llvm-project/llvm/lib/Support/Path.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1249 lines
35 KiB
C++
Raw Normal View History

//===-- Path.cpp - Implement OS Path Concept ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the operating system Path API.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Path.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Signals.h"
#include <cctype>
#include <cstring>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace llvm;
using namespace llvm::support::endian;
namespace {
using llvm::StringRef;
using llvm::sys::path::is_separator;
using llvm::sys::path::Style;
inline Style real_style(Style style) {
#ifdef _WIN32
return (style == Style::posix) ? Style::posix : Style::windows;
#else
return (style == Style::windows) ? Style::windows : Style::posix;
#endif
}
inline const char *separators(Style style) {
if (real_style(style) == Style::windows)
return "\\/";
return "/";
}
inline char preferred_separator(Style style) {
if (real_style(style) == Style::windows)
return '\\';
return '/';
}
StringRef find_first_component(StringRef path, Style style) {
// Look for this first component in the following order.
// * empty (in this case we return an empty string)
// * either C: or {//,\\}net.
// * {/,\}
// * {file,directory}name
if (path.empty())
return path;
if (real_style(style) == Style::windows) {
// C:
if (path.size() >= 2 &&
std::isalpha(static_cast<unsigned char>(path[0])) && path[1] == ':')
return path.substr(0, 2);
}
// //net
if ((path.size() > 2) && is_separator(path[0], style) &&
path[0] == path[1] && !is_separator(path[2], style)) {
// Find the next directory separator.
size_t end = path.find_first_of(separators(style), 2);
return path.substr(0, end);
}
// {/,\}
if (is_separator(path[0], style))
return path.substr(0, 1);
// * {file,directory}name
size_t end = path.find_first_of(separators(style));
return path.substr(0, end);
}
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Returns the first character of the filename in str. For paths ending in
// '/', it returns the position of the '/'.
size_t filename_pos(StringRef str, Style style) {
if (str.size() > 0 && is_separator(str[str.size() - 1], style))
return str.size() - 1;
size_t pos = str.find_last_of(separators(style), str.size() - 1);
if (real_style(style) == Style::windows) {
if (pos == StringRef::npos)
pos = str.find_last_of(':', str.size() - 2);
}
if (pos == StringRef::npos || (pos == 1 && is_separator(str[0], style)))
return 0;
return pos + 1;
}
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Returns the position of the root directory in str. If there is no root
// directory in str, it returns StringRef::npos.
size_t root_dir_start(StringRef str, Style style) {
// case "c:/"
if (real_style(style) == Style::windows) {
if (str.size() > 2 && str[1] == ':' && is_separator(str[2], style))
return 2;
}
// case "//net"
if (str.size() > 3 && is_separator(str[0], style) && str[0] == str[1] &&
!is_separator(str[2], style)) {
return str.find_first_of(separators(style), 2);
}
// case "/"
if (str.size() > 0 && is_separator(str[0], style))
return 0;
return StringRef::npos;
}
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Returns the position past the end of the "parent path" of path. The parent
// path will not end in '/', unless the parent is the root directory. If the
// path has no parent, 0 is returned.
size_t parent_path_end(StringRef path, Style style) {
size_t end_pos = filename_pos(path, style);
bool filename_was_sep =
path.size() > 0 && is_separator(path[end_pos], style);
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Skip separators until we reach root dir (or the start of the string).
size_t root_dir_pos = root_dir_start(path, style);
while (end_pos > 0 &&
(root_dir_pos == StringRef::npos || end_pos > root_dir_pos) &&
is_separator(path[end_pos - 1], style))
--end_pos;
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
if (end_pos == root_dir_pos && !filename_was_sep) {
// We've reached the root dir and the input path was *not* ending in a
// sequence of slashes. Include the root dir in the parent path.
return root_dir_pos + 1;
}
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Otherwise, just include before the last slash.
return end_pos;
}
} // end unnamed namespace
enum FSEntity {
FS_Dir,
FS_File,
FS_Name
};
static std::error_code
createUniqueEntity(const Twine &Model, int &ResultFD,
SmallVectorImpl<char> &ResultPath, bool MakeAbsolute,
unsigned Mode, FSEntity Type,
sys::fs::OpenFlags Flags = sys::fs::OF_None) {
// Limit the number of attempts we make, so that we don't infinite loop. E.g.
// "permission denied" could be for a specific file (so we retry with a
// different name) or for the whole directory (retry would always fail).
// Checking which is racy, so we try a number of times, then give up.
std::error_code EC;
for (int Retries = 128; Retries > 0; --Retries) {
sys::fs::createUniquePath(Model, ResultPath, MakeAbsolute);
// Try to open + create the file.
switch (Type) {
case FS_File: {
EC = sys::fs::openFileForReadWrite(Twine(ResultPath.begin()), ResultFD,
sys::fs::CD_CreateNew, Flags, Mode);
if (EC) {
// errc::permission_denied happens on Windows when we try to open a file
// that has been marked for deletion.
if (EC == errc::file_exists || EC == errc::permission_denied)
continue;
return EC;
}
return std::error_code();
}
case FS_Name: {
EC = sys::fs::access(ResultPath.begin(), sys::fs::AccessMode::Exist);
if (EC == errc::no_such_file_or_directory)
return std::error_code();
if (EC)
return EC;
continue;
}
case FS_Dir: {
EC = sys::fs::create_directory(ResultPath.begin(), false);
if (EC) {
if (EC == errc::file_exists)
continue;
return EC;
}
return std::error_code();
}
}
llvm_unreachable("Invalid Type");
}
return EC;
}
namespace llvm {
namespace sys {
namespace path {
const_iterator begin(StringRef path, Style style) {
const_iterator i;
i.Path = path;
i.Component = find_first_component(path, style);
i.Position = 0;
i.S = style;
return i;
}
const_iterator end(StringRef path) {
const_iterator i;
i.Path = path;
i.Position = path.size();
return i;
}
const_iterator &const_iterator::operator++() {
assert(Position < Path.size() && "Tried to increment past end!");
// Increment Position to past the current component
Position += Component.size();
// Check for end.
if (Position == Path.size()) {
Component = StringRef();
return *this;
}
// Both POSIX and Windows treat paths that begin with exactly two separators
// specially.
bool was_net = Component.size() > 2 && is_separator(Component[0], S) &&
Component[1] == Component[0] && !is_separator(Component[2], S);
// Handle separators.
if (is_separator(Path[Position], S)) {
// Root dir.
if (was_net ||
// c:/
(real_style(S) == Style::windows && Component.endswith(":"))) {
Component = Path.substr(Position, 1);
return *this;
}
// Skip extra separators.
while (Position != Path.size() && is_separator(Path[Position], S)) {
++Position;
}
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Treat trailing '/' as a '.', unless it is the root dir.
if (Position == Path.size() && Component != "/") {
--Position;
Component = ".";
return *this;
}
}
// Find next component.
size_t end_pos = Path.find_first_of(separators(S), Position);
Component = Path.slice(Position, end_pos);
return *this;
}
bool const_iterator::operator==(const const_iterator &RHS) const {
return Path.begin() == RHS.Path.begin() && Position == RHS.Position;
}
ptrdiff_t const_iterator::operator-(const const_iterator &RHS) const {
return Position - RHS.Position;
}
reverse_iterator rbegin(StringRef Path, Style style) {
reverse_iterator I;
I.Path = Path;
I.Position = Path.size();
I.S = style;
++I;
return I;
}
reverse_iterator rend(StringRef Path) {
reverse_iterator I;
I.Path = Path;
I.Component = Path.substr(0, 0);
I.Position = 0;
return I;
}
reverse_iterator &reverse_iterator::operator++() {
size_t root_dir_pos = root_dir_start(Path, S);
// Skip separators unless it's the root directory.
size_t end_pos = Position;
while (end_pos > 0 && (end_pos - 1) != root_dir_pos &&
is_separator(Path[end_pos - 1], S))
--end_pos;
[Support/Path] Make handling of paths like "///" consistent Summary: Various path functions were not treating paths consisting of slashes alone consistently. For example, the iterator-based accessors decomposed the path "///" into two elements: "/" and ".". This is not too bad, but it is different from the behavior specified by posix: ``` A pathname that contains ***at least one non-slash character*** and that ends with one or more trailing slashes shall be resolved as if a single dot character ( '.' ) were appended to the pathname. ``` More importantly, this was different from how we treated the same path in the filename+parent_path functions, which decomposed this path into "." and "". This was completely wrong as it lost the information that this was an absolute path which referred to the root directory. This patch fixes this behavior by making sure all functions treat paths consisting of (back)slashes alone the same way as "/". I.e., the iterator-based functions will just report one component ("/"), and the filename+parent_path will decompose them into "/" and "". A slightly controversial topic here may be the treatment of "//". Posix says that paths beginning with "//" may have special meaning and indeed we have code which parses paths like "//net/foo/bar" specially. However, as we were already not being consistent in parsing the "//" string alone, and any special parsing for it would complicate the code further, I chose to treat it the same way as longer sequences of slashes (which are guaranteed to be the same as "/"). Another slight change of behavior is in the parsing of paths like "//net//". Previously the last component of this path was ".". However, as in our parsing the "//net" part in this path was the same as the "drive" part in "c:\" and the next slash was the "root directory", it made sense to treat "//net//" the same way as "//net/" (i.e., not to add the extra "." component at the end). Reviewers: zturner, rnk, dblaikie, Bigcheese Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D45942 llvm-svn: 331876
2018-05-09 21:21:16 +08:00
// Treat trailing '/' as a '.', unless it is the root dir.
if (Position == Path.size() && !Path.empty() &&
is_separator(Path.back(), S) &&
(root_dir_pos == StringRef::npos || end_pos - 1 > root_dir_pos)) {
--Position;
Component = ".";
return *this;
}
// Find next separator.
size_t start_pos = filename_pos(Path.substr(0, end_pos), S);
Component = Path.slice(start_pos, end_pos);
Position = start_pos;
return *this;
}
bool reverse_iterator::operator==(const reverse_iterator &RHS) const {
return Path.begin() == RHS.Path.begin() && Component == RHS.Component &&
Position == RHS.Position;
}
ptrdiff_t reverse_iterator::operator-(const reverse_iterator &RHS) const {
return Position - RHS.Position;
}
StringRef root_path(StringRef path, Style style) {
const_iterator b = begin(path, style), pos = b, e = end(path);
if (b != e) {
bool has_net =
b->size() > 2 && is_separator((*b)[0], style) && (*b)[1] == (*b)[0];
bool has_drive = (real_style(style) == Style::windows) && b->endswith(":");
if (has_net || has_drive) {
if ((++pos != e) && is_separator((*pos)[0], style)) {
// {C:/,//net/}, so get the first two components.
return path.substr(0, b->size() + pos->size());
} else {
// just {C:,//net}, return the first component.
return *b;
}
}
// POSIX style root directory.
if (is_separator((*b)[0], style)) {
return *b;
}
}
return StringRef();
}
StringRef root_name(StringRef path, Style style) {
const_iterator b = begin(path, style), e = end(path);
if (b != e) {
bool has_net =
b->size() > 2 && is_separator((*b)[0], style) && (*b)[1] == (*b)[0];
bool has_drive = (real_style(style) == Style::windows) && b->endswith(":");
if (has_net || has_drive) {
// just {C:,//net}, return the first component.
return *b;
}
}
// No path or no name.
return StringRef();
}
StringRef root_directory(StringRef path, Style style) {
const_iterator b = begin(path, style), pos = b, e = end(path);
if (b != e) {
bool has_net =
b->size() > 2 && is_separator((*b)[0], style) && (*b)[1] == (*b)[0];
bool has_drive = (real_style(style) == Style::windows) && b->endswith(":");
if ((has_net || has_drive) &&
// {C:,//net}, skip to the next component.
(++pos != e) && is_separator((*pos)[0], style)) {
return *pos;
}
// POSIX style root directory.
if (!has_net && is_separator((*b)[0], style)) {
return *b;
}
}
// No path or no root.
return StringRef();
}
StringRef relative_path(StringRef path, Style style) {
StringRef root = root_path(path, style);
return path.substr(root.size());
}
void append(SmallVectorImpl<char> &path, Style style, const Twine &a,
const Twine &b, const Twine &c, const Twine &d) {
SmallString<32> a_storage;
SmallString<32> b_storage;
SmallString<32> c_storage;
SmallString<32> d_storage;
SmallVector<StringRef, 4> components;
if (!a.isTriviallyEmpty()) components.push_back(a.toStringRef(a_storage));
if (!b.isTriviallyEmpty()) components.push_back(b.toStringRef(b_storage));
if (!c.isTriviallyEmpty()) components.push_back(c.toStringRef(c_storage));
if (!d.isTriviallyEmpty()) components.push_back(d.toStringRef(d_storage));
for (auto &component : components) {
bool path_has_sep =
!path.empty() && is_separator(path[path.size() - 1], style);
if (path_has_sep) {
// Strip separators from beginning of component.
size_t loc = component.find_first_not_of(separators(style));
StringRef c = component.substr(loc);
// Append it.
path.append(c.begin(), c.end());
continue;
}
bool component_has_sep =
!component.empty() && is_separator(component[0], style);
if (!component_has_sep &&
!(path.empty() || has_root_name(component, style))) {
// Add a separator.
path.push_back(preferred_separator(style));
}
path.append(component.begin(), component.end());
}
}
void append(SmallVectorImpl<char> &path, const Twine &a, const Twine &b,
const Twine &c, const Twine &d) {
append(path, Style::native, a, b, c, d);
}
void append(SmallVectorImpl<char> &path, const_iterator begin,
const_iterator end, Style style) {
for (; begin != end; ++begin)
path::append(path, style, *begin);
}
StringRef parent_path(StringRef path, Style style) {
size_t end_pos = parent_path_end(path, style);
if (end_pos == StringRef::npos)
return StringRef();
else
return path.substr(0, end_pos);
}
void remove_filename(SmallVectorImpl<char> &path, Style style) {
size_t end_pos = parent_path_end(StringRef(path.begin(), path.size()), style);
if (end_pos != StringRef::npos)
path.set_size(end_pos);
}
void replace_extension(SmallVectorImpl<char> &path, const Twine &extension,
Style style) {
StringRef p(path.begin(), path.size());
SmallString<32> ext_storage;
StringRef ext = extension.toStringRef(ext_storage);
// Erase existing extension.
size_t pos = p.find_last_of('.');
if (pos != StringRef::npos && pos >= filename_pos(p, style))
path.set_size(pos);
// Append '.' if needed.
if (ext.size() > 0 && ext[0] != '.')
path.push_back('.');
// Append extension.
path.append(ext.begin(), ext.end());
}
void replace_path_prefix(SmallVectorImpl<char> &Path,
const StringRef &OldPrefix, const StringRef &NewPrefix,
Style style) {
if (OldPrefix.empty() && NewPrefix.empty())
return;
StringRef OrigPath(Path.begin(), Path.size());
if (!OrigPath.startswith(OldPrefix))
return;
// If prefixes have the same size we can simply copy the new one over.
if (OldPrefix.size() == NewPrefix.size()) {
2018-11-17 09:44:25 +08:00
llvm::copy(NewPrefix, Path.begin());
return;
}
StringRef RelPath = OrigPath.substr(OldPrefix.size());
SmallString<256> NewPath;
path::append(NewPath, style, NewPrefix);
path::append(NewPath, style, RelPath);
Path.swap(NewPath);
}
void native(const Twine &path, SmallVectorImpl<char> &result, Style style) {
assert((!path.isSingleStringRef() ||
path.getSingleStringRef().data() != result.data()) &&
"path and result are not allowed to overlap!");
// Clear result.
result.clear();
path.toVector(result);
native(result, style);
}
void native(SmallVectorImpl<char> &Path, Style style) {
if (Path.empty())
return;
if (real_style(style) == Style::windows) {
std::replace(Path.begin(), Path.end(), '/', '\\');
if (Path[0] == '~' && (Path.size() == 1 || is_separator(Path[1], style))) {
SmallString<128> PathHome;
home_directory(PathHome);
PathHome.append(Path.begin() + 1, Path.end());
Path = PathHome;
}
} else {
for (auto PI = Path.begin(), PE = Path.end(); PI < PE; ++PI) {
if (*PI == '\\') {
auto PN = PI + 1;
if (PN < PE && *PN == '\\')
++PI; // increment once, the for loop will move over the escaped slash
else
*PI = '/';
}
}
}
}
std::string convert_to_slash(StringRef path, Style style) {
if (real_style(style) != Style::windows)
return path;
std::string s = path.str();
std::replace(s.begin(), s.end(), '\\', '/');
return s;
}
StringRef filename(StringRef path, Style style) { return *rbegin(path, style); }
StringRef stem(StringRef path, Style style) {
StringRef fname = filename(path, style);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
return fname;
else
if ((fname.size() == 1 && fname == ".") ||
(fname.size() == 2 && fname == ".."))
return fname;
else
return fname.substr(0, pos);
}
StringRef extension(StringRef path, Style style) {
StringRef fname = filename(path, style);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
return StringRef();
else
if ((fname.size() == 1 && fname == ".") ||
(fname.size() == 2 && fname == ".."))
return StringRef();
else
return fname.substr(pos);
}
bool is_separator(char value, Style style) {
if (value == '/')
return true;
if (real_style(style) == Style::windows)
return value == '\\';
return false;
}
StringRef get_separator(Style style) {
if (real_style(style) == Style::windows)
return "\\";
return "/";
}
bool has_root_name(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_name(p, style).empty();
}
bool has_root_directory(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_directory(p, style).empty();
}
bool has_root_path(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_path(p, style).empty();
}
bool has_relative_path(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !relative_path(p, style).empty();
}
bool has_filename(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !filename(p, style).empty();
}
bool has_parent_path(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !parent_path(p, style).empty();
}
bool has_stem(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !stem(p, style).empty();
}
bool has_extension(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !extension(p, style).empty();
}
bool is_absolute(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
bool rootDir = has_root_directory(p, style);
bool rootName =
(real_style(style) != Style::windows) || has_root_name(p, style);
return rootDir && rootName;
}
bool is_relative(const Twine &path, Style style) {
return !is_absolute(path, style);
}
StringRef remove_leading_dotslash(StringRef Path, Style style) {
// Remove leading "./" (or ".//" or "././" etc.)
while (Path.size() > 2 && Path[0] == '.' && is_separator(Path[1], style)) {
Path = Path.substr(2);
while (Path.size() > 0 && is_separator(Path[0], style))
Path = Path.substr(1);
}
return Path;
}
static SmallString<256> remove_dots(StringRef path, bool remove_dot_dot,
Style style) {
SmallVector<StringRef, 16> components;
// Skip the root path, then look for traversal in the components.
StringRef rel = path::relative_path(path, style);
for (StringRef C :
llvm::make_range(path::begin(rel, style), path::end(rel))) {
if (C == ".")
continue;
// Leading ".." will remain in the path unless it's at the root.
if (remove_dot_dot && C == "..") {
if (!components.empty() && components.back() != "..") {
components.pop_back();
continue;
}
if (path::is_absolute(path, style))
continue;
}
components.push_back(C);
}
SmallString<256> buffer = path::root_path(path, style);
for (StringRef C : components)
path::append(buffer, style, C);
return buffer;
}
bool remove_dots(SmallVectorImpl<char> &path, bool remove_dot_dot,
Style style) {
StringRef p(path.data(), path.size());
SmallString<256> result = remove_dots(p, remove_dot_dot, style);
if (result == path)
return false;
path.swap(result);
return true;
}
} // end namespace path
namespace fs {
std::error_code getUniqueID(const Twine Path, UniqueID &Result) {
file_status Status;
std::error_code EC = status(Path, Status);
if (EC)
return EC;
Result = Status.getUniqueID();
return std::error_code();
}
void createUniquePath(const Twine &Model, SmallVectorImpl<char> &ResultPath,
bool MakeAbsolute) {
SmallString<128> ModelStorage;
Model.toVector(ModelStorage);
if (MakeAbsolute) {
// Make model absolute by prepending a temp directory if it's not already.
if (!sys::path::is_absolute(Twine(ModelStorage))) {
SmallString<128> TDir;
sys::path::system_temp_directory(true, TDir);
sys::path::append(TDir, Twine(ModelStorage));
ModelStorage.swap(TDir);
}
}
ResultPath = ModelStorage;
ResultPath.push_back(0);
ResultPath.pop_back();
// Replace '%' with random chars.
for (unsigned i = 0, e = ModelStorage.size(); i != e; ++i) {
if (ModelStorage[i] == '%')
ResultPath[i] = "0123456789abcdef"[sys::Process::GetRandomNumber() & 15];
}
}
std::error_code createUniqueFile(const Twine &Model, int &ResultFd,
SmallVectorImpl<char> &ResultPath,
unsigned Mode) {
return createUniqueEntity(Model, ResultFd, ResultPath, false, Mode, FS_File);
}
static std::error_code createUniqueFile(const Twine &Model, int &ResultFd,
SmallVectorImpl<char> &ResultPath,
unsigned Mode, OpenFlags Flags) {
return createUniqueEntity(Model, ResultFd, ResultPath, false, Mode, FS_File,
Flags);
}
std::error_code createUniqueFile(const Twine &Model,
SmallVectorImpl<char> &ResultPath,
unsigned Mode) {
int FD;
auto EC = createUniqueFile(Model, FD, ResultPath, Mode);
if (EC)
return EC;
// FD is only needed to avoid race conditions. Close it right away.
close(FD);
return EC;
}
static std::error_code
createTemporaryFile(const Twine &Model, int &ResultFD,
llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) {
SmallString<128> Storage;
StringRef P = Model.toNullTerminatedStringRef(Storage);
assert(P.find_first_of(separators(Style::native)) == StringRef::npos &&
"Model must be a simple filename.");
// Use P.begin() so that createUniqueEntity doesn't need to recreate Storage.
return createUniqueEntity(P.begin(), ResultFD, ResultPath, true,
owner_read | owner_write, Type);
}
static std::error_code
createTemporaryFile(const Twine &Prefix, StringRef Suffix, int &ResultFD,
llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) {
const char *Middle = Suffix.empty() ? "-%%%%%%" : "-%%%%%%.";
return createTemporaryFile(Prefix + Middle + Suffix, ResultFD, ResultPath,
Type);
}
std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix,
int &ResultFD,
SmallVectorImpl<char> &ResultPath) {
return createTemporaryFile(Prefix, Suffix, ResultFD, ResultPath, FS_File);
}
std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix,
SmallVectorImpl<char> &ResultPath) {
int FD;
auto EC = createTemporaryFile(Prefix, Suffix, FD, ResultPath);
if (EC)
return EC;
// FD is only needed to avoid race conditions. Close it right away.
close(FD);
return EC;
}
// This is a mkdtemp with a different pattern. We use createUniqueEntity mostly
2013-06-28 18:55:41 +08:00
// for consistency. We should try using mkdtemp.
std::error_code createUniqueDirectory(const Twine &Prefix,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createUniqueEntity(Prefix + "-%%%%%%", Dummy, ResultPath, true, 0,
FS_Dir);
}
std::error_code
getPotentiallyUniqueFileName(const Twine &Model,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createUniqueEntity(Model, Dummy, ResultPath, false, 0, FS_Name);
}
std::error_code
getPotentiallyUniqueTempFileName(const Twine &Prefix, StringRef Suffix,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createTemporaryFile(Prefix, Suffix, Dummy, ResultPath, FS_Name);
}
void make_absolute(const Twine &current_directory,
SmallVectorImpl<char> &path) {
StringRef p(path.data(), path.size());
bool rootDirectory = path::has_root_directory(p);
bool rootName = path::has_root_name(p);
// Already absolute.
if ((rootName || real_style(Style::native) != Style::windows) &&
rootDirectory)
return;
// All of the following conditions will need the current directory.
