[AArch64] Avoid going through GPRs for across-vector instructions.
This adds new node types for each intrinsic.
For instance, for addv, we have AArch64ISD::UADDV, such that:
(v4i32 (uaddv ...))
is the same as
(v4i32 (scalar_to_vector (i32 (int_aarch64_neon_uaddv ...))))
that is,
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 (int_aarch64_neon_uaddv ...)), ssub)
In a combine, we transform all such across-vector-lanes intrinsics to:
(i32 (extract_vector_elt (uaddv ...), 0))
This has one big advantage: by making the extract_element explicit, we
enable the existing patterns for lane-aware instructions to fire.
This lets us avoid needlessly going through the GPRs. Consider:
uint32x4_t test_mul(uint32x4_t a, uint32x4_t b) {
return vmulq_n_u32(a, vaddvq_u32(b));
}
We now generate:
addv.4s s1, v1
mul.4s v0, v0, v1[0]
instead of the previous:
addv.4s s1, v1
fmov w8, s1
dup.4s v1, w8
mul.4s v0, v1, v0
rdar://20044838
llvm-svn: 231840
2015-03-11 04:45:38 +08:00
|
|
|
; RUN: llc -march=arm64 -aarch64-neon-syntax=apple -asm-verbose=false < %s | FileCheck %s
|
2014-03-29 18:18:08 +08:00
|
|
|
|
|
|
|
define signext i8 @test_vmaxv_s8(<8 x i8> %a1) {
|
|
|
|
; CHECK: test_vmaxv_s8
|
|
|
|
; CHECK: smaxv.8b b[[REGNUM:[0-9]+]], v0
|
|
|
|
; CHECK-NEXT: smov.b w0, v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
2014-05-24 20:50:23 +08:00
|
|
|
%vmaxv.i = tail call i32 @llvm.aarch64.neon.smaxv.i32.v8i8(<8 x i8> %a1)
|
2014-03-29 18:18:08 +08:00
|
|
|
%0 = trunc i32 %vmaxv.i to i8
|
|
|
|
ret i8 %0
|
|
|
|
}
|
|
|
|
|
|
|
|
define signext i16 @test_vmaxv_s16(<4 x i16> %a1) {
|
|
|
|
; CHECK: test_vmaxv_s16
|
|
|
|
; CHECK: smaxv.4h h[[REGNUM:[0-9]+]], v0
|
|
|
|
; CHECK-NEXT: smov.h w0, v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
2014-05-24 20:50:23 +08:00
|
|
|
%vmaxv.i = tail call i32 @llvm.aarch64.neon.smaxv.i32.v4i16(<4 x i16> %a1)
|
2014-03-29 18:18:08 +08:00
|
|
|
%0 = trunc i32 %vmaxv.i to i16
|
|
|
|
ret i16 %0
|
|
|
|
}
|
|
|
|
|
|
|
|
define i32 @test_vmaxv_s32(<2 x i32> %a1) {
|
|
|
|
; CHECK: test_vmaxv_s32
|
|
|
|
; 2 x i32 is not supported by the ISA, thus, this is a special case
|
|
|
|
; CHECK: smaxp.2s v[[REGNUM:[0-9]+]], v0, v0
|
|
|
|
; CHECK-NEXT: fmov w0, s[[REGNUM]]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
2014-05-24 20:50:23 +08:00
|
|
|
%vmaxv.i = tail call i32 @llvm.aarch64.neon.smaxv.i32.v2i32(<2 x i32> %a1)
|
2014-03-29 18:18:08 +08:00
|
|
|
ret i32 %vmaxv.i
|
|
|
|
}
|
|
|
|
|
|
|
|
define signext i8 @test_vmaxvq_s8(<16 x i8> %a1) {
|
|
|
|
; CHECK: test_vmaxvq_s8
|
|
|
|
; CHECK: smaxv.16b b[[REGNUM:[0-9]+]], v0
|
|
|
|
; CHECK-NEXT: smov.b w0, v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
