2021-05-11 01:34:21 +08:00
|
|
|
//===- Sparsification.cpp - Implementation of sparsification --------------===//
|
2020-11-18 04:13:18 +08:00
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
2021-07-31 03:59:20 +08:00
|
|
|
// This file implements converting sparse tensor types to actual sparse code.
|
2020-11-18 04:13:18 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
2021-06-21 16:45:16 +08:00
|
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
2020-11-18 04:13:18 +08:00
|
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
2021-04-30 05:31:18 +08:00
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
2021-05-04 11:55:12 +08:00
|
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
2021-06-25 06:18:40 +08:00
|
|
|
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
|
2020-11-18 04:13:18 +08:00
|
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
2021-05-04 11:55:12 +08:00
|
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
2021-01-14 02:33:28 +08:00
|
|
|
#include "mlir/IR/Matchers.h"
|
2021-05-11 01:34:21 +08:00
|
|
|
#include "mlir/IR/TensorEncoding.h"
|
2021-05-04 11:55:12 +08:00
|
|
|
#include "llvm/ADT/SmallBitVector.h"
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
using namespace mlir;
|
2021-05-11 01:34:21 +08:00
|
|
|
using namespace mlir::sparse_tensor;
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Code generation.
|
|
|
|
struct CodeGen {
|
2021-05-11 01:34:21 +08:00
|
|
|
CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops)
|
2020-11-25 07:36:10 +08:00
|
|
|
: options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
|
2020-11-18 04:13:18 +08:00
|
|
|
pointers(numTensors, std::vector<Value>(numLoops)),
|
|
|
|
indices(numTensors, std::vector<Value>(numLoops)),
|
|
|
|
highs(numTensors, std::vector<Value>(numLoops)),
|
|
|
|
pidxs(numTensors, std::vector<Value>(numLoops)),
|
2021-01-14 02:33:28 +08:00
|
|
|
idxs(numTensors, std::vector<Value>(numLoops)), redExp(-1u), redVal(),
|
|
|
|
curVecLength(1), curVecMask() {}
|
2020-12-18 07:42:23 +08:00
|
|
|
/// Sparsification options.
|
2021-05-11 01:34:21 +08:00
|
|
|
SparsificationOptions options;
|
2020-12-18 07:42:23 +08:00
|
|
|
/// Universal dense indices and upper bounds (by index). The loops array
|
|
|
|
/// is updated with the value of the universal dense index in the current
|
|
|
|
/// loop. The sizes array is set once with the inferred dimension sizes.
|
2020-11-18 04:13:18 +08:00
|
|
|
std::vector<Value> loops;
|
|
|
|
std::vector<Value> sizes;
|
2020-12-18 07:42:23 +08:00
|
|
|
/// Buffers for storing dense and sparse numerical values (by tensor).
|
|
|
|
/// This array is set once during bufferization of all tensors.
|
2020-11-18 04:13:18 +08:00
|
|
|
std::vector<Value> buffers;
|
2020-12-18 07:42:23 +08:00
|
|
|
/// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
|
|
|
|
/// This array is set once during bufferization of all sparse tensors.
|
2020-11-18 04:13:18 +08:00
|
|
|
std::vector<std::vector<Value>> pointers;
|
|
|
|
std::vector<std::vector<Value>> indices;
|
2020-12-18 07:42:23 +08:00
|
|
|
/// Sparse iteration information (by tensor and index). These arrays
|
|
|
|
/// are updated to remain current within the current loop.
|
2020-11-18 04:13:18 +08:00
|
|
|
std::vector<std::vector<Value>> highs;
|
|
|
|
std::vector<std::vector<Value>> pidxs;
|
|
|
|
std::vector<std::vector<Value>> idxs;
|
2020-12-18 07:42:23 +08:00
|
|
|
/// Current reduction, updated during code generation. When indices of a
|
|
|
|
/// reduction are exhausted, all inner loops can "scalarize" the reduction.
|
|
|
|
// TODO: currently only done for (a chain of) innermost for-loops, where it
|
|
|
|
// is most effective; we could generalize to more outer and while-loops.
|
|
|
|
unsigned redExp;
|
|
|
|
Value redVal;
|
2021-01-14 02:33:28 +08:00
|
|
|
// Current vector length and mask.
|
|
|
|
unsigned curVecLength;
|
|
|
|
Value curVecMask;
|
2020-11-18 04:13:18 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// Helper method to apply dimension ordering permutation.
|
|
|
|
static unsigned perm(SparseTensorEncodingAttr &enc, unsigned d) {
|
|
|
|
if (enc) {
|
|
|
|
auto order = enc.getDimOrdering();
|
|
|
|
if (order) {
|
|
|
|
assert(order.isPermutation());
|
|
|
|
return order.getDimPosition(d);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return d;
|
|
|
|
}
|
|
|
|
|
2021-05-11 01:34:21 +08:00
|
|
|
// Helper method to translate dim level type to internal representation.
|
|
|
|
static Dim toDim(SparseTensorEncodingAttr &enc, unsigned d) {
|
|
|
|
if (enc) {
|
|
|
|
SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
|
|
|
|
if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
|
|
|
|
return Dim::kSparse;
|
|
|
|
if (tp == SparseTensorEncodingAttr::DimLevelType::Singleton)
|
|
|
|
return Dim::kSingle;
|
|
|
|
}
|
|
|
|
return Dim::kDense;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Helper method to inspect sparse encodings in the tensor types.
|
2020-11-18 04:13:18 +08:00
|
|
|
/// Fills the per-dimension sparsity information for all tensors.
|
2021-05-20 01:13:40 +08:00
|
|
|
static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
|
|
|
|
bool annotated = false;
|
2021-06-02 14:21:13 +08:00
|
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
|
|
auto map = op.getTiedIndexingMap(t);
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
if (!map.isProjectedPermutation())
|
|
|
|
return false;
|
2021-06-02 14:21:13 +08:00
|
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
2021-06-12 01:33:43 +08:00
|
|
|
if (enc)
|
2021-05-20 01:13:40 +08:00
|
|
|
annotated = true;
|
2021-06-02 14:21:13 +08:00
|
|
|
assert(map.getNumResults() == op.getRank(t));
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
|
|
unsigned idx = map.getDimPosition(perm(enc, d));
|
2021-06-02 14:21:13 +08:00
|
|
|
merger.setDim(t->getOperandNumber(), idx, toDim(enc, d));
|
2020-12-18 07:42:23 +08:00
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2021-05-20 01:13:40 +08:00
|
|
|
return annotated;
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// A DFS helper to compute a topological sort. Note that recursion is
|
|
|
|
/// bounded by the number of implicit loops, which is always small.
|
|
|
|
/// Returns false when a cycle is detected.
|
|
|
|
static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
|
|
|
|
std::vector<unsigned> &topSort,
|
|
|
|
std::vector<std::vector<bool>> &adjM) {
|
|
|
|
if (visit[i] != 0)
|
|
|
|
return visit[i] != 1; // 1 denotes cycle!
|
|
|
|
visit[i] = 1;
|
|
|
|
for (unsigned j = 0, e = visit.size(); j < e; j++)
|
|
|
|
if (adjM[i][j])
|
|
|
|
if (!topSortDFS(j, visit, topSort, adjM))
|
|
|
|
return false;
|
|
|
|
visit[i] = 2;
|
|
|
|
topSort.push_back(i);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes a topologically sorted iteration graph for the linalg operation.
|
|
|
|
/// Ensures all tensors are visited in natural index order. This is essential
|
|
|
|
/// for sparse storage formats since these only support access along fixed
|
|
|
|
/// dimensions. Even for dense storage formats, however, the natural index
|
|
|
|
/// order yields innermost unit-stride access with better spatial locality.
|
2021-01-15 04:04:49 +08:00
|
|
|
static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
|
|
|
|
std::vector<unsigned> &topSort,
|
|
|
|
bool sparseOnly) {
|
2020-11-18 04:13:18 +08:00
|
|
|
// Set up an n x n from/to adjacency matrix of the iteration graph
|
|
|
|
// for the implicit loop indices i_0 .. i_n-1.
|
|
|
|
unsigned n = op.getNumLoops();
|
|
|
|
std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
|
|
|
|
|
|
|
|
// Iterate over the indexing maps of every tensor in the tensor expression.
|
2021-06-02 14:21:13 +08:00
|
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
|
|
auto map = op.getTiedIndexingMap(t);
|
|
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
2020-11-18 04:13:18 +08:00
|
|
|
assert(map.getNumDims() == n);
|
2021-01-15 04:04:49 +08:00
|
|
|
// Skip dense tensor constraints when sparse only is requested.
