fn_op, _Fn>(_VSTD::forward<_Fn>(__f));
}
#endif // _LIBCPP_STD_VER > 14
#if _LIBCPP_STD_VER > 17
struct __bind_front_op
{
template<class... _Args>
constexpr static auto __call(_Args&&... __args)
noexcept(noexcept(_VSTD::invoke(_VSTD::forward<_Args>(__args)...)))
-> decltype( _VSTD::invoke(_VSTD::forward<_Args>(__args)...))
{ return _VSTD::invoke(_VSTD::forward<_Args>(__args)...); }
};
template<class _Fn, class... _Args,
class = _EnableIf<conjunction<is_constructible<decay_t<_Fn>, _Fn>,
is_move_constructible<decay_t<_Fn>>,
is_constructible<decay_t<_Args>, _Args>...,
is_move_constructible<decay_t<_Args>>...
>::value>>
constexpr auto bind_front(_Fn&& __f, _Args&&... __args)
{
return __perfect_forward<__bind_front_op, _Fn, _Args...>(_VSTD::forward<_Fn>(__f),
_VSTD::forward<_Args>(__args)...);
}
#endif // _LIBCPP_STD_VER > 17
2010-06-04 00:42:57 +08:00
// struct hash<T*> in <memory>
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER > 14
// default searcher
template<class _ForwardIterator, class _BinaryPredicate = equal_to<>>
class _LIBCPP_TEMPLATE_VIS default_searcher {
public:
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
default_searcher(_ForwardIterator __f, _ForwardIterator __l,
_BinaryPredicate __p = _BinaryPredicate())
: __first_(__f), __last_(__l), __pred_(__p) {}
template <typename _ForwardIterator2>
_LIBCPP_INLINE_VISIBILITY _LIBCPP_CONSTEXPR_AFTER_CXX17
pair<_ForwardIterator2, _ForwardIterator2>
operator () (_ForwardIterator2 __f, _ForwardIterator2 __l) const
{
return _VSTD::__search(__f, __l, __first_, __last_, __pred_,
typename iterator_traits<_ForwardIterator>::iterator_category(),
typename iterator_traits<_ForwardIterator2>::iterator_category());
}
private:
_ForwardIterator __first_;
_ForwardIterator __last_;
_BinaryPredicate __pred_;
};
#endif // _LIBCPP_STD_VER > 14
#if _LIBCPP_STD_VER > 17
template <class _Tp>
using unwrap_reference_t = typename unwrap_reference<_Tp>::type;
template <class _Tp>
using unwrap_ref_decay_t = typename unwrap_ref_decay<_Tp>::type;
#endif // > C++17
#if _LIBCPP_STD_VER > 17
// [func.identity]
struct identity {
template<class _Tp>
_LIBCPP_NODISCARD_EXT constexpr _Tp&& operator()(_Tp&& __t) const noexcept
{
return _VSTD::forward<_Tp>(__t);
}
using is_transparent = void;
};
#endif // _LIBCPP_STD_VER > 17
#if !defined(_LIBCPP_HAS_NO_RANGES)
namespace ranges {
struct equal_to {
template <class _Tp, class _Up>
requires equality_comparable_with<_Tp, _Up>
[[nodiscard]] constexpr bool operator()(_Tp &&__t, _Up &&__u) const
noexcept(noexcept(bool(_VSTD::forward<_Tp>(__t) == _VSTD::forward<_Up>(__u)))) {
return _VSTD::forward<_Tp>(__t) == _VSTD::forward<_Up>(__u);
}
using is_transparent = void;
};
struct not_equal_to {
template <class _Tp, class _Up>
requires equality_comparable_with<_Tp, _Up>
[[nodiscard]] constexpr bool operator()(_Tp &&__t, _Up &&__u) const
noexcept(noexcept(bool(!(_VSTD::forward<_Tp>(__t) == _VSTD::forward<_Up>(__u))))) {
return !(_VSTD::forward<_Tp>(__t) == _VSTD::forward<_Up>(__u));
}
using is_transparent = void;
};
struct greater {
template <class _Tp, class _Up>
requires totally_ordered_with<_Tp, _Up>
[[nodiscard]] constexpr bool operator()(_Tp &&__t, _Up &&__u) const
noexcept(noexcept(bool(_VSTD::forward<_Up>(__u) < _VSTD::forward<_Tp>(__t)))) {
return _VSTD::forward<_Up>(__u) < _VSTD::forward<_Tp>(__t);
}
using is_transparent = void;
};
struct less {
template <class _Tp, class _Up>
requires totally_ordered_with<_Tp, _Up>
[[nodiscard]] constexpr bool operator()(_Tp &&__t, _Up &&__u) const
noexcept(noexcept(bool(_VSTD::forward<_Tp>(__t) < _VSTD::forward<_Up>(__u)))) {
return _VSTD::forward<_Tp>(__t) < _VSTD::forward<_Up>(__u);
}
using is_transparent = void;
};
struct greater_equal {
template <class _Tp, class _Up>
requires totally_ordered_with<_Tp, _Up>
[[nodiscard]] constexpr bool operator()(_Tp &&__t, _Up &&__u) const
noexcept(noexcept(bool(!(_VSTD::forward<_Tp>(__t) < _VSTD::forward<_Up>(__u))))) {
return !(_VSTD::forward<_Tp>(__t) < _VSTD::forward<_Up>(__u));
}
using is_transparent = void;
};
struct less_equal {
template <class _Tp, class _Up>
requires totally_ordered_with<_Tp, _Up>
[[nodiscard]] constexpr bool operator()(_Tp &&__t, _Up &&__u) const
noexcept(noexcept(bool(!(_VSTD::forward<_Up>(__u) < _VSTD::forward<_Tp>(__t))))) {
return !(_VSTD::forward<_Up>(__u) < _VSTD::forward<_Tp>(__t));
}
using is_transparent = void;
};
} // namespace ranges
#endif // !defined(_LIBCPP_HAS_NO_RANGES)
2010-05-12 03:42:16 +08:00
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUNCTIONAL