llvm-project/llvm/test/Transforms/InstCombine/and-or-not.ll

643 lines
18 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
2007-06-15 13:57:20 +08:00
; PR1510
; (a | b) & ~(a & b) --> a ^ b
define i32 @and_to_xor1(i32 %a, i32 %b) {
; CHECK-LABEL: @and_to_xor1(
; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[AND2]]
;
%or = or i32 %a, %b
%and = and i32 %a, %b
%not = xor i32 %and, -1
%and2 = and i32 %or, %not
ret i32 %and2
}
; ~(a & b) & (a | b) --> a ^ b
define i32 @and_to_xor2(i32 %a, i32 %b) {
; CHECK-LABEL: @and_to_xor2(
; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[AND2]]
;
%or = or i32 %a, %b
%and = and i32 %a, %b
%not = xor i32 %and, -1
%and2 = and i32 %not, %or
ret i32 %and2
}
; (a | b) & ~(b & a) --> a ^ b
define i32 @and_to_xor3(i32 %a, i32 %b) {
; CHECK-LABEL: @and_to_xor3(
; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[AND2]]
;
%or = or i32 %a, %b
%and = and i32 %b, %a
%not = xor i32 %and, -1
%and2 = and i32 %or, %not
ret i32 %and2
2007-06-15 13:57:20 +08:00
}
; ~(a & b) & (b | a) --> a ^ b
define i32 @and_to_xor4(i32 %a, i32 %b) {
; CHECK-LABEL: @and_to_xor4(
; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: ret i32 [[AND2]]
;
%or = or i32 %b, %a
%and = and i32 %a, %b
%not = xor i32 %and, -1
%and2 = and i32 %not, %or
ret i32 %and2
}
define <4 x i32> @and_to_xor1_vec(<4 x i32> %a, <4 x i32> %b) {
; CHECK-LABEL: @and_to_xor1_vec(
; CHECK-NEXT: [[AND2:%.*]] = xor <4 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret <4 x i32> [[AND2]]
;
%or = or <4 x i32> %a, %b
%and = and <4 x i32> %a, %b
%not = xor <4 x i32> %and, < i32 -1, i32 -1, i32 -1, i32 -1 >
%and2 = and <4 x i32> %or, %not
ret <4 x i32> %and2
2007-06-15 13:57:20 +08:00
}
; In the next 4 tests, cast instructions are used to thwart operand complexity
; canonicalizations, so we can test all of the commuted patterns.
; (a | ~b) & (~a | b) --> ~(a ^ b)
define i32 @and_to_nxor1(float %fa, float %fb) {
; CHECK-LABEL: @and_to_nxor1(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[AND]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %notb
%or2 = or i32 %nota, %b
%and = and i32 %or1, %or2
ret i32 %and
}
; (a | ~b) & (b | ~a) --> ~(a ^ b)
define i32 @and_to_nxor2(float %fa, float %fb) {
; CHECK-LABEL: @and_to_nxor2(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[AND]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %notb
%or2 = or i32 %b, %nota
%and = and i32 %or1, %or2
ret i32 %and
}
; (~a | b) & (a | ~b) --> ~(a ^ b)
define i32 @and_to_nxor3(float %fa, float %fb) {
; CHECK-LABEL: @and_to_nxor3(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[AND]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %nota, %b
%or2 = or i32 %a, %notb
%and = and i32 %or1, %or2
ret i32 %and
}
; (~a | b) & (~b | a) --> ~(a ^ b)
define i32 @and_to_nxor4(float %fa, float %fb) {
; CHECK-LABEL: @and_to_nxor4(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[AND]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %nota, %b
%or2 = or i32 %notb, %a
%and = and i32 %or1, %or2
ret i32 %and
}
; (a & ~b) | (~a & b) --> a ^ b
define i32 @or_to_xor1(float %fa, float %fb) {
; CHECK-LABEL: @or_to_xor1(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[OR:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[OR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %a, %notb
%and2 = and i32 %nota, %b
%or = or i32 %and1, %and2
ret i32 %or
}
; (a & ~b) | (b & ~a) --> a ^ b
define i32 @or_to_xor2(float %fa, float %fb) {
; CHECK-LABEL: @or_to_xor2(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[OR:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[OR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %a, %notb
%and2 = and i32 %b, %nota
%or = or i32 %and1, %and2
ret i32 %or
}
; (~a & b) | (~b & a) --> a ^ b
define i32 @or_to_xor3(float %fa, float %fb) {
; CHECK-LABEL: @or_to_xor3(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[OR:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: ret i32 [[OR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %nota, %b
%and2 = and i32 %notb, %a
%or = or i32 %and1, %and2
ret i32 %or
}
; (~a & b) | (a & ~b) --> a ^ b