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
if (sparseOnly && !enc)
|
2021-01-15 04:04:49 +08:00
|
|
|
continue;
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
// Each tensor expression and optional dimension ordering (row-major
|
|
|
|
// by default) puts an ordering constraint on the loop indices. For
|
|
|
|
// example, the tensor expresion A_ijk forces the ordering i < j < k
|
|
|
|
// on the loop indices if no explicit dimension ordering is given.
|
|
|
|
for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
|
|
|
|
unsigned f = map.getDimPosition(perm(enc, d - 1));
|
|
|
|
unsigned t = map.getDimPosition(perm(enc, d));
|
2020-11-18 04:13:18 +08:00
|
|
|
adjM[f][t] = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Topologically sort the iteration graph to determine loop order.
|
|
|
|
// Report failure for a cyclic iteration graph.
|
2021-01-15 04:04:49 +08:00
|
|
|
topSort.clear();
|
2020-11-18 04:13:18 +08:00
|
|
|
topSort.reserve(n);
|
|
|
|
std::vector<unsigned> visit(n, 0);
|
|
|
|
for (unsigned i = 0; i < n; i++)
|
|
|
|
if (visit[i] == 0)
|
|
|
|
if (!topSortDFS(i, visit, topSort, adjM))
|
|
|
|
return false; // cycle!
|
|
|
|
std::reverse(std::begin(topSort), std::end(topSort));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-06-19 07:24:55 +08:00
|
|
|
/// Returns true when the tensor expression is admissable for codegen.
|
|
|
|
/// Since all sparse input tensors are admissable, we just need to check
|
|
|
|
/// whether the output tensor in the tensor expression codegen is admissable.
|
|
|
|
static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
|
|
|
|
unsigned exp) {
|
|
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
|
|
|
unsigned tensor = lhs->getOperandNumber();
|
|
|
|
auto enc = getSparseTensorEncoding(lhs->get().getType());
|
|
|
|
// An non-annotated output tensor is assumed dense, and becomes a random
|
|
|
|
// access n-dim memref. Admissable since inserstions cannot occur.
|
|
|
|
if (!enc)
|
|
|
|
return true;
|
|
|
|
// An all-dense annotated "sparse" output tensor becomes a linearized random
|
|
|
|
// access 1-dim memref. Also admissable since insertions cannot occur.
|
|
|
|
bool allDense = true;
|
|
|
|
unsigned numLoops = op.iterator_types().getValue().size();
|
|
|
|
for (unsigned i = 0; i < numLoops; i++)
|
|
|
|
if (merger.isDim(tensor, i, Dim::kSparse)) {
|
|
|
|
allDense = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (allDense)
|
|
|
|
return true;
|
|
|
|
// A tensor expression with a sparse output tensor that changes its values
|
|
|
|
// but not its nonzero structure, an operation called "simply dynamic" in
|
|
|
|
// [Bik96,Ch9], is also admissable without special codegen.
|
2021-07-13 06:22:31 +08:00
|
|
|
if (merger.isConjunction(tensor, exp))
|
2021-06-19 07:24:55 +08:00
|
|
|
return true;
|
|
|
|
// Reject for now since this requires changes to the nonzero structure.
|
|
|
|
// TODO: implement "workspaces" [Kjolstad2019]
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-11-26 04:29:05 +08:00
|
|
|
/// Maps sparse integer option to actual integral storage type.
|
2021-05-11 01:34:21 +08:00
|
|
|
static Type genIntType(PatternRewriter &rewriter, unsigned width) {
|
|
|
|
if (width == 0)
|
2020-11-26 04:29:05 +08:00
|
|
|
return rewriter.getIndexType();
|
2021-05-11 01:34:21 +08:00
|
|
|
return rewriter.getIntegerType(width);
|
2020-11-26 04:29:05 +08:00
|
|
|
}
|
|
|
|
|
2021-05-15 12:02:31 +08:00
|
|
|
/// Detects in-place annotation on tensor argument.
|
|
|
|
static bool getInPlace(Value val) {
|
|
|
|
if (auto arg = val.dyn_cast<BlockArgument>())
|
|
|
|
if (auto funcOp = dyn_cast<FuncOp>(arg.getOwner()->getParentOp()))
|
|
|
|
if (auto attr = funcOp.getArgAttrOfType<BoolAttr>(
|
|
|
|
arg.getArgNumber(), linalg::LinalgDialect::kInplaceableAttrName))
|
|
|
|
return attr.getValue();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-02-10 08:22:22 +08:00
|
|
|
/// Generates buffer for the output tensor.
|
|
|
|
static Value genOutputBuffer(CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
linalg::GenericOp op, MemRefType denseTp,
|
|
|
|
ArrayRef<Value> args) {
|
|
|
|
Location loc = op.getLoc();
|
2021-06-02 14:21:13 +08:00
|
|
|
Value tensor = op.getOutputOperand(0)->get();
|
2021-02-10 08:22:22 +08:00
|
|
|
// The output tensor simply could materialize from the buffer that will
|
|
|
|
// be generated for the tensor present in the outs() clause. This has
|
|
|
|
// the major advantage that the sparse kernel only updates the nonzero
|
2021-05-15 12:02:31 +08:00
|
|
|
// positions for the output tensor.
|
|
|
|
if (getInPlace(tensor))
|
2021-02-10 20:53:11 +08:00
|
|
|
return rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
|
2021-02-10 08:22:22 +08:00
|
|
|
// By default, a new buffer is allocated which is initialized to the
|
|
|
|
// tensor defined in the outs() clause. This is always correct but
|
|
|
|
// introduces a dense initialization component that may negatively
|
|
|
|
// impact the running complexity of the sparse kernel.
|
2021-02-10 20:53:11 +08:00
|
|
|
Value init = rewriter.create<memref::BufferCastOp>(loc, denseTp, tensor);
|
|
|
|
Value alloc = rewriter.create<memref::AllocOp>(loc, denseTp, args);
|
2021-07-15 13:58:21 +08:00
|
|
|
rewriter.create<memref::CopyOp>(loc, init, alloc);
|
2021-02-10 08:22:22 +08:00
|
|
|
return alloc;
|
|
|
|
}
|
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
/// Local bufferization of all dense and sparse data structures.
|
|
|
|
/// This code enables testing the first prototype sparse compiler.
|
|
|
|
// TODO: replace this with a proliferated bufferization strategy
|
2021-06-12 01:33:43 +08:00
|
|
|
static bool genBuffers(Merger &merger, CodeGen &codegen,
|
2020-11-26 04:29:05 +08:00
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op) {
|
2020-11-18 04:13:18 +08:00
|
|
|
Location loc = op.getLoc();
|
2021-06-02 14:21:13 +08:00
|
|
|
assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
|
2020-11-18 04:13:18 +08:00
|
|
|
// For every tensor, find lower and upper bound on dimensions, set the
|
2021-02-10 08:22:22 +08:00
|
|
|
// same bounds on loop indices, and obtain dense or sparse buffer(s).
|
2020-11-18 04:13:18 +08:00
|
|
|
SmallVector<Value, 4> args;
|
2021-06-02 14:21:13 +08:00
|
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
2021-06-12 01:33:43 +08:00
|
|
|
unsigned tensor = t->getOperandNumber();
|
2021-06-02 14:21:13 +08:00
|
|
|
auto shape = op.getShape(t);
|
|
|
|
auto map = op.getTiedIndexingMap(t);
|
|
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
2020-11-18 04:13:18 +08:00
|
|
|
// Scan all dimensions of current tensor.
|
|
|
|
args.clear();
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
|
|
unsigned idx = map.getDimPosition(perm(enc, d));
|
2020-11-18 04:13:18 +08:00
|
|
|
// Handle sparse storage schemes.
|
2021-06-12 01:33:43 +08:00
|
|
|
if (merger.isDim(tensor, idx, Dim::kSparse)) {
|
2020-11-26 04:29:05 +08:00
|
|
|
auto dynShape = {ShapedType::kDynamicSize};
|
|
|
|
auto ptrTp = MemRefType::get(
|
2021-05-11 01:34:21 +08:00
|
|
|
dynShape, genIntType(rewriter, enc.getPointerBitWidth()));
|
2020-11-26 04:29:05 +08:00
|
|
|
auto indTp = MemRefType::get(
|
2021-05-11 01:34:21 +08:00
|
|
|
dynShape, genIntType(rewriter, enc.getIndexBitWidth()));
|
2021-02-10 08:22:22 +08:00
|
|
|
Value dim = rewriter.create<ConstantIndexOp>(loc, d);
|
|
|
|
// Generate sparse primitives to obtains pointer and indices.
|
2021-06-12 01:33:43 +08:00
|
|
|
codegen.pointers[tensor][idx] =
|
2021-06-02 14:21:13 +08:00
|
|
|
rewriter.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
|
2021-06-12 01:33:43 +08:00
|
|
|
codegen.indices[tensor][idx] =
|
2021-06-02 14:21:13 +08:00
|
|
|
rewriter.create<ToIndicesOp>(loc, indTp, t->get(), dim);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2021-08-04 02:09:31 +08:00
|
|
|
// Find lower and upper bound in current dimension. Note that a
|
|
|
|
// permuted encoding queries static type dimensions accordingly,
|
|
|
|
// but queries dynamic type dimensions in the generated order.
|
2020-11-18 04:13:18 +08:00
|
|
|
Value up;
|
2021-08-04 02:09:31 +08:00
|
|
|
unsigned p = perm(enc, d);
|
|
|
|
if (shape[p] == MemRefType::kDynamicSize) {
|
2021-07-05 09:04:01 +08:00
|
|
|
up = rewriter.create<tensor::DimOp>(loc, t->get(), d);
|
2020-11-18 04:13:18 +08:00
|
|
|
args.push_back(up);
|
|
|
|
} else {
|
2021-08-04 02:09:31 +08:00
|
|
|
up = rewriter.create<ConstantIndexOp>(loc, shape[p]);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2021-08-04 02:09:31 +08:00
|
|
|
assert(codegen.highs[tensor][idx] == nullptr);
|
2021-06-12 01:33:43 +08:00
|
|
|
codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2021-06-12 01:33:43 +08:00
|
|
|
// Perform the required bufferization. Dense inputs materialize
|
|
|
|
// from the input tensors. Dense outputs need special handling.