2014-05-24 20:50:23 +08:00
|
|
|
%vmaxv.i = tail call i32 @llvm.aarch64.neon.smaxv.i32.v16i8(<16 x i8> %a1)
|
2014-03-29 18:18:08 +08:00
|
|
|
%0 = trunc i32 %vmaxv.i to i8
|
|
|
|
ret i8 %0
|
|
|
|
}
|
|
|
|
|
|
|
|
define signext i16 @test_vmaxvq_s16(<8 x i16> %a1) {
|
|
|
|
; CHECK: test_vmaxvq_s16
|
|
|
|
; CHECK: smaxv.8h h[[REGNUM:[0-9]+]], v0
|
|
|
|
; CHECK-NEXT: smov.h w0, v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
2014-05-24 20:50:23 +08:00
|
|
|
%vmaxv.i = tail call i32 @llvm.aarch64.neon.smaxv.i32.v8i16(<8 x i16> %a1)
|
2014-03-29 18:18:08 +08:00
|
|
|
%0 = trunc i32 %vmaxv.i to i16
|
|
|
|
ret i16 %0
|
|
|
|
}
|
|
|
|
|
|
|
|
define i32 @test_vmaxvq_s32(<4 x i32> %a1) {
|
|
|
|
; CHECK: test_vmaxvq_s32
|
|
|
|
; CHECK: smaxv.4s [[REGNUM:s[0-9]+]], v0
|
|
|
|
; CHECK-NEXT: fmov w0, [[REGNUM]]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
2014-05-24 20:50:23 +08:00
|
|
|
%vmaxv.i = tail call i32 @llvm.aarch64.neon.smaxv.i32.v4i32(<4 x i32> %a1)
|
2014-03-29 18:18:08 +08:00
|
|
|
ret i32 %vmaxv.i
|
|
|
|
}
|
|
|
|
|
[AArch64] Avoid going through GPRs for across-vector instructions.
This adds new node types for each intrinsic.
For instance, for addv, we have AArch64ISD::UADDV, such that:
(v4i32 (uaddv ...))
is the same as
(v4i32 (scalar_to_vector (i32 (int_aarch64_neon_uaddv ...))))
that is,
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 (int_aarch64_neon_uaddv ...)), ssub)
In a combine, we transform all such across-vector-lanes intrinsics to:
(i32 (extract_vector_elt (uaddv ...), 0))
This has one big advantage: by making the extract_element explicit, we
enable the existing patterns for lane-aware instructions to fire.
This lets us avoid needlessly going through the GPRs. Consider:
uint32x4_t test_mul(uint32x4_t a, uint32x4_t b) {
return vmulq_n_u32(a, vaddvq_u32(b));
}
We now generate:
addv.4s s1, v1
mul.4s v0, v0, v1[0]
instead of the previous:
addv.4s s1, v1
fmov w8, s1
dup.4s v1, w8
mul.4s v0, v1, v0
rdar://20044838
llvm-svn: 231840
2015-03-11 04:45:38 +08:00
|
|
|
define <8 x i8> @test_vmaxv_s8_used_by_laneop(<8 x i8> %a1, <8 x i8> %a2) {
|
|
|
|
; CHECK-LABEL: test_vmaxv_s8_used_by_laneop:
|
|
|
|
; CHECK: smaxv.8b b[[REGNUM:[0-9]+]], v1
|
|
|
|
; CHECK-NEXT: ins.b v0[3], v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
|
|
%0 = tail call i32 @llvm.aarch64.neon.smaxv.i32.v8i8(<8 x i8> %a2)
|
|
|
|
%1 = trunc i32 %0 to i8
|
|
|
|
%2 = insertelement <8 x i8> %a1, i8 %1, i32 3
|
|
|
|
ret <8 x i8> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i16> @test_vmaxv_s16_used_by_laneop(<4 x i16> %a1, <4 x i16> %a2) {
|
|
|
|
; CHECK-LABEL: test_vmaxv_s16_used_by_laneop:
|
|
|
|
; CHECK: smaxv.4h h[[REGNUM:[0-9]+]], v1
