llvm-project/llvm/lib/CodeGen/RegAllocBase.cpp

284 lines
10 KiB
C++
Raw Normal View History

//===-- RegAllocBase.cpp - Register Allocator Base Class ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RegAllocBase class which provides comon functionality
// for LiveIntervalUnion-based register allocators.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
#endif
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"
using namespace llvm;
STATISTIC(NumAssigned , "Number of registers assigned");
STATISTIC(NumUnassigned , "Number of registers unassigned");
STATISTIC(NumNewQueued , "Number of new live ranges queued");
// Temporary verification option until we can put verification inside
// MachineVerifier.
static cl::opt<bool, true>
VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
cl::desc("Verify during register allocation"));
const char *RegAllocBase::TimerGroupName = "Register Allocation";
bool RegAllocBase::VerifyEnabled = false;
#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void RegAllocBase::verify() {
LiveVirtRegBitSet VisitedVRegs;
OwningArrayPtr<LiveVirtRegBitSet>
unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
// Verify disjoint unions.
for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
PhysReg2LiveUnion[PhysReg].verify(VRegs);
// Union + intersection test could be done efficiently in one pass, but
// don't add a method to SparseBitVector unless we really need it.
assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
VisitedVRegs |= VRegs;
}
// Verify vreg coverage.
for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval* li = liItr->second;
if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
if (!VRM->hasPhys(reg)) continue; // spilled?
if (li->empty()) continue; // unionVRegs will only be filled if li is
// non-empty
unsigned PhysReg = VRM->getPhys(reg);
if (!unionVRegs[PhysReg].test(reg)) {
dbgs() << "LiveVirtReg " << PrintReg(reg, TRI) << " not in union " <<
TRI->getName(PhysReg) << "\n";
llvm_unreachable("unallocated live vreg");
}
}
// FIXME: I'm not sure how to verify spilled intervals.
}
#endif //!NDEBUG
//===----------------------------------------------------------------------===//
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
unsigned NRegs) {
NumRegs = NRegs;
Array =
static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
for (unsigned r = 0; r != NRegs; ++r)
new(Array + r) LiveIntervalUnion(allocator);
}
void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
TRI = &vrm.getTargetRegInfo();
MRI = &vrm.getRegInfo();
VRM = &vrm;
LIS = &lis;
MRI->freezeReservedRegs(vrm.getMachineFunction());
RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());
const unsigned NumRegs = TRI->getNumRegs();
if (NumRegs != PhysReg2LiveUnion.numRegs()) {
PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
// Cache an interferece query for each physical reg
Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
}
}
void RegAllocBase::LiveUnionArray::clear() {
if (!Array)
return;
for (unsigned r = 0; r != NumRegs; ++r)
Array[r].~LiveIntervalUnion();
free(Array);
NumRegs = 0;
Array = 0;
}
void RegAllocBase::releaseMemory() {
for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
PhysReg2LiveUnion[r].clear();
}
// Visit all the live registers. If they are already assigned to a physical
// register, unify them with the corresponding LiveIntervalUnion, otherwise push
// them on the priority queue for later assignment.
void RegAllocBase::seedLiveRegs() {
NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
unsigned RegNum = I->first;
LiveInterval &VirtReg = *I->second;
if (TargetRegisterInfo::isPhysicalRegister(RegNum))
PhysReg2LiveUnion[RegNum].unify(VirtReg);
else
enqueue(&VirtReg);
}
}
void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
<< " to " << PrintReg(PhysReg, TRI) << '\n');
assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
MRI->setPhysRegUsed(PhysReg);
PhysReg2LiveUnion[PhysReg].unify(VirtReg);
++NumAssigned;
}
void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
<< " from " << PrintReg(PhysReg, TRI) << '\n');
assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
PhysReg2LiveUnion[PhysReg].extract(VirtReg);
VRM->clearVirt(VirtReg.reg);
++NumUnassigned;
}
// Top-level driver to manage the queue of unassigned VirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {
seedLiveRegs();
// Continue assigning vregs one at a time to available physical registers.
while (LiveInterval *VirtReg = dequeue()) {
assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
// Unused registers can appear when the spiller coalesces snippets.
if (MRI->reg_nodbg_empty(VirtReg->reg)) {
DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
LIS->removeInterval(VirtReg->reg);
continue;
}
// Invalidate all interference queries, live ranges could have changed.
invalidateVirtRegs();
// selectOrSplit requests the allocator to return an available physical
// register if possible and populate a list of new live intervals that
// result from splitting.
DEBUG(dbgs() << "\nselectOrSplit "
<< MRI->getRegClass(VirtReg->reg)->getName()
<< ':' << PrintReg(VirtReg->reg) << ' ' << *VirtReg << '\n');
typedef SmallVector<LiveInterval*, 4> VirtRegVec;
VirtRegVec SplitVRegs;
unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
if (AvailablePhysReg == ~0u) {
// selectOrSplit failed to find a register!
const char *Msg = "ran out of registers during register allocation";
// Probably caused by an inline asm.
MachineInstr *MI;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
(MI = I.skipInstruction());)
if (MI->isInlineAsm())
break;
if (MI)
MI->emitError(Msg);
else
report_fatal_error(Msg);
// Keep going after reporting the error.
VRM->assignVirt2Phys(VirtReg->reg,
RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
continue;
}
if (AvailablePhysReg)
assign(*VirtReg, AvailablePhysReg);
for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
I != E; ++I) {
LiveInterval *SplitVirtReg = *I;
assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n');
LIS->removeInterval(SplitVirtReg->reg);
continue;
}
DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
"expect split value in virtual register");
enqueue(SplitVirtReg);
++NumNewQueued;
}
}
}
// Check if this live virtual register interferes with a physical register. If
// not, then check for interference on each register that aliases with the
// physical register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
unsigned PhysReg) {
for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI)
if (query(VirtReg, *AI).checkInterference())
return *AI;
return 0;
}
// Add newly allocated physical registers to the MBB live in sets.
void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
SlotIndexes *Indexes = LIS->getSlotIndexes();
if (MF->size() <= 1)
return;
LiveIntervalUnion::SegmentIter SI;
for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
if (LiveUnion.empty())
continue;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:");
MachineFunction::iterator MBB = llvm::next(MF->begin());
MachineFunction::iterator MFE = MF->end();
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(MBB);
SI.setMap(LiveUnion.getMap());
SI.find(Start);
while (SI.valid()) {
if (SI.start() <= Start) {
if (!MBB->isLiveIn(PhysReg))
MBB->addLiveIn(PhysReg);
DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':'
<< PrintReg(SI.value()->reg, TRI));
} else if (SI.start() > Stop)
MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
if (++MBB == MFE)
break;
tie(Start, Stop) = Indexes->getMBBRange(MBB);
SI.advanceTo(Start);
}
DEBUG(dbgs() << '\n');
}
}