define i32 @or_to_xor4(float %fa, float %fb) {
; CHECK-LABEL: @or_to_xor4(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[OR:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: ret i32 [[OR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %nota, %b
%and2 = and i32 %a, %notb
%or = or i32 %and1, %and2
ret i32 %or
}
; (a & b) | ~(a | b) --> ~(a ^ b)
define i32 @or_to_nxor1(i32 %a, i32 %b) {
; CHECK-LABEL: @or_to_nxor1(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[OR2]]
;
%and = and i32 %a, %b
%or = or i32 %a, %b
%notor = xor i32 %or, -1
%or2 = or i32 %and, %notor
ret i32 %or2
}
; (a & b) | ~(b | a) --> ~(a ^ b)
define i32 @or_to_nxor2(i32 %a, i32 %b) {
; CHECK-LABEL: @or_to_nxor2(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[OR2]]
;
%and = and i32 %a, %b
%or = or i32 %b, %a
%notor = xor i32 %or, -1
%or2 = or i32 %and, %notor
ret i32 %or2
}
; ~(a | b) | (a & b) --> ~(a ^ b)
define i32 @or_to_nxor3(i32 %a, i32 %b) {
; CHECK-LABEL: @or_to_nxor3(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[OR2]]
;
%and = and i32 %a, %b
%or = or i32 %a, %b
%notor = xor i32 %or, -1
%or2 = or i32 %notor, %and
ret i32 %or2
}
; ~(a | b) | (b & a) --> ~(a ^ b)
define i32 @or_to_nxor4(i32 %a, i32 %b) {
; CHECK-LABEL: @or_to_nxor4(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[OR2]]
;
%and = and i32 %b, %a
%or = or i32 %a, %b
%notor = xor i32 %or, -1
%or2 = or i32 %notor, %and
ret i32 %or2
}
; (a & b) ^ (a | b) --> a ^ b
define i32 @xor_to_xor1(i32 %a, i32 %b) {
; CHECK-LABEL: @xor_to_xor1(
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%and = and i32 %a, %b
%or = or i32 %a, %b
%xor = xor i32 %and, %or
ret i32 %xor
}
; (a & b) ^ (b | a) --> a ^ b
define i32 @xor_to_xor2(i32 %a, i32 %b) {
; CHECK-LABEL: @xor_to_xor2(
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%and = and i32 %a, %b
%or = or i32 %b, %a
%xor = xor i32 %and, %or
ret i32 %xor
}
; (a | b) ^ (a & b) --> a ^ b
define i32 @xor_to_xor3(i32 %a, i32 %b) {
; CHECK-LABEL: @xor_to_xor3(
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%or = or i32 %a, %b
%and = and i32 %a, %b
%xor = xor i32 %or, %and
ret i32 %xor
}
; (a | b) ^ (b & a) --> a ^ b
define i32 @xor_to_xor4(i32 %a, i32 %b) {
; CHECK-LABEL: @xor_to_xor4(
[PatternMatch] Stabilize the matching order of commutative matchers Summary: Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the `LHS` and `RHS` matchers: 1. match `RHS` matcher to the `first` operand of binary operator, 2. and then match `LHS` matcher to the `second` operand of binary operator. This works ok. But it complicates writing of commutative matchers, where one would like to match (`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side. This is additionally complicated by the fact that `m_Specific()` stores the `Value *`, not `Value **`, so it won't work at all out of the box. The last problem is trivially solved by adding a new `m_c_Specific()` that stores the `Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing one because i guess all the current users are ok with existing behavior, and this additional pointer indirection may have performance drawbacks. Also, i'm storing pointer, not reference, because for some mysterious-to-me reason it did not work with the reference. The first one appears trivial, too. Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**: 1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator, 2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator. Surprisingly, `$ ninja check-llvm` still passes with this. But i expect the bots will disagree.. The motivational unittest is included. I'd like to use this in D45664. Reviewers: spatel, craig.topper, arsenm, RKSimon Reviewed By: craig.topper Subscribers: xbolva00, wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D45828 llvm-svn: 331085
2018-04-28 05:23:20 +08:00
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%or = or i32 %a, %b
%and = and i32 %b, %a
%xor = xor i32 %or, %and
ret i32 %xor
}
; (a | ~b) ^ (~a | b) --> a ^ b
; In the next 8 tests, cast instructions are used to thwart operand complexity
; canonicalizations, so we can test all of the commuted patterns.