|
|
|
|
// Sparse inputs use sparse primitives to obtain the values.
|
|
|
|
// We also accept in-place all-dense annotated "sparse" outputs.
|
2021-06-02 14:21:13 +08:00
|
|
|
Type elementType = getElementTypeOrSelf(t->get().getType());
|
2021-05-11 01:34:21 +08:00
|
|
|
if (!enc) {
|
2021-06-12 01:33:43 +08:00
|
|
|
// Non-annotated dense tensors.
|
2021-06-02 14:21:13 +08:00
|
|
|
auto denseTp = MemRefType::get(shape, elementType);
|
2021-06-12 01:33:43 +08:00
|
|
|
if (tensor < op.getNumInputs())
|
|
|
|
codegen.buffers[tensor] =
|
2021-06-02 14:21:13 +08:00
|
|
|
rewriter.create<memref::BufferCastOp>(loc, denseTp, t->get());
|
2021-02-10 08:22:22 +08:00
|
|
|
else
|
2021-06-12 01:33:43 +08:00
|
|
|
codegen.buffers[tensor] =
|
2021-02-10 08:22:22 +08:00
|
|
|
genOutputBuffer(codegen, rewriter, op, denseTp, args);
|
2020-11-18 04:13:18 +08:00
|
|
|
} else {
|
2021-06-12 01:33:43 +08:00
|
|
|
// Annotated sparse tensors.
|
|
|
|
if (tensor == op.getNumInputs() && !getInPlace(t->get()))
|
|
|
|
return false; // reject output if not in-place
|
2021-02-10 08:22:22 +08:00
|
|
|
auto dynShape = {ShapedType::kDynamicSize};
|
2021-06-02 14:21:13 +08:00
|
|
|
auto sparseTp = MemRefType::get(dynShape, elementType);
|
2021-06-12 01:33:43 +08:00
|
|
|
codegen.buffers[tensor] =
|
2021-06-02 14:21:13 +08:00
|
|
|
rewriter.create<ToValuesOp>(loc, sparseTp, t->get());
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
}
|
2021-06-12 01:33:43 +08:00
|
|
|
return true;
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
2021-04-02 07:23:17 +08:00
|
|
|
/// Constructs vector type.
|
|
|
|
static VectorType vectorType(CodeGen &codegen, Type etp) {
|
|
|
|
return VectorType::get(codegen.curVecLength, etp);
|
|
|
|
}
|
|
|
|
|
2021-01-14 02:33:28 +08:00
|
|
|
/// Constructs vector type from pointer.
|
|
|
|
static VectorType vectorType(CodeGen &codegen, Value ptr) {
|
2021-04-02 07:23:17 +08:00
|
|
|
return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
|
2021-01-14 02:33:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Constructs vector iteration mask.
|
|
|
|
static Value genVectorMask(CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
Value iv, Value lo, Value hi, Value step) {
|
|
|
|
Location loc = iv.getLoc();
|
2021-04-02 07:23:17 +08:00
|
|
|
VectorType mtp = vectorType(codegen, rewriter.getIntegerType(1));
|
2021-01-14 02:33:28 +08:00
|
|
|
// Special case if the vector length evenly divides the trip count (for
|
|
|
|
// example, "for i = 0, 128, 16"). A constant all-true mask is generated
|
|
|
|
// so that all subsequent masked memory operations are immediately folded
|
|
|
|
// into unconditional memory operations.
|
|
|
|
IntegerAttr loInt, hiInt, stepInt;
|
|
|
|
if (matchPattern(lo, m_Constant(&loInt)) &&
|
|
|
|
matchPattern(hi, m_Constant(&hiInt)) &&
|
|
|
|
matchPattern(step, m_Constant(&stepInt))) {
|
|
|
|
if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
|
2021-03-05 11:05:37 +08:00
|
|
|
return rewriter.create<vector::BroadcastOp>(
|
|
|
|
loc, mtp, rewriter.create<ConstantIntOp>(loc, 1, 1));
|
2021-01-14 02:33:28 +08:00
|
|
|
}
|
|
|
|
// Otherwise, generate a vector mask that avoids overrunning the upperbound
|
|
|
|
// during vector execution. Here we rely on subsequent loop optimizations to
|
|
|
|
// avoid executing the mask in all iterations, for example, by splitting the
|
|
|
|
// loop into an unconditional vector loop and a scalar cleanup loop.
|
|
|
|
Value end = rewriter.create<SubIOp>(loc, hi, iv);
|
|
|
|
return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
|
|
|
|
static Value genVectorLoad(CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
Value ptr, ArrayRef<Value> args) {
|
|
|
|
Location loc = ptr.getLoc();
|
|
|
|
VectorType vtp = vectorType(codegen, ptr);
|
|
|
|
Value pass = rewriter.create<ConstantOp>(loc, vtp, rewriter.getZeroAttr(vtp));
|
2021-02-26 10:04:39 +08:00
|
|
|
if (args.back().getType().isa<VectorType>()) {
|
|
|
|
SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
|
|
|
|
Value indexVec = args.back();
|
|
|
|
scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
|
|
return rewriter.create<vector::GatherOp>(
|
|
|
|
loc, vtp, ptr, scalarArgs, indexVec, codegen.curVecMask, pass);
|
|
|
|
}
|
2021-01-14 02:33:28 +08:00
|
|
|
return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
|
|
|
|
codegen.curVecMask, pass);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
|
|
|
|
static void genVectorStore(CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
Value rhs, Value ptr, ArrayRef<Value> args) {
|
|
|
|
Location loc = ptr.getLoc();
|
2021-02-26 10:04:39 +08:00
|
|
|
if (args.back().getType().isa<VectorType>()) {
|
|
|
|
SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
|
|
|
|
Value indexVec = args.back();
|
|
|
|
scalarArgs.back() = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
|
|
rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.curVecMask, rhs);
|
2021-02-26 10:04:39 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
rewriter.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
|
|
|
|
rhs);
|
2021-01-14 02:33:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates a vectorized invariant. Here we rely on subsequent loop
|
|
|
|
/// optimizations to hoist the invariant broadcast out of the vector loop.
|
|
|
|
static Value genVectorInvariantValue(CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, Value val) {
|
2021-04-02 07:23:17 +08:00
|
|
|
VectorType vtp = vectorType(codegen, val.getType());
|
2021-01-14 02:33:28 +08:00
|
|
|
return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
|
|
|
|
}
|
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
/// Generates a load on a dense or sparse tensor.
|
|
|
|
static Value genTensorLoad(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
2020-12-08 03:54:58 +08:00
|
|
|
unsigned exp) {
|
|
|
|
// Test if the load was hoisted to a higher loop nest.
|
|
|
|
Value val = merger.exp(exp).val;
|
2021-02-27 06:59:32 +08:00
|
|
|
if (val) {
|
|
|
|
if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
|
|
|
|
return genVectorInvariantValue(codegen, rewriter, val);
|
2020-12-08 03:54:58 +08:00
|
|
|
return val;
|
2021-02-27 06:59:32 +08:00
|
|
|
}
|
2020-12-08 03:54:58 +08:00
|
|
|
// Actual load.
|
2020-11-18 04:13:18 +08:00
|
|
|
SmallVector<Value, 4> args;
|
2021-07-02 05:45:18 +08:00
|
|
|
OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
|
2021-06-12 01:33:43 +08:00
|
|
|
unsigned tensor = t->getOperandNumber();
|
|
|
|
auto map = op.getTiedIndexingMap(t);
|
|
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
|
|
unsigned rank = map.getNumResults();
|
|
|
|
if (enc) {
|
|
|
|
unsigned idx = map.getDimPosition(perm(enc, rank - 1));
|
|
|
|
assert(codegen.pidxs[tensor][idx] != nullptr);
|
|
|
|
args.push_back(codegen.pidxs[tensor][idx]); // position index
|
|
|
|
} else {
|
|
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
|
|
unsigned idx = map.getDimPosition(d);
|
|
|
|
args.push_back(codegen.loops[idx]); // universal dense index
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
}
|
2020-12-08 03:54:58 +08:00
|
|
|
Location loc = op.getLoc();
|
2021-06-12 01:33:43 +08:00
|
|
|
Value ptr = codegen.buffers[tensor];
|
2021-01-14 02:33:28 +08:00
|
|
|
if (codegen.curVecLength > 1)
|
|
|
|
return genVectorLoad(codegen, rewriter, ptr, args);
|
2021-02-10 20:53:11 +08:00
|
|
|
return rewriter.create<memref::LoadOp>(loc, ptr, args);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
2021-06-12 01:33:43 +08:00
|
|
|
/// Generates a store on a dense or sparse tensor.