SmallString<128> current_dir;
current_directory.toVector(current_dir);
// Relative path. Prepend the current directory.
if (!rootName && !rootDirectory) {
// Append path to the current directory.
path::append(current_dir, p);
// Set path to the result.
path.swap(current_dir);
return;
}
if (!rootName && rootDirectory) {
StringRef cdrn = path::root_name(current_dir);
SmallString<128> curDirRootName(cdrn.begin(), cdrn.end());
path::append(curDirRootName, p);
// Set path to the result.
path.swap(curDirRootName);
return;
}
if (rootName && !rootDirectory) {
StringRef pRootName = path::root_name(p);
StringRef bRootDirectory = path::root_directory(current_dir);
StringRef bRelativePath = path::relative_path(current_dir);
StringRef pRelativePath = path::relative_path(p);
SmallString<128> res;
path::append(res, pRootName, bRootDirectory, bRelativePath, pRelativePath);
path.swap(res);
return;
}
llvm_unreachable("All rootName and rootDirectory combinations should have "
"occurred above!");
}
std::error_code make_absolute(SmallVectorImpl<char> &path) {
if (path::is_absolute(path))
return {};
SmallString<128> current_dir;
if (std::error_code ec = current_path(current_dir))
return ec;
make_absolute(current_dir, path);
return {};
}
std::error_code create_directories(const Twine &Path, bool IgnoreExisting,
perms Perms) {
SmallString<128> PathStorage;
StringRef P = Path.toStringRef(PathStorage);
// Be optimistic and try to create the directory
std::error_code EC = create_directory(P, IgnoreExisting, Perms);
// If we succeeded, or had any error other than the parent not existing, just
// return it.
if (EC != errc::no_such_file_or_directory)
return EC;
// We failed because of a no_such_file_or_directory, try to create the
// parent.
StringRef Parent = path::parent_path(P);
if (Parent.empty())
return EC;
if ((EC = create_directories(Parent, IgnoreExisting, Perms)))
return EC;
return create_directory(P, IgnoreExisting, Perms);
}
static std::error_code copy_file_internal(int ReadFD, int WriteFD) {
const size_t BufSize = 4096;
char *Buf = new char[BufSize];
int BytesRead = 0, BytesWritten = 0;
for (;;) {
BytesRead = read(ReadFD, Buf, BufSize);
if (BytesRead <= 0)
break;
while (BytesRead) {
BytesWritten = write(WriteFD, Buf, BytesRead);
if (BytesWritten < 0)
break;
BytesRead -= BytesWritten;
}
if (BytesWritten < 0)
break;
}
delete[] Buf;
if (BytesRead < 0 || BytesWritten < 0)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
#ifndef __APPLE__
std::error_code copy_file(const Twine &From, const Twine &To) {
int ReadFD, WriteFD;
if (std::error_code EC = openFileForRead(From, ReadFD, OF_None))
return EC;
if (std::error_code EC =
openFileForWrite(To, WriteFD, CD_CreateAlways, OF_None)) {
close(ReadFD);
return EC;
}
std::error_code EC = copy_file_internal(ReadFD, WriteFD);
close(ReadFD);
close(WriteFD);
return EC;
}
#endif
std::error_code copy_file(const Twine &From, int ToFD) {
int ReadFD;
if (std::error_code EC = openFileForRead(From, ReadFD, OF_None))
return EC;
std::error_code EC = copy_file_internal(ReadFD, ToFD);
close(ReadFD);
return EC;
}
ErrorOr<MD5::MD5Result> md5_contents(int FD) {
MD5 Hash;
constexpr size_t BufSize = 4096;
std::vector<uint8_t> Buf(BufSize);
int BytesRead = 0;
for (;;) {
BytesRead = read(FD, Buf.data(), BufSize);
if (BytesRead <= 0)
break;
Hash.update(makeArrayRef(Buf.data(), BytesRead));
}
if (BytesRead < 0)
return std::error_code(errno, std::generic_category());
MD5::MD5Result Result;
Hash.final(Result);
return Result;
}
ErrorOr<MD5::MD5Result> md5_contents(const Twine &Path) {
int FD;
if (auto EC = openFileForRead(Path, FD, OF_None))
return EC;
auto Result = md5_contents(FD);
close(FD);
return Result;
}
bool exists(const basic_file_status &status) {
return status_known(status) && status.type() != file_type::file_not_found;
}
bool status_known(const basic_file_status &s) {
return s.type() != file_type::status_error;
}
file_type get_file_type(const Twine &Path, bool Follow) {
file_status st;
if (status(Path, st, Follow))
return file_type::status_error;
return st.type();
}
bool is_directory(const basic_file_status &status) {
return status.type() == file_type::directory_file;
}
std::error_code is_directory(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st))
return ec;
result = is_directory(st);
return std::error_code();
}
bool is_regular_file(const basic_file_status &status) {
return status.type() == file_type::regular_file;
}
std::error_code is_regular_file(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st))
return ec;
result = is_regular_file(st);
return std::error_code();
}
bool is_symlink_file(const basic_file_status &status) {
return status.type() == file_type::symlink_file;
}
std::error_code is_symlink_file(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st, false))
return ec;
result = is_symlink_file(st);
return std::error_code();
}
bool is_other(const basic_file_status &status) {
return exists(status) &&
!is_regular_file(status) &&
!is_directory(status);
}
std::error_code is_other(const Twine &Path, bool &Result) {
file_status FileStatus;
if (std::error_code EC = status(Path, FileStatus))
return EC;
Result = is_other(FileStatus);
return std::error_code();
}
void directory_entry::replace_filename(const Twine &Filename, file_type Type,
basic_file_status Status) {
SmallString<128> PathStr = path::parent_path(Path);
path::append(PathStr, Filename);
this->Path = PathStr.str();
this->Type = Type;
this->Status = Status;
}
ErrorOr<perms> getPermissions(const Twine &Path) {
file_status Status;
if (std::error_code EC = status(Path, Status))
return EC;
return Status.permissions();
}
} // end namespace fs
} // end namespace sys
} // end namespace llvm
// Include the truly platform-specific parts.