define i32 @xor_to_xor5(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor5(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %notb
%or2 = or i32 %nota, %b
%xor = xor i32 %or1, %or2
ret i32 %xor
}
; (a | ~b) ^ (b | ~a) --> a ^ b
define i32 @xor_to_xor6(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor6(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %notb
%or2 = or i32 %b, %nota
%xor = xor i32 %or1, %or2
ret i32 %xor
}
; (~a | b) ^ (a | ~b) --> a ^ b
define i32 @xor_to_xor7(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor7(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
[PatternMatch] Stabilize the matching order of commutative matchers Summary: Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the `LHS` and `RHS` matchers: 1. match `RHS` matcher to the `first` operand of binary operator, 2. and then match `LHS` matcher to the `second` operand of binary operator. This works ok. But it complicates writing of commutative matchers, where one would like to match (`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side. This is additionally complicated by the fact that `m_Specific()` stores the `Value *`, not `Value **`, so it won't work at all out of the box. The last problem is trivially solved by adding a new `m_c_Specific()` that stores the `Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing one because i guess all the current users are ok with existing behavior, and this additional pointer indirection may have performance drawbacks. Also, i'm storing pointer, not reference, because for some mysterious-to-me reason it did not work with the reference. The first one appears trivial, too. Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**: 1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator, 2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator. Surprisingly, `$ ninja check-llvm` still passes with this. But i expect the bots will disagree.. The motivational unittest is included. I'd like to use this in D45664. Reviewers: spatel, craig.topper, arsenm, RKSimon Reviewed By: craig.topper Subscribers: xbolva00, wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D45828 llvm-svn: 331085
2018-04-28 05:23:20 +08:00
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %notb
%or2 = or i32 %nota, %b
%xor = xor i32 %or2, %or1
ret i32 %xor
}
; (~a | b) ^ (~b | a) --> a ^ b
define i32 @xor_to_xor8(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor8(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
[PatternMatch] Stabilize the matching order of commutative matchers Summary: Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the `LHS` and `RHS` matchers: 1. match `RHS` matcher to the `first` operand of binary operator, 2. and then match `LHS` matcher to the `second` operand of binary operator. This works ok. But it complicates writing of commutative matchers, where one would like to match (`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side. This is additionally complicated by the fact that `m_Specific()` stores the `Value *`, not `Value **`, so it won't work at all out of the box. The last problem is trivially solved by adding a new `m_c_Specific()` that stores the `Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing one because i guess all the current users are ok with existing behavior, and this additional pointer indirection may have performance drawbacks. Also, i'm storing pointer, not reference, because for some mysterious-to-me reason it did not work with the reference. The first one appears trivial, too. Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**: 1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator, 2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator. Surprisingly, `$ ninja check-llvm` still passes with this. But i expect the bots will disagree.. The motivational unittest is included. I'd like to use this in D45664. Reviewers: spatel, craig.topper, arsenm, RKSimon Reviewed By: craig.topper Subscribers: xbolva00, wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D45828 llvm-svn: 331085
2018-04-28 05:23:20 +08:00
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %notb, %a
%or2 = or i32 %nota, %b
%xor = xor i32 %or2, %or1
ret i32 %xor
}
; (a & ~b) ^ (~a & b) --> a ^ b
define i32 @xor_to_xor9(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor9(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %a, %notb
%and2 = and i32 %nota, %b
%xor = xor i32 %and1, %and2
ret i32 %xor
}