|
2020-11-18 04:13:18 +08:00
|
|
|
static void genTensorStore(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
2021-06-12 01:33:43 +08:00
|
|
|
OpOperand *t, Value rhs) {
|
2021-03-05 11:05:37 +08:00
|
|
|
Location loc = op.getLoc();
|
2020-12-18 07:42:23 +08:00
|
|
|
// Test if this is a scalarized reduction.
|
2021-06-02 14:21:13 +08:00
|
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
2021-06-12 01:33:43 +08:00
|
|
|
if (lhs == t && codegen.redVal) {
|
2021-03-05 11:05:37 +08:00
|
|
|
if (codegen.curVecLength > 1)
|
|
|
|
rhs = rewriter.create<SelectOp>(loc, codegen.curVecMask, rhs,
|
|
|
|
codegen.redVal);
|
2020-12-18 07:42:23 +08:00
|
|
|
codegen.redVal = rhs;
|
|
|
|
return;
|
|
|
|
}
|
2021-01-14 02:33:28 +08:00
|
|
|
// Actual store.
|
2020-11-18 04:13:18 +08:00
|
|
|
SmallVector<Value, 4> args;
|
2021-06-12 01:33:43 +08:00
|
|
|
unsigned tensor = t->getOperandNumber();
|
|
|
|
auto map = op.getTiedIndexingMap(t);
|
|
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
|
|
|
unsigned rank = map.getNumResults();
|
|
|
|
if (enc) {
|
|
|
|
unsigned idx = map.getDimPosition(perm(enc, rank - 1));
|
|
|
|
assert(codegen.pidxs[tensor][idx] != nullptr);
|
|
|
|
args.push_back(codegen.pidxs[tensor][idx]); // position index
|
|
|
|
} else {
|
|
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
|
|
unsigned idx = map.getDimPosition(d);
|
|
|
|
args.push_back(codegen.loops[idx]); // universal dense index
|
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2021-06-12 01:33:43 +08:00
|
|
|
Value ptr = codegen.buffers[tensor];
|
2021-01-14 02:33:28 +08:00
|
|
|
if (codegen.curVecLength > 1)
|
|
|
|
genVectorStore(codegen, rewriter, rhs, ptr, args);
|
|
|
|
else
|
2021-02-10 20:53:11 +08:00
|
|
|
rewriter.create<memref::StoreOp>(loc, rhs, ptr, args);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
2021-04-02 07:23:17 +08:00
|
|
|
/// Generates a pointer/index load from the sparse storage scheme. Narrower
|
|
|
|
/// data types need to be zero extended before casting the value into the
|
|
|
|
/// index type used for looping and indexing.
|
2021-01-14 02:33:28 +08:00
|
|
|
static Value genLoad(CodeGen &codegen, PatternRewriter &rewriter, Location loc,
|
|
|
|
Value ptr, Value s) {
|
2021-04-02 07:23:17 +08:00
|
|
|
// See https://llvm.org/docs/GetElementPtr.html for some background on
|
|
|
|
// the complications described below.
|
|
|
|
if (codegen.curVecLength > 1) {
|
|
|
|
// Since the index vector is used in a subsequent gather/scatter operations,
|
|
|
|
// which effectively defines an unsigned pointer + signed index, we must
|
|
|
|
// zero extend the vector to an index width. For 8-bit and 16-bit values,
|
|
|
|
// an 32-bit index width suffices. For 32-bit values, zero extending the
|
|
|
|
// elements into 64-bit loses some performance since the 32-bit indexed
|
2021-06-05 07:17:16 +08:00
|
|
|
// gather/scatter is more efficient than the 64-bit index variant (if the
|
|
|
|
// negative 32-bit index space is unused, the enableSIMDIndex32 flag can
|
2021-06-12 01:33:43 +08:00
|
|
|
// preserve this performance). For 64-bit values, there is no good way
|
2021-04-02 07:23:17 +08:00
|
|
|
// to state that the indices are unsigned, with creates the potential of
|
|
|
|
// incorrect address calculations in the unlikely case we need such
|
|
|
|
// extremely large offsets.
|
|
|
|
Type etp = ptr.getType().cast<MemRefType>().getElementType();
|
|
|
|
Value vload = genVectorLoad(codegen, rewriter, ptr, {s});
|
2021-04-15 09:53:30 +08:00
|
|
|
if (!etp.isa<IndexType>()) {
|
|
|
|
if (etp.getIntOrFloatBitWidth() < 32)
|
|
|
|
vload = rewriter.create<ZeroExtendIOp>(
|
|
|
|
loc, vload, vectorType(codegen, rewriter.getIntegerType(32)));
|
2021-06-05 07:17:16 +08:00
|
|
|
else if (etp.getIntOrFloatBitWidth() < 64 &&
|
|
|
|
!codegen.options.enableSIMDIndex32)
|
2021-04-15 09:53:30 +08:00
|
|
|
vload = rewriter.create<ZeroExtendIOp>(
|
|
|
|
loc, vload, vectorType(codegen, rewriter.getIntegerType(64)));
|
|
|
|
}
|
2021-04-02 07:23:17 +08:00
|
|
|
return vload;
|
|
|
|
}
|
|
|
|
// For the scalar case, we simply zero extend narrower indices into 64-bit
|
|
|
|
// values before casting to index without a performance penalty. Here too,
|
|
|
|
// however, indices that already are 64-bit, in theory, cannot express the
|
|
|
|
// full range as explained above.
|
2021-02-10 20:53:11 +08:00
|
|
|
Value load = rewriter.create<memref::LoadOp>(loc, ptr, s);
|
2021-04-02 07:23:17 +08:00
|
|
|
if (!load.getType().isa<IndexType>()) {
|
|
|
|
if (load.getType().getIntOrFloatBitWidth() < 64)
|
|
|
|
load = rewriter.create<ZeroExtendIOp>(loc, load,
|
|
|
|
rewriter.getIntegerType(64));
|
|
|
|
load = rewriter.create<IndexCastOp>(loc, load, rewriter.getIndexType());
|
|
|
|
}
|
|
|
|
return load;
|
2020-11-26 04:29:05 +08:00
|
|
|
}
|
|
|
|
|
2020-12-08 03:54:58 +08:00
|
|
|
/// Generates an invariant value.
|
|
|
|
static Value genInvariantValue(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, unsigned exp) {
|
2021-01-14 02:33:28 +08:00
|
|
|
Value val = merger.exp(exp).val;
|
|
|
|
if (codegen.curVecLength > 1)
|
|
|
|
return genVectorInvariantValue(codegen, rewriter, val);
|
|
|
|
return val;
|
2020-12-08 03:54:58 +08:00
|
|
|
}
|
|
|
|
|
2021-02-24 03:43:03 +08:00
|
|
|
/// Generates an address computation "sz * p + i".
|
|
|
|
static Value genAddress(CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
Location loc, Value size, Value p, Value i) {
|
|
|
|
Value mul = rewriter.create<MulIOp>(loc, size, p);
|
|
|
|
if (auto vtp = i.getType().dyn_cast<VectorType>()) {
|
|
|
|
Value inv = rewriter.create<IndexCastOp>(loc, mul, vtp.getElementType());
|
|
|
|
mul = genVectorInvariantValue(codegen, rewriter, inv);
|
|
|
|
}
|
|
|
|
return rewriter.create<AddIOp>(loc, mul, i);
|
|
|
|
}
|
|
|
|
|
2021-03-04 04:37:19 +08:00
|
|
|
/// Generates start of a reduction.
|
|
|
|
static Value genReductionStart(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter,
|
|
|
|
linalg::GenericOp op) {
|
|
|
|
if (codegen.redVal)
|
|
|
|
return codegen.redVal; // chained with previous for-loop
|
|
|
|
if (codegen.curVecLength > 1) {
|
|
|
|
// TODO: assumes + reductions for now
|
|
|
|
VectorType vtp = vectorType(codegen, codegen.buffers[codegen.redExp]);
|
|
|
|
return rewriter.create<ConstantOp>(op.getLoc(), vtp,
|
|
|
|
rewriter.getZeroAttr(vtp));
|
|
|
|
}
|
|
|
|
return genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates end of a reduction.
|
|
|
|
static void genReductionEnd(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op) {
|
|
|
|
Value red = codegen.redVal;
|
|
|
|
if (!red)
|
|
|
|
return;
|
2021-03-13 06:56:23 +08:00
|
|
|
assert(codegen.curVecLength == 1);
|
2021-03-04 04:37:19 +08:00
|
|
|
codegen.redVal = merger.exp(codegen.redExp).val = Value(); // end chain
|
2021-06-02 14:21:13 +08:00
|
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
2021-04-07 07:46:27 +08:00
|
|
|
if (auto vtp = red.getType().dyn_cast<VectorType>()) {
|
2021-03-04 04:37:19 +08:00
|
|
|
// TODO: assumes + reductions for now
|
2021-04-07 07:46:27 +08:00
|
|
|
StringAttr kind = rewriter.getStringAttr("add");
|
2021-03-04 04:37:19 +08:00
|
|
|
Value ld = genTensorLoad(merger, codegen, rewriter, op, codegen.redExp);
|
2021-04-07 07:46:27 +08:00
|
|
|
// Integer reductions don't accept an accumulator.