#if defined(LLVM_ON_UNIX)
#include "Unix/Path.inc"
#endif
#if defined(_WIN32)
#include "Windows/Path.inc"
#endif
namespace llvm {
namespace sys {
namespace fs {
TempFile::TempFile(StringRef Name, int FD) : TmpName(Name), FD(FD) {}
TempFile::TempFile(TempFile &&Other) { *this = std::move(Other); }
TempFile &TempFile::operator=(TempFile &&Other) {
TmpName = std::move(Other.TmpName);
FD = Other.FD;
Other.Done = true;
Other.FD = -1;
return *this;
}
TempFile::~TempFile() { assert(Done); }
Error TempFile::discard() {
Done = true;
if (FD != -1 && close(FD) == -1) {
std::error_code EC = std::error_code(errno, std::generic_category());
return errorCodeToError(EC);
}
FD = -1;
#ifdef _WIN32
// On windows closing will remove the file.
TmpName = "";
return Error::success();
#else
// Always try to close and remove.
std::error_code RemoveEC;
if (!TmpName.empty()) {
RemoveEC = fs::remove(TmpName);
sys::DontRemoveFileOnSignal(TmpName);
if (!RemoveEC)
TmpName = "";
}
return errorCodeToError(RemoveEC);
#endif
}
Error TempFile::keep(const Twine &Name) {
assert(!Done);
Done = true;
// Always try to close and rename.
#ifdef _WIN32
// If we can't cancel the delete don't rename.
LTO: Keep file handles open for memory mapped files. On Windows we've observed that if you open a file, write to it, map it into memory and close the file handle, the contents of the memory mapping can sometimes be incorrect. That was what we did when adding an entry to the ThinLTO cache using the TempFile and MemoryBuffer classes, and it was causing intermittent build failures on Chromium's ThinLTO bots on Windows. More details are in the associated Chromium bug (crbug.com/786127). We can prevent this from happening by keeping a handle to the file open while the mapping is active. So this patch changes the mapped_file_region class to duplicate the file handle when mapping the file and close it upon unmapping it. One gotcha is that the file handle that we keep open must not have been created with FILE_FLAG_DELETE_ON_CLOSE, as otherwise the operating system will prevent other processes from opening the file. We can achieve this by avoiding the use of FILE_FLAG_DELETE_ON_CLOSE altogether. Instead, we use SetFileInformationByHandle with FileDispositionInfo to manage the delete-on-close bit. This lets us remove the hack that we used to use to clear the delete-on-close bit on a file opened with FILE_FLAG_DELETE_ON_CLOSE. A downside of using SetFileInformationByHandle/FileDispositionInfo as opposed to FILE_FLAG_DELETE_ON_CLOSE is that it prevents us from using CreateFile to open the file while the flag is set, even within the same process. This doesn't seem to matter for almost every client of TempFile, except for LockFileManager, which calls sys::fs::create_link to create a hard link from the lock file, and in the process of doing so tries to open the file. To prevent this change from breaking LockFileManager I changed it to stop using TempFile by effectively reverting r318550. Differential Revision: https://reviews.llvm.org/D48051 llvm-svn: 334630
2018-06-14 02:03:14 +08:00
auto H = reinterpret_cast<HANDLE>(_get_osfhandle(FD));
std::error_code RenameEC = setDeleteDisposition(H, false);
if (!RenameEC) {
RenameEC = rename_fd(FD, Name);
// If rename failed because it's cross-device, copy instead
if (RenameEC ==
std::error_code(ERROR_NOT_SAME_DEVICE, std::system_category())) {
RenameEC = copy_file(TmpName, Name);
setDeleteDisposition(H, true);
}
}
// If we can't rename, discard the temporary file.