; (a & ~b) ^ (b & ~a) --> a ^ b
define i32 @xor_to_xor10(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor10(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %a, %notb
%and2 = and i32 %b, %nota
%xor = xor i32 %and1, %and2
ret i32 %xor
}
; (~a & b) ^ (a & ~b) --> a ^ b
define i32 @xor_to_xor11(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor11(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
[PatternMatch] Stabilize the matching order of commutative matchers Summary: Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the `LHS` and `RHS` matchers: 1. match `RHS` matcher to the `first` operand of binary operator, 2. and then match `LHS` matcher to the `second` operand of binary operator. This works ok. But it complicates writing of commutative matchers, where one would like to match (`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side. This is additionally complicated by the fact that `m_Specific()` stores the `Value *`, not `Value **`, so it won't work at all out of the box. The last problem is trivially solved by adding a new `m_c_Specific()` that stores the `Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing one because i guess all the current users are ok with existing behavior, and this additional pointer indirection may have performance drawbacks. Also, i'm storing pointer, not reference, because for some mysterious-to-me reason it did not work with the reference. The first one appears trivial, too. Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**: 1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator, 2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator. Surprisingly, `$ ninja check-llvm` still passes with this. But i expect the bots will disagree.. The motivational unittest is included. I'd like to use this in D45664. Reviewers: spatel, craig.topper, arsenm, RKSimon Reviewed By: craig.topper Subscribers: xbolva00, wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D45828 llvm-svn: 331085
2018-04-28 05:23:20 +08:00
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %a, %notb
%and2 = and i32 %nota, %b
%xor = xor i32 %and2, %and1
ret i32 %xor
}
; (~a & b) ^ (~b & a) --> a ^ b
define i32 @xor_to_xor12(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xor12(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
[PatternMatch] Stabilize the matching order of commutative matchers Summary: Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the `LHS` and `RHS` matchers: 1. match `RHS` matcher to the `first` operand of binary operator, 2. and then match `LHS` matcher to the `second` operand of binary operator. This works ok. But it complicates writing of commutative matchers, where one would like to match (`m_Value()`) the value on one side, and use (`m_Specific()`) it on the other side. This is additionally complicated by the fact that `m_Specific()` stores the `Value *`, not `Value **`, so it won't work at all out of the box. The last problem is trivially solved by adding a new `m_c_Specific()` that stores the `Value **`, not `Value *`. I'm choosing to add a new matcher, not change the existing one because i guess all the current users are ok with existing behavior, and this additional pointer indirection may have performance drawbacks. Also, i'm storing pointer, not reference, because for some mysterious-to-me reason it did not work with the reference. The first one appears trivial, too. Currently, we 1. match `LHS` matcher to the `first` operand of binary operator, 2. and then match `RHS` matcher to the `second` operand of binary operator. If that does not match, we swap the ~~`LHS` and `RHS` matchers~~ **operands**: 1. match ~~`RHS`~~ **`LHS`** matcher to the ~~`first`~~ **`second`** operand of binary operator, 2. and then match ~~`LHS`~~ **`RHS`** matcher to the ~~`second`~ **`first`** operand of binary operator. Surprisingly, `$ ninja check-llvm` still passes with this. But i expect the bots will disagree.. The motivational unittest is included. I'd like to use this in D45664. Reviewers: spatel, craig.topper, arsenm, RKSimon Reviewed By: craig.topper Subscribers: xbolva00, wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D45828 llvm-svn: 331085
2018-04-28 05:23:20 +08:00
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%and1 = and i32 %notb, %a
%and2 = and i32 %nota, %b
%xor = xor i32 %and2, %and1
ret i32 %xor
}
; https://bugs.llvm.org/show_bug.cgi?id=32830
; Make sure we're matching operands correctly and not folding things wrongly.