|
|
|
|
if (vtp.getElementType().isa<IntegerType>()) {
|
|
|
|
red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
|
|
|
|
kind, red, ValueRange{});
|
|
|
|
red = rewriter.create<AddIOp>(op.getLoc(), red, ld);
|
|
|
|
} else {
|
|
|
|
red = rewriter.create<vector::ReductionOp>(op.getLoc(), ld.getType(),
|
|
|
|
kind, red, ld);
|
|
|
|
}
|
2021-03-04 04:37:19 +08:00
|
|
|
}
|
|
|
|
genTensorStore(merger, codegen, rewriter, op, lhs, red);
|
|
|
|
}
|
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
/// Recursively generates tensor expression.
|
|
|
|
static Value genExp(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
linalg::GenericOp op, unsigned exp) {
|
2021-07-03 03:26:18 +08:00
|
|
|
Location loc = op.getLoc();
|
2021-07-14 03:13:39 +08:00
|
|
|
if (exp == -1u)
|
|
|
|
return Value();
|
2020-11-18 04:13:18 +08:00
|
|
|
if (merger.exp(exp).kind == Kind::kTensor)
|
2020-12-08 03:54:58 +08:00
|
|
|
return genTensorLoad(merger, codegen, rewriter, op, exp);
|
2021-07-03 03:26:18 +08:00
|
|
|
if (merger.exp(exp).kind == Kind::kInvariant)
|
|
|
|
return genInvariantValue(merger, codegen, rewriter, exp);
|
2021-07-02 05:45:18 +08:00
|
|
|
Value v0 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0);
|
|
|
|
Value v1 = genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1);
|
2021-07-14 03:13:39 +08:00
|
|
|
if (merger.exp(exp).kind == Kind::kNegI) {
|
|
|
|
// TODO: no negi in std, need to make zero explicit.
|
|
|
|
Type tp = op.getOutputTensorTypes()[0].getElementType();
|
|
|
|
v1 = v0;
|
|
|
|
v0 = rewriter.create<ConstantOp>(loc, tp, rewriter.getZeroAttr(tp));
|
|
|
|
if (codegen.curVecLength > 1)
|
|
|
|
v0 = genVectorInvariantValue(codegen, rewriter, v0);
|
|
|
|
}
|
2021-07-13 06:22:31 +08:00
|
|
|
return merger.buildExp(rewriter, loc, exp, v0, v1);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
2020-12-08 03:54:58 +08:00
|
|
|
/// Hoists loop invariant tensor loads for which indices have been exhausted.
|
|
|
|
static void genInvariants(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
2020-12-18 07:42:23 +08:00
|
|
|
unsigned exp, unsigned ldx, bool hoist) {
|
2021-07-14 03:13:39 +08:00
|
|
|
if (exp == -1u)
|
|
|
|
return;
|
2020-12-08 03:54:58 +08:00
|
|
|
if (merger.exp(exp).kind == Kind::kTensor) {
|
2020-12-18 07:42:23 +08:00
|
|
|
// Inspect tensor indices.
|
|
|
|
bool atLevel = ldx == -1u;
|
2021-07-02 05:45:18 +08:00
|
|
|
OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
|
2021-06-16 06:56:32 +08:00
|
|
|
auto map = op.getTiedIndexingMap(t);
|
|
|
|
auto enc = getSparseTensorEncoding(t->get().getType());
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
|
|
unsigned idx = map.getDimPosition(perm(enc, d));
|
2020-12-08 03:54:58 +08:00
|
|
|
if (!codegen.loops[idx])
|
|
|
|
return; // still in play
|
2020-12-18 07:42:23 +08:00
|
|
|
else if (idx == ldx)
|
|
|
|
atLevel = true;
|
|
|
|
}
|
|
|
|
// All exhausted at this level (atLevel denotes exactly at this level).
|
2021-06-02 14:21:13 +08:00
|
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
2021-06-16 06:56:32 +08:00
|
|
|
if (lhs == t) {
|
2020-12-18 07:42:23 +08:00
|
|
|
codegen.redExp = hoist ? exp : -1u;
|
|
|
|
} else if (atLevel) {
|
|
|
|
merger.exp(exp).val =
|
|
|
|
hoist ? genTensorLoad(merger, codegen, rewriter, op, exp) : Value();
|
2020-12-08 03:54:58 +08:00
|
|
|
}
|
2021-07-14 03:13:39 +08:00
|
|
|
} else if (merger.exp(exp).kind != Kind::kInvariant) {
|
2020-12-08 03:54:58 +08:00
|
|
|
// Traverse into the binary operations. Note that we only hoist
|
|
|
|
// tensor loads, since subsequent MLIR/LLVM passes know how to
|
|
|
|
// deal with all other kinds of derived loop invariants.
|
2021-07-02 05:45:18 +08:00
|
|
|
unsigned e0 = merger.exp(exp).children.e0;
|
|
|
|
unsigned e1 = merger.exp(exp).children.e1;
|
2020-12-18 07:42:23 +08:00
|
|
|
genInvariants(merger, codegen, rewriter, op, e0, ldx, hoist);
|
|
|
|
genInvariants(merger, codegen, rewriter, op, e1, ldx, hoist);
|
2020-12-08 03:54:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
/// Generates initialization code for the subsequent loop sequence at
|
|
|
|
/// current index level. Returns true if the loop sequence needs to
|
|
|
|
/// maintain the universal index.
|
|
|
|
static bool genInit(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
linalg::GenericOp op, std::vector<unsigned> &topSort,
|
|
|
|
unsigned at, llvm::BitVector &inits) {
|
|
|
|
bool needsUniv = false;
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
unsigned idx = topSort[at];
|
|
|
|
|
|
|
|
// Initialize sparse positions.
|
|
|
|
for (unsigned b = 0, be = inits.size(); b < be; b++) {
|
|
|
|
if (inits[b]) {
|
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
2020-12-18 07:42:23 +08:00
|
|
|
if (merger.isDim(b, Dim::kSparse)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
// Initialize sparse index.
|
|
|
|
unsigned pat = at;
|
|
|
|
for (; pat != 0; pat--) {
|
|
|
|
if (codegen.pidxs[tensor][topSort[pat - 1]])
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
Value ptr = codegen.pointers[tensor][idx];
|
2020-11-26 04:29:05 +08:00
|
|
|
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
|
|
|
|
Value p0 = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
|
|
|
|
: codegen.pidxs[tensor][topSort[pat - 1]];
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.pidxs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p0);
|
2020-11-26 04:29:05 +08:00
|
|
|
Value p1 = rewriter.create<AddIOp>(loc, p0, one);
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.highs[tensor][idx] = genLoad(codegen, rewriter, loc, ptr, p1);
|
2020-11-18 04:13:18 +08:00
|
|
|
} else {
|
|
|
|
// Dense index still in play.
|
|
|
|
needsUniv = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize the universal dense index.
|
|
|
|
codegen.loops[idx] = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
|
|
return needsUniv;
|
|
|
|
}
|
|
|
|
|
2021-01-14 02:33:28 +08:00
|
|
|
/// Returns vectorization strategy. Any implicit inner loop in the Linalg
|
|
|
|
/// operation is a candidate. Whether it is actually converted to SIMD code
|
|
|
|
/// depends on the requested strategy.
|
|
|
|
static bool isVectorFor(CodeGen &codegen, bool isInner, bool isSparse) {
|
|
|
|
switch (codegen.options.vectorizationStrategy) {
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseVectorizationStrategy::kNone:
|
2021-01-14 02:33:28 +08:00
|
|
|
return false;
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseVectorizationStrategy::kDenseInnerLoop:
|
2021-01-14 02:33:28 +08:00
|
|
|
return isInner && !isSparse;
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseVectorizationStrategy::kAnyStorageInnerLoop:
|
2021-01-14 02:33:28 +08:00
|
|
|
return isInner;
|
|
|
|
}
|
2021-01-19 13:59:15 +08:00
|
|
|
llvm_unreachable("unexpected vectorization strategy");
|
2021-01-14 02:33:28 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns parallelization strategy. Any implicit loop in the Linalg operation
|
|
|
|
/// that is marked "parallel" is a candidate. Whether it is actually converted
|
|
|
|
/// to a parallel operation depends on the requested strategy.
|
|
|
|
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
|
|
|
|
bool isSparse, bool isVector) {
|
|
|
|
switch (codegen.options.parallelizationStrategy) {
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseParallelizationStrategy::kNone:
|
2021-01-14 02:33:28 +08:00
|
|
|
return false;
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseParallelizationStrategy::kDenseOuterLoop:
|
2021-01-14 02:33:28 +08:00
|
|
|
return isOuter && !isSparse && !isReduction && !isVector;
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
|
2021-01-14 02:33:28 +08:00
|
|
|
return isOuter && !isReduction && !isVector;
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseParallelizationStrategy::kDenseAnyLoop:
|
2021-01-14 02:33:28 +08:00
|
|
|
return !isSparse && !isReduction && !isVector;
|
2021-05-04 11:55:12 +08:00
|
|
|
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
|
2021-01-14 02:33:28 +08:00
|
|
|
return !isReduction && !isVector;
|
|
|
|
}
|
2021-01-19 13:59:15 +08:00
|
|
|
llvm_unreachable("unexpected parallelization strategy");
|
2021-01-14 02:33:28 +08:00
|
|
|
}
|
|
|
|
|
2021-03-13 06:56:23 +08:00
|
|
|
/// Checks unit strides for dense tensors. The iteration graph may have ignored
|
|
|
|
/// dense access patterns in order to avoid cycles (sparse access patterns are
|
|
|
|
/// always placed innermost), but that means dense access has become strided.