|
|
|
|
; CHECK-NEXT: ins.h v0[3], v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
|
|
%0 = tail call i32 @llvm.aarch64.neon.smaxv.i32.v4i16(<4 x i16> %a2)
|
|
|
|
%1 = trunc i32 %0 to i16
|
|
|
|
%2 = insertelement <4 x i16> %a1, i16 %1, i32 3
|
|
|
|
ret <4 x i16> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <2 x i32> @test_vmaxv_s32_used_by_laneop(<2 x i32> %a1, <2 x i32> %a2) {
|
|
|
|
; CHECK-LABEL: test_vmaxv_s32_used_by_laneop:
|
|
|
|
; CHECK: smaxp.2s v[[REGNUM:[0-9]+]], v1, v1
|
|
|
|
; CHECK-NEXT: ins.s v0[1], v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
|
|
%0 = tail call i32 @llvm.aarch64.neon.smaxv.i32.v2i32(<2 x i32> %a2)
|
|
|
|
%1 = insertelement <2 x i32> %a1, i32 %0, i32 1
|
|
|
|
ret <2 x i32> %1
|
|
|
|
}
|
|
|
|
|
|
|
|
define <16 x i8> @test_vmaxvq_s8_used_by_laneop(<16 x i8> %a1, <16 x i8> %a2) {
|
|
|
|
; CHECK-LABEL: test_vmaxvq_s8_used_by_laneop:
|
|
|
|
; CHECK: smaxv.16b b[[REGNUM:[0-9]+]], v1
|
|
|
|
; CHECK-NEXT: ins.b v0[3], v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
|
|
%0 = tail call i32 @llvm.aarch64.neon.smaxv.i32.v16i8(<16 x i8> %a2)
|
|
|
|
%1 = trunc i32 %0 to i8
|
|
|
|
%2 = insertelement <16 x i8> %a1, i8 %1, i32 3
|
|
|
|
ret <16 x i8> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <8 x i16> @test_vmaxvq_s16_used_by_laneop(<8 x i16> %a1, <8 x i16> %a2) {
|
|
|
|
; CHECK-LABEL: test_vmaxvq_s16_used_by_laneop:
|
|
|
|
; CHECK: smaxv.8h h[[REGNUM:[0-9]+]], v1
|
|
|
|
; CHECK-NEXT: ins.h v0[3], v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
|
|
%0 = tail call i32 @llvm.aarch64.neon.smaxv.i32.v8i16(<8 x i16> %a2)
|
|
|
|
%1 = trunc i32 %0 to i16
|
|
|
|
%2 = insertelement <8 x i16> %a1, i16 %1, i32 3
|
|
|
|
ret <8 x i16> %2
|
|
|
|
}
|
|
|
|
|
|
|
|
define <4 x i32> @test_vmaxvq_s32_used_by_laneop(<4 x i32> %a1, <4 x i32> %a2) {
|
|
|
|
; CHECK-LABEL: test_vmaxvq_s32_used_by_laneop:
|
|
|
|
; CHECK: smaxv.4s s[[REGNUM:[0-9]+]], v1
|
|
|
|
; CHECK-NEXT: ins.s v0[3], v[[REGNUM]][0]
|
|
|
|
; CHECK-NEXT: ret
|
|
|
|
entry:
|
|
|
|
%0 = tail call i32 @llvm.aarch64.neon.smaxv.i32.v4i32(<4 x i32> %a2)
|
|
|
|
%1 = insertelement <4 x i32> %a1, i32 %0, i32 3
|
|
|
|
ret <4 x i32> %1
|
|
|
|
}
|
|
|
|
|
2014-05-24 20:50:23 +08:00
|
|
|
declare i32 @llvm.aarch64.neon.smaxv.i32.v4i32(<4 x i32>)
|
|
|
|
declare i32 @llvm.aarch64.neon.smaxv.i32.v8i16(<8 x i16>)
|
|
|
|
declare i32 @llvm.aarch64.neon.smaxv.i32.v16i8(<16 x i8>)
|
|
|
|
declare i32 @llvm.aarch64.neon.smaxv.i32.v2i32(<2 x i32>)
|
|
|
|
declare i32 @llvm.aarch64.neon.smaxv.i32.v4i16(<4 x i16>)
|
|
|
|
declare i32 @llvm.aarch64.neon.smaxv.i32.v8i8(<8 x i8>)
|
2014-03-29 18:18:08 +08:00
|
|
|
|