define i64 @PR32830(i64 %a, i64 %b, i64 %c) {
; CHECK-LABEL: @PR32830(
; CHECK-NEXT: [[NOTA:%.*]] = xor i64 [[A:%.*]], -1
; CHECK-NEXT: [[NOTB:%.*]] = xor i64 [[B:%.*]], -1
; CHECK-NEXT: [[OR1:%.*]] = or i64 [[NOTB]], [[A]]
; CHECK-NEXT: [[OR2:%.*]] = or i64 [[NOTA]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i64 [[OR1]], [[OR2]]
; CHECK-NEXT: ret i64 [[AND]]
;
%nota = xor i64 %a, -1
%notb = xor i64 %b, -1
%or1 = or i64 %notb, %a
%or2 = or i64 %nota, %c
%and = and i64 %or1, %or2
ret i64 %and
}
; (~a | b) & (~b | a) --> ~(a ^ b)
; TODO: this increases instruction count if the pieces have additional users
define i32 @and_to_nxor_multiuse(float %fa, float %fb) {
; CHECK-LABEL: @and_to_nxor_multiuse(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[NOTA:%.*]] = xor i32 [[A]], -1
; CHECK-NEXT: [[NOTB:%.*]] = xor i32 [[B]], -1
; CHECK-NEXT: [[OR1:%.*]] = or i32 [[NOTA]], [[B]]
; CHECK-NEXT: [[OR2:%.*]] = or i32 [[NOTB]], [[A]]
; CHECK-NEXT: [[AND:%.*]] = and i32 [[OR1]], [[OR2]]
; CHECK-NEXT: [[MUL1:%.*]] = mul i32 [[OR1]], [[OR2]]
; CHECK-NEXT: [[MUL2:%.*]] = mul i32 [[MUL1]], [[AND]]
; CHECK-NEXT: ret i32 [[MUL2]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %nota, %b
%or2 = or i32 %notb, %a
%and = and i32 %or1, %or2
%mul1 = mul i32 %or1, %or2 ; here to increase the use count of the inputs to the and
%mul2 = mul i32 %mul1, %and
ret i32 %mul2
}
; (a & b) | ~(a | b) --> ~(a ^ b)
; TODO: this increases instruction count if the pieces have additional users
define i32 @or_to_nxor_multiuse(i32 %a, i32 %b) {
; CHECK-LABEL: @or_to_nxor_multiuse(
; CHECK-NEXT: [[AND:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[OR:%.*]] = or i32 [[A]], [[B]]
; CHECK-NEXT: [[NOTOR:%.*]] = xor i32 [[OR]], -1
; CHECK-NEXT: [[OR2:%.*]] = or i32 [[AND]], [[NOTOR]]
; CHECK-NEXT: [[MUL1:%.*]] = mul i32 [[AND]], [[NOTOR]]
; CHECK-NEXT: [[MUL2:%.*]] = mul i32 [[MUL1]], [[OR2]]
; CHECK-NEXT: ret i32 [[MUL2]]
;
%and = and i32 %a, %b
%or = or i32 %a, %b
%notor = xor i32 %or, -1
%or2 = or i32 %and, %notor
%mul1 = mul i32 %and, %notor ; here to increase the use count of the inputs to the or
%mul2 = mul i32 %mul1, %or2
ret i32 %mul2
}
; (a | b) ^ (~a | ~b) --> ~(a ^ b)
define i32 @xor_to_xnor1(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xnor1(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %b
%or2 = or i32 %nota, %notb
%xor = xor i32 %or1, %or2
ret i32 %xor
}
; (a | b) ^ (~b | ~a) --> ~(a ^ b)
define i32 @xor_to_xnor2(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xnor2(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %a, %b
%or2 = or i32 %notb, %nota
%xor = xor i32 %or1, %or2
ret i32 %xor
}
; (~a | ~b) ^ (a | b) --> ~(a ^ b)
define i32 @xor_to_xnor3(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xnor3(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %nota, %notb
%or2 = or i32 %a, %b
%xor = xor i32 %or1, %or2
ret i32 %xor
}
; (~a | ~b) ^ (b | a) --> ~(a ^ b)
define i32 @xor_to_xnor4(float %fa, float %fb) {
; CHECK-LABEL: @xor_to_xnor4(
; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32
; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], [[A]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%a = fptosi float %fa to i32
%b = fptosi float %fb to i32
%nota = xor i32 %a, -1
%notb = xor i32 %b, -1
%or1 = or i32 %nota, %notb
%or2 = or i32 %b, %a
%xor = xor i32 %or1, %or2
ret i32 %xor
}