|
|
|
|
/// For now, we reject vectorization of such cases.
|
|
|
|
/// TODO: implement strided load/stores on dense arrays
|
|
|
|
static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
|
|
|
|
unsigned idx) {
|
2021-06-02 14:21:13 +08:00
|
|
|
for (OpOperand *t : op.getInputAndOutputOperands()) {
|
|
|
|
if (!getSparseTensorEncoding(t->get().getType())) {
|
|
|
|
auto map = op.getTiedIndexingMap(t);
|
[mlir][sparse] add full dimension ordering support
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
2021-05-22 02:52:34 +08:00
|
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
|
|
if (map.getDimPosition(d) == idx && d != rank - 1)
|
2021-04-02 07:23:17 +08:00
|
|
|
return false;
|
|
|
|
}
|
2021-03-13 06:56:23 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2020-11-25 07:36:10 +08:00
|
|
|
/// Generates a for-loop on a single index.
|
|
|
|
static Operation *genFor(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
2020-12-08 03:54:58 +08:00
|
|
|
bool isOuter, bool isInner, unsigned idx,
|
|
|
|
llvm::BitVector &indices) {
|
2020-11-25 07:36:10 +08:00
|
|
|
unsigned fb = indices.find_first();
|
|
|
|
unsigned tensor = merger.tensor(fb);
|
|
|
|
assert(idx == merger.index(fb));
|
|
|
|
auto iteratorTypes = op.iterator_types().getValue();
|
2021-08-17 15:04:21 +08:00
|
|
|
bool isReduction = isReductionIterator(iteratorTypes[idx]);
|
2020-12-18 07:42:23 +08:00
|
|
|
bool isSparse = merger.isDim(fb, Dim::kSparse);
|
2021-03-13 06:56:23 +08:00
|
|
|
bool isVector = isVectorFor(codegen, isInner, isSparse) &&
|
|
|
|
denseUnitStrides(merger, op, idx);
|
2021-01-14 02:33:28 +08:00
|
|
|
bool isParallel =
|
|
|
|
isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);
|
|
|
|
|
|
|
|
// Prepare vector length.
|
|
|
|
if (isVector)
|
|
|
|
codegen.curVecLength = codegen.options.vectorLength;
|
2020-11-25 07:36:10 +08:00
|
|
|
|
|
|
|
// Loop bounds and increment.
|
2020-11-18 04:13:18 +08:00
|
|
|
Location loc = op.getLoc();
|
2021-01-14 02:33:28 +08:00
|
|
|
Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
|
|
|
|
Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
|
|
|
|
Value step = rewriter.create<ConstantIndexOp>(loc, codegen.curVecLength);
|
2020-11-25 07:36:10 +08:00
|
|
|
|
|
|
|
// Emit a parallel loop.
|
|
|
|
if (isParallel) {
|
2021-01-14 02:33:28 +08:00
|
|
|
assert(!isVector);
|
2020-11-25 07:36:10 +08:00
|
|
|
scf::ParallelOp parOp = rewriter.create<scf::ParallelOp>(loc, lo, hi, step);
|
|
|
|
if (isSparse)
|
|
|
|
codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
|
|
|
|
else
|
|
|
|
codegen.loops[idx] = parOp.getInductionVars()[0];
|
|
|
|
rewriter.setInsertionPointToStart(parOp.getBody());
|
|
|
|
return parOp;
|
|
|
|
}
|
|
|
|
|
2020-12-18 07:42:23 +08:00
|
|
|
// Emit a sequential loop, potentially with a scalarized reduction.
|
|
|
|
bool scalarRed = isInner && codegen.redExp != -1u;
|
|
|
|
SmallVector<Value, 4> operands;
|
|
|
|
if (scalarRed) {
|
2021-03-04 04:37:19 +08:00
|
|
|
Value load = genReductionStart(merger, codegen, rewriter, op);
|
2020-12-18 07:42:23 +08:00
|
|
|
operands.push_back(load);
|
|
|
|
}
|
|
|
|
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, lo, hi, step, operands);
|
|
|
|
if (scalarRed) {
|
|
|
|
codegen.redVal = merger.exp(codegen.redExp).val =
|
|
|
|
forOp.getRegionIterArgs().front();
|
|
|
|
}
|
|
|
|
// Assign induction variable to sparse or dense index.
|
2021-01-14 02:33:28 +08:00
|
|
|
Value iv = forOp.getInductionVar();
|
2020-11-25 07:36:10 +08:00
|
|
|
if (isSparse)
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.pidxs[tensor][idx] = iv;
|
2020-11-25 07:36:10 +08:00
|
|
|
else
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.loops[idx] = iv;
|
2020-11-25 07:36:10 +08:00
|
|
|
rewriter.setInsertionPointToStart(forOp.getBody());
|
2021-01-14 02:33:28 +08:00
|
|
|
// Share vector iteration mask between all subsequent loads/stores.
|
|
|
|
if (isVector)
|
|
|
|
codegen.curVecMask = genVectorMask(codegen, rewriter, iv, lo, hi, step);
|
2020-11-25 07:36:10 +08:00
|
|
|
return forOp;
|
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
|
2020-11-25 07:36:10 +08:00
|
|
|
/// Emit a while-loop for co-iteration over multiple indices.
|
|
|
|
static Operation *genWhile(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
|
|
unsigned idx, bool needsUniv,
|
|
|
|
llvm::BitVector &indices) {
|
2020-11-18 04:13:18 +08:00
|
|
|
SmallVector<Type, 4> types;
|
|
|
|
SmallVector<Value, 4> operands;
|
2020-11-25 07:36:10 +08:00
|
|
|
// Construct the while-loop with a parameter for each index.
|
|
|
|
Type indexType = rewriter.getIndexType();
|
2020-11-18 04:13:18 +08:00
|
|
|
for (unsigned b = 0, be = indices.size(); b < be; b++) {
|
2020-12-18 07:42:23 +08:00
|
|
|
if (indices[b] && merger.isDim(b, Dim::kSparse)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
|
|
|
types.push_back(indexType);
|
2021-02-26 10:04:39 +08:00
|
|
|
assert(codegen.pidxs[tensor][idx].getType().isa<IndexType>() &&
|
|
|
|
"type mismatch for sparse index");
|
2020-11-18 04:13:18 +08:00
|
|
|
operands.push_back(codegen.pidxs[tensor][idx]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (needsUniv) {
|
|
|
|
types.push_back(indexType);
|
2021-02-26 10:04:39 +08:00
|
|
|
assert(codegen.loops[idx].getType().isa<IndexType>() &&
|
2021-03-03 04:17:13 +08:00
|
|
|
"type mismatch for universal index");
|
2020-11-18 04:13:18 +08:00
|
|
|
operands.push_back(codegen.loops[idx]);
|
|
|
|
}
|
2020-11-25 07:36:10 +08:00
|
|
|
Location loc = op.getLoc();
|
|
|
|
scf::WhileOp whileOp = rewriter.create<scf::WhileOp>(loc, types, operands);
|
2020-11-18 04:13:18 +08:00
|
|
|
Block *before = rewriter.createBlock(&whileOp.before(), {}, types);
|
|
|
|
Block *after = rewriter.createBlock(&whileOp.after(), {}, types);
|
2020-11-25 07:36:10 +08:00
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
// Build the "before" region, which effectively consists
|
|
|
|
// of a conjunction of "i < upper" tests on all induction.
|
|
|
|
rewriter.setInsertionPointToStart(&whileOp.before().front());
|
|
|
|
Value cond;
|
|
|
|
unsigned o = 0;
|
|
|
|
for (unsigned b = 0, be = indices.size(); b < be; b++) {
|
2020-12-18 07:42:23 +08:00
|
|
|
if (indices[b] && merger.isDim(b, Dim::kSparse)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
|
|
|
Value op1 = before->getArgument(o);
|
|
|
|
Value op2 = codegen.highs[tensor][idx];
|
|
|
|
Value opc = rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, op1, op2);
|
|
|
|
cond = cond ? rewriter.create<AndOp>(loc, cond, opc) : opc;
|
|
|
|
codegen.pidxs[tensor][idx] = after->getArgument(o++);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (needsUniv)
|
|
|
|
codegen.loops[idx] = after->getArgument(o++);
|
|
|
|
assert(o == operands.size());
|
|
|
|
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
|
|
|
|
rewriter.setInsertionPointToStart(&whileOp.after().front());
|
2020-11-25 07:36:10 +08:00
|
|
|
return whileOp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates a for-loop or a while-loop, depending on whether it implements
|
|
|
|
/// singleton iteration or co-iteration over the given conjunction.