if (RenameEC)
LTO: Keep file handles open for memory mapped files. On Windows we've observed that if you open a file, write to it, map it into memory and close the file handle, the contents of the memory mapping can sometimes be incorrect. That was what we did when adding an entry to the ThinLTO cache using the TempFile and MemoryBuffer classes, and it was causing intermittent build failures on Chromium's ThinLTO bots on Windows. More details are in the associated Chromium bug (crbug.com/786127). We can prevent this from happening by keeping a handle to the file open while the mapping is active. So this patch changes the mapped_file_region class to duplicate the file handle when mapping the file and close it upon unmapping it. One gotcha is that the file handle that we keep open must not have been created with FILE_FLAG_DELETE_ON_CLOSE, as otherwise the operating system will prevent other processes from opening the file. We can achieve this by avoiding the use of FILE_FLAG_DELETE_ON_CLOSE altogether. Instead, we use SetFileInformationByHandle with FileDispositionInfo to manage the delete-on-close bit. This lets us remove the hack that we used to use to clear the delete-on-close bit on a file opened with FILE_FLAG_DELETE_ON_CLOSE. A downside of using SetFileInformationByHandle/FileDispositionInfo as opposed to FILE_FLAG_DELETE_ON_CLOSE is that it prevents us from using CreateFile to open the file while the flag is set, even within the same process. This doesn't seem to matter for almost every client of TempFile, except for LockFileManager, which calls sys::fs::create_link to create a hard link from the lock file, and in the process of doing so tries to open the file. To prevent this change from breaking LockFileManager I changed it to stop using TempFile by effectively reverting r318550. Differential Revision: https://reviews.llvm.org/D48051 llvm-svn: 334630
2018-06-14 02:03:14 +08:00
setDeleteDisposition(H, true);
#else
std::error_code RenameEC = fs::rename(TmpName, Name);
if (RenameEC) {
// If we can't rename, try to copy to work around cross-device link issues.
RenameEC = sys::fs::copy_file(TmpName, Name);
// If we can't rename or copy, discard the temporary file.
if (RenameEC)
remove(TmpName);
}
sys::DontRemoveFileOnSignal(TmpName);
#endif
if (!RenameEC)
TmpName = "";
if (close(FD) == -1) {
std::error_code EC(errno, std::generic_category());
return errorCodeToError(EC);
}
FD = -1;
return errorCodeToError(RenameEC);
}
Error TempFile::keep() {
assert(!Done);
Done = true;
#ifdef _WIN32
LTO: Keep file handles open for memory mapped files. On Windows we've observed that if you open a file, write to it, map it into memory and close the file handle, the contents of the memory mapping can sometimes be incorrect. That was what we did when adding an entry to the ThinLTO cache using the TempFile and MemoryBuffer classes, and it was causing intermittent build failures on Chromium's ThinLTO bots on Windows. More details are in the associated Chromium bug (crbug.com/786127). We can prevent this from happening by keeping a handle to the file open while the mapping is active. So this patch changes the mapped_file_region class to duplicate the file handle when mapping the file and close it upon unmapping it. One gotcha is that the file handle that we keep open must not have been created with FILE_FLAG_DELETE_ON_CLOSE, as otherwise the operating system will prevent other processes from opening the file. We can achieve this by avoiding the use of FILE_FLAG_DELETE_ON_CLOSE altogether. Instead, we use SetFileInformationByHandle with FileDispositionInfo to manage the delete-on-close bit. This lets us remove the hack that we used to use to clear the delete-on-close bit on a file opened with FILE_FLAG_DELETE_ON_CLOSE. A downside of using SetFileInformationByHandle/FileDispositionInfo as opposed to FILE_FLAG_DELETE_ON_CLOSE is that it prevents us from using CreateFile to open the file while the flag is set, even within the same process. This doesn't seem to matter for almost every client of TempFile, except for LockFileManager, which calls sys::fs::create_link to create a hard link from the lock file, and in the process of doing so tries to open the file. To prevent this change from breaking LockFileManager I changed it to stop using TempFile by effectively reverting r318550. Differential Revision: https://reviews.llvm.org/D48051 llvm-svn: 334630
2018-06-14 02:03:14 +08:00
auto H = reinterpret_cast<HANDLE>(_get_osfhandle(FD));
if (std::error_code EC = setDeleteDisposition(H, false))
return errorCodeToError(EC);
#else
sys::DontRemoveFileOnSignal(TmpName);
#endif
TmpName = "";
if (close(FD) == -1) {
std::error_code EC(errno, std::generic_category());
return errorCodeToError(EC);
}
FD = -1;
return Error::success();
}
Expected<TempFile> TempFile::create(const Twine &Model, unsigned Mode) {
int FD;
SmallString<128> ResultPath;
if (std::error_code EC =
createUniqueFile(Model, FD, ResultPath, Mode, OF_Delete))
return errorCodeToError(EC);
TempFile Ret(ResultPath, FD);
#ifndef _WIN32
if (sys::RemoveFileOnSignal(ResultPath)) {
// Make sure we delete the file when RemoveFileOnSignal fails.
consumeError(Ret.discard());
std::error_code EC(errc::operation_not_permitted);
return errorCodeToError(EC);
}
#endif
return std::move(Ret);
}
}
} // end namsspace sys
} // end namespace llvm