|
|
|
|
static Operation *genLoop(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
2020-12-08 03:54:58 +08:00
|
|
|
std::vector<unsigned> &topSort, unsigned at,
|
|
|
|
bool needsUniv, llvm::BitVector &indices) {
|
|
|
|
unsigned idx = topSort[at];
|
|
|
|
if (indices.count() == 1) {
|
|
|
|
bool isOuter = at == 0;
|
|
|
|
bool isInner = at == topSort.size() - 1;
|
|
|
|
return genFor(merger, codegen, rewriter, op, isOuter, isInner, idx,
|
|
|
|
indices);
|
|
|
|
}
|
2021-03-04 04:37:19 +08:00
|
|
|
genReductionEnd(merger, codegen, rewriter, op); // cannot chain
|
2020-11-25 07:36:10 +08:00
|
|
|
return genWhile(merger, codegen, rewriter, op, idx, needsUniv, indices);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates the local variables for this loop, consisting of the sparse
|
|
|
|
/// indices, restored universal dense index, and dense positions.
|
|
|
|
static void genLocals(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
|
|
std::vector<unsigned> &topSort, unsigned at,
|
|
|
|
bool needsUniv, llvm::BitVector &locals) {
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
unsigned idx = topSort[at];
|
|
|
|
|
|
|
|
// Initialize sparse indices.
|
|
|
|
Value min;
|
|
|
|
for (unsigned b = 0, be = locals.size(); b < be; b++) {
|
2020-12-18 07:42:23 +08:00
|
|
|
if (locals[b] && merger.isDim(b, Dim::kSparse)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
2020-11-26 04:29:05 +08:00
|
|
|
Value ptr = codegen.indices[tensor][idx];
|
|
|
|
Value s = codegen.pidxs[tensor][idx];
|
2021-01-14 02:33:28 +08:00
|
|
|
Value load = genLoad(codegen, rewriter, loc, ptr, s);
|
2020-11-26 04:29:05 +08:00
|
|
|
codegen.idxs[tensor][idx] = load;
|
2020-11-18 04:13:18 +08:00
|
|
|
if (!needsUniv) {
|
|
|
|
if (min) {
|
2020-11-26 04:29:05 +08:00
|
|
|
Value cmp =
|
|
|
|
rewriter.create<CmpIOp>(loc, CmpIPredicate::ult, load, min);
|
|
|
|
min = rewriter.create<SelectOp>(loc, cmp, load, min);
|
2020-11-18 04:13:18 +08:00
|
|
|
} else {
|
2020-11-26 04:29:05 +08:00
|
|
|
min = load;
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Merge dense universal index over minimum.
|
|
|
|
if (min) {
|
|
|
|
assert(!needsUniv);
|
|
|
|
codegen.loops[idx] = min;
|
|
|
|
}
|
|
|
|
|
2021-06-12 01:33:43 +08:00
|
|
|
// Initialize dense positions. Note that we generate dense indices of the
|
|
|
|
// output tensor unconditionally, since they may not appear in the lattice,
|
|
|
|
// but may be needed for linearized codegen.
|
2020-11-18 04:13:18 +08:00
|
|
|
for (unsigned b = 0, be = locals.size(); b < be; b++) {
|
2021-06-12 01:33:43 +08:00
|
|
|
if ((locals[b] || merger.isOutTensor(b, idx)) &&
|
|
|
|
merger.isDim(b, Dim::kDense)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
|
|
|
unsigned pat = at;
|
|
|
|
for (; pat != 0; pat--)
|
|
|
|
if (codegen.pidxs[tensor][topSort[pat - 1]])
|
|
|
|
break;
|
|
|
|
Value p = (pat == 0) ? rewriter.create<ConstantIndexOp>(loc, 0)
|
|
|
|
: codegen.pidxs[tensor][topSort[pat - 1]];
|
2021-02-24 03:43:03 +08:00
|
|
|
codegen.pidxs[tensor][idx] = genAddress(
|
|
|
|
codegen, rewriter, loc, codegen.sizes[idx], p, codegen.loops[idx]);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates the induction structure for a while-loop.
|
|
|
|
static void genWhileInduction(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
|
|
unsigned idx, bool needsUniv,
|
|
|
|
llvm::BitVector &induction, ResultRange results) {
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
unsigned o = 0;
|
|
|
|
SmallVector<Value, 4> operands;
|
|
|
|
Value one = rewriter.create<ConstantIndexOp>(loc, 1);
|
2020-12-18 07:42:23 +08:00
|
|
|
for (unsigned b = 0, be = induction.size(); b < be; b++) {
|
|
|
|
if (induction[b] && merger.isDim(b, Dim::kSparse)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
|
|
|
Value op1 = codegen.idxs[tensor][idx];
|
|
|
|
Value op2 = codegen.loops[idx];
|
|
|
|
Value op3 = codegen.pidxs[tensor][idx];
|
|
|
|
Value cmp = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
|
|
|
|
Value add = rewriter.create<AddIOp>(loc, op3, one);
|
|
|
|
operands.push_back(rewriter.create<SelectOp>(loc, cmp, add, op3));
|
|
|
|
codegen.pidxs[tensor][idx] = results[o++];
|
|
|
|
}
|
2020-12-18 07:42:23 +08:00
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
if (needsUniv) {
|
|
|
|
operands.push_back(rewriter.create<AddIOp>(loc, codegen.loops[idx], one));
|
|
|
|
codegen.loops[idx] = results[o++];
|
|
|
|
}
|
|
|
|
assert(o == operands.size());
|
|
|
|
rewriter.create<scf::YieldOp>(loc, operands);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Generates a single if-statement within a while-loop.
|
2020-12-18 07:42:23 +08:00
|
|
|
static scf::IfOp genIf(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op,
|
|
|
|
unsigned idx, llvm::BitVector &conditions) {
|
2020-11-18 04:13:18 +08:00
|
|
|
Location loc = op.getLoc();
|
|
|
|
Value cond;
|
|
|
|
for (unsigned b = 0, be = conditions.size(); b < be; b++) {
|
|
|
|
if (conditions[b]) {
|
|
|
|
unsigned tensor = merger.tensor(b);
|
|
|
|
assert(idx == merger.index(b));
|
|
|
|
Value clause;
|
2020-12-18 07:42:23 +08:00
|
|
|
if (merger.isDim(b, Dim::kSparse)) {
|
2020-11-18 04:13:18 +08:00
|
|
|
Value op1 = codegen.idxs[tensor][idx];
|
|
|
|
Value op2 = codegen.loops[idx];
|
|
|
|
clause = rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, op1, op2);
|
|
|
|
} else {
|
|
|
|
clause = rewriter.create<ConstantIntOp>(loc, 1, 1); // true
|
|
|
|
}
|
|
|
|
cond = cond ? rewriter.create<AndOp>(loc, cond, clause) : clause;
|
|
|
|
}
|
|
|
|
}
|
2020-12-18 07:42:23 +08:00
|
|
|
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ true);
|
2020-11-18 04:13:18 +08:00
|
|
|
rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
|
2020-12-18 07:42:23 +08:00
|
|
|
return ifOp;
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Recursively generates code while computing iteration lattices in order
|
|
|
|
/// to manage the complexity of implementing co-iteration over unions
|
|
|
|
/// and intersections of sparse iterations spaces.
|
|
|
|
static void genStmt(Merger &merger, CodeGen &codegen, PatternRewriter &rewriter,
|
|
|
|
linalg::GenericOp op, std::vector<unsigned> &topSort,
|
|
|
|
unsigned exp, unsigned at) {
|
|
|
|
// At each leaf, assign remaining tensor (sub)expression to output tensor.
|
|
|
|
if (at == topSort.size()) {
|
2021-06-02 14:21:13 +08:00
|
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
2020-11-18 04:13:18 +08:00
|
|
|
Value rhs = genExp(merger, codegen, rewriter, op, exp);
|
|
|
|
genTensorStore(merger, codegen, rewriter, op, lhs, rhs);
|
|
|
|
return;
|
|
|
|
}
|
2021-02-26 10:04:39 +08:00
|
|
|
assert(codegen.curVecLength == 1);
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
// Construct iteration lattices for current loop index, with L0 at top.
|
|
|
|
// Then emit initialization code for the loop sequence at this level.
|
|
|
|
// We maintain the universal dense index if dense indices are still
|
|
|
|
// in play for a non-singleton loop sequence.
|
2021-01-14 02:33:28 +08:00
|
|
|
Location loc = op.getLoc();
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned idx = topSort[at];
|
2021-06-26 07:37:53 +08:00
|
|
|
unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));
|
2020-11-18 04:13:18 +08:00
|
|
|
unsigned lsize = merger.set(lts).size();
|
|
|
|
assert(lsize != 0);
|
|
|
|
unsigned l0 = merger.set(lts)[0];
|
2020-12-18 07:42:23 +08:00
|
|
|
unsigned ldx = at == 0 ? -1u : topSort[at - 1];
|
|
|
|
genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/true);
|
2021-02-27 06:59:32 +08:00
|
|
|
bool needsUniv = false;
|
|
|
|
if (genInit(merger, codegen, rewriter, op, topSort, at,
|
|
|
|
merger.lat(l0).bits)) {
|
|
|
|
// Maintain the universal index only if it is actually
|
|
|
|
// consumed by a subsequent lattice point.
|
|
|
|
for (unsigned i = 1; i < lsize; i++) {
|
|
|
|
unsigned li = merger.set(lts)[i];
|
|
|
|
if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse)) {
|
|
|
|
needsUniv = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
// Emit a loop for every lattice point L0 >= Li.
|
2020-12-18 07:42:23 +08:00
|
|
|
for (unsigned i = 0; i < lsize; i++) {
|
|
|
|
unsigned li = merger.set(lts)[i];
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
// Emit loop.
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.curVecLength = 1;
|
2020-12-18 07:42:23 +08:00
|
|
|
llvm::BitVector indices = merger.lat(li).simple;
|
2020-12-08 03:54:58 +08:00
|
|
|
Operation *loop =
|
|
|
|
genLoop(merger, codegen, rewriter, op, topSort, at, needsUniv, indices);
|
2020-12-18 07:42:23 +08:00
|
|
|
genLocals(merger, codegen, rewriter, op, topSort, at, needsUniv,
|
|
|
|
merger.lat(li).bits);
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
// Visit all lattices points with Li >= Lj to generate the
|
|
|
|
// loop-body, possibly with if statements for coiteration.
|
2020-11-25 07:36:10 +08:00
|
|
|
bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
|
2020-12-18 07:42:23 +08:00
|
|
|
for (unsigned j = 0; j < lsize; j++) {
|
|
|
|
unsigned lj = merger.set(lts)[j];
|
|
|
|
unsigned ej = merger.lat(lj).exp;
|
2020-11-18 04:13:18 +08:00
|
|
|
if (li == lj || merger.latGT(li, lj)) {
|
|
|
|
// Recurse into body of each branch.
|
2020-12-18 07:42:23 +08:00
|
|
|
if (isWhile) {
|
|
|
|
scf::IfOp ifOp =
|
|
|
|
genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
|
|
|
|
genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
|
|
|
|
rewriter.setInsertionPointToStart(&ifOp.elseRegion().front());
|
|
|
|
} else {
|
|
|
|
genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
|
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wrap-up induction and restore insertion point.
|
2020-11-25 07:36:10 +08:00
|
|
|
if (isWhile) {
|
|
|
|
scf::WhileOp whileOp = cast<scf::WhileOp>(loop);
|
2020-11-18 04:13:18 +08:00
|
|
|
rewriter.setInsertionPointToEnd(&whileOp.after().front());
|
|
|
|
genWhileInduction(merger, codegen, rewriter, op, idx, needsUniv,
|
2020-12-18 07:42:23 +08:00
|
|
|
merger.lat(li).bits, whileOp.results());
|
2020-11-25 07:36:10 +08:00
|
|
|
} else {
|
|
|
|
needsUniv = false;
|
2020-12-18 07:42:23 +08:00
|
|
|
if (codegen.redVal) {
|
2021-01-14 02:33:28 +08:00
|
|
|
rewriter.create<scf::YieldOp>(loc, codegen.redVal);
|
2020-12-18 07:42:23 +08:00
|
|
|
codegen.redVal = loop->getResult(0);
|
|
|
|
}
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2020-11-25 07:36:10 +08:00
|
|
|
rewriter.setInsertionPointAfter(loop);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
2020-12-18 07:42:23 +08:00
|
|
|
|
|
|
|
// Wrap-up loop sequence.
|
2021-03-13 06:56:23 +08:00
|
|
|
codegen.curVecLength = 1;
|
2021-03-04 04:37:19 +08:00
|
|
|
genReductionEnd(merger, codegen, rewriter, op);
|
2020-12-18 07:42:23 +08:00
|
|
|
genInvariants(merger, codegen, rewriter, op, exp, ldx, /*hoist=*/false);
|
2021-01-14 02:33:28 +08:00
|
|
|
codegen.loops[idx] = Value();
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|
|
|
|
|
2021-06-12 01:33:43 +08:00
|
|
|
/// Converts the result computed by the sparse kernel into the required form.
|
2021-06-19 07:24:55 +08:00
|
|
|
static void genResult(Merger &merger, CodeGen &codegen,
|
|
|
|
PatternRewriter &rewriter, linalg::GenericOp op) {
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
OpOperand *lhs = op.getOutputOperand(0);
|
|
|
|
Type resType = lhs->get().getType();
|
|
|
|
unsigned tensor = lhs->getOperandNumber();
|
|
|
|
auto map = op.getTiedIndexingMap(lhs);
|
|
|
|
auto enc = getSparseTensorEncoding(resType);
|
|
|
|
Value result = codegen.buffers.back(); // value array
|
|
|
|
if (enc) {
|
|
|
|
// The sparse annotation unambigiously defines the arrays needed
|
|
|
|
// to "reconstruct" the sparse tensor from the storage scheme
|
|
|
|
// (even though lowering should never need this eventually).
|
|
|
|
SmallVector<Value, 4> args;
|
|
|
|
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
|
|
|
|
unsigned idx = map.getDimPosition(perm(enc, d));
|
|
|
|
if (merger.isDim(tensor, idx, Dim::kSparse)) {
|
|
|
|
args.push_back(codegen.pointers[tensor][idx]);
|
|
|
|
args.push_back(codegen.indices[tensor][idx]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
args.push_back(result);
|
|
|
|
result = rewriter.create<ToTensorOp>(loc, resType, args);
|
|
|
|
} else {
|
|
|
|
// To "reconstruct" an non-annotated tensor, sipmly load it
|
|
|
|
// from the bufferized value.
|
|
|
|
result = rewriter.create<memref::TensorLoadOp>(loc, resType, result);
|
|
|
|
}
|
2021-06-12 01:33:43 +08:00
|
|
|
rewriter.replaceOp(op, result);
|
|
|
|
}
|
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// Sparse rewriting rule for generic Lingalg operation.
|
|
|
|
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
|
2020-11-25 07:36:10 +08:00
|
|
|
public:
|
2021-05-04 11:55:12 +08:00
|
|
|
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
|
2020-11-25 07:36:10 +08:00
|
|
|
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(linalg::GenericOp op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// Detects sparse annotations and translate the per-dimension sparsity
|
|
|
|
// information for all tensors to loop indices in the kernel.
|
2020-11-19 07:35:57 +08:00
|
|
|
assert(op.getNumOutputs() == 1);
|
2021-06-02 14:21:13 +08:00
|
|
|
unsigned numTensors = op.getNumInputsAndOutputs();
|
2020-11-19 07:35:57 +08:00
|
|
|
unsigned numLoops = op.iterator_types().getValue().size();
|
|
|
|
Merger merger(numTensors, numLoops);
|
2021-05-20 01:13:40 +08:00
|
|
|
if (!findSparseAnnotations(merger, op))
|
|
|
|
return failure();
|
2020-11-18 04:13:18 +08:00
|
|
|
|
|
|
|
// Computes a topologically sorted iteration graph to ensure
|
|
|
|
// tensors are visited in natural index order. Fails on cycles.
|
|
|
|
// This assumes that higher-level passes have already put the
|
|
|
|
// tensors in each tensor expression in a feasible order.
|
|
|
|
std::vector<unsigned> topSort;
|
2021-01-15 04:04:49 +08:00
|
|
|
if (!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/false) &&
|
|
|
|
!computeIterationGraph(merger, op, topSort, /*sparseOnly=*/true))
|
2020-11-18 04:13:18 +08:00
|
|
|
return failure();
|
|
|
|
|
2021-07-01 05:41:10 +08:00
|
|
|
// Builds the tensor expression for the Linalg operation in SSA form.
|
|
|
|
Optional<unsigned> exp = merger.buildTensorExpFromLinalg(op);
|
2020-11-18 04:13:18 +08:00
|
|
|
if (!exp.hasValue())
|
2021-07-01 05:41:10 +08:00
|
|
|
return failure();
|
2020-11-18 04:13:18 +08:00
|
|
|
|
2021-07-01 05:41:10 +08:00
|
|
|
// Rejects an inadmissable tensor expression.
|
2021-06-19 07:24:55 +08:00
|
|
|
if (!isAdmissableTensorExp(merger, op, exp.getValue()))
|
|
|
|
return failure();
|
|
|
|
|
2020-11-18 04:13:18 +08:00
|
|
|
// Recursively generates code.
|
2020-11-25 07:36:10 +08:00
|
|
|
CodeGen codegen(options, numTensors, numLoops);
|
2021-06-12 01:33:43 +08:00
|
|
|
if (!genBuffers(merger, codegen, rewriter, op))
|
|
|
|
return failure(); // could not bufferize
|
2020-11-18 04:13:18 +08:00
|
|
|
genStmt(merger, codegen, rewriter, op, topSort, exp.getValue(), 0);
|
2021-06-19 07:24:55 +08:00
|
|
|
genResult(merger, codegen, rewriter, op);
|
2020-11-18 04:13:18 +08:00
|
|
|
return success();
|
|
|
|
}
|
2020-11-25 07:36:10 +08:00
|
|
|
|
|
|
|
private:
|
|
|
|
/// Options to control sparse code generation.
|
2021-05-04 11:55:12 +08:00
|
|
|
SparsificationOptions options;
|
2020-11-18 04:13:18 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
/// Populates the given patterns list with rewriting rules required for
|
|
|
|
/// the sparsification of linear algebra operations.
|
2021-05-04 11:55:12 +08:00
|
|
|
void mlir::populateSparsificationPatterns(
|
2021-03-23 07:58:34 +08:00
|
|
|
RewritePatternSet &patterns, const SparsificationOptions &options) {
|
|
|
|
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
|
2020-11-18 04:13:18 +08:00
|
|
|
}
|