llvm-project/llvm/lib/TableGen/Record.cpp

2234 lines
65 KiB
C++
Raw Normal View History

//===- Record.cpp - Record implementation ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the tablegen record classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
static BumpPtrAllocator Allocator;
//===----------------------------------------------------------------------===//
// Type implementations
//===----------------------------------------------------------------------===//
BitRecTy BitRecTy::Shared;
CodeRecTy CodeRecTy::Shared;
IntRecTy IntRecTy::Shared;
StringRecTy StringRecTy::Shared;
DagRecTy DagRecTy::Shared;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecTy::dump() const { print(errs()); }
#endif
ListRecTy *RecTy::getListTy() {
if (!ListTy)
ListTy = new(Allocator) ListRecTy(this);
return ListTy;
}
bool RecTy::typeIsConvertibleTo(const RecTy *RHS) const {
assert(RHS && "NULL pointer");
return Kind == RHS->getRecTyKind();
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
bool RecTy::typeIsA(const RecTy *RHS) const { return this == RHS; }
bool BitRecTy::typeIsConvertibleTo(const RecTy *RHS) const{
if (RecTy::typeIsConvertibleTo(RHS) || RHS->getRecTyKind() == IntRecTyKind)
return true;
if (const BitsRecTy *BitsTy = dyn_cast<BitsRecTy>(RHS))
return BitsTy->getNumBits() == 1;
return false;
}
BitsRecTy *BitsRecTy::get(unsigned Sz) {
static std::vector<BitsRecTy*> Shared;
if (Sz >= Shared.size())
Shared.resize(Sz + 1);
BitsRecTy *&Ty = Shared[Sz];
if (!Ty)
Ty = new(Allocator) BitsRecTy(Sz);
return Ty;
}
std::string BitsRecTy::getAsString() const {
return "bits<" + utostr(Size) + ">";
}
bool BitsRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (RecTy::typeIsConvertibleTo(RHS)) //argument and the sender are same type
return cast<BitsRecTy>(RHS)->Size == Size;
RecTyKind kind = RHS->getRecTyKind();
return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind);
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
bool BitsRecTy::typeIsA(const RecTy *RHS) const {
if (const BitsRecTy *RHSb = dyn_cast<BitsRecTy>(RHS))
return RHSb->Size == Size;
return false;
}
bool IntRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind kind = RHS->getRecTyKind();
return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind;
}
bool CodeRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind Kind = RHS->getRecTyKind();
return Kind == CodeRecTyKind || Kind == StringRecTyKind;
}
std::string StringRecTy::getAsString() const {
return "string";
}
bool StringRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
RecTyKind Kind = RHS->getRecTyKind();
return Kind == StringRecTyKind || Kind == CodeRecTyKind;
}
std::string ListRecTy::getAsString() const {
return "list<" + Ty->getAsString() + ">";
}
bool ListRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (const auto *ListTy = dyn_cast<ListRecTy>(RHS))
return Ty->typeIsConvertibleTo(ListTy->getElementType());
return false;
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
bool ListRecTy::typeIsA(const RecTy *RHS) const {
if (const ListRecTy *RHSl = dyn_cast<ListRecTy>(RHS))
return getElementType()->typeIsA(RHSl->getElementType());
return false;
}
std::string DagRecTy::getAsString() const {
return "dag";
}
static void ProfileRecordRecTy(FoldingSetNodeID &ID,
ArrayRef<Record *> Classes) {
ID.AddInteger(Classes.size());
for (Record *R : Classes)
ID.AddPointer(R);
}
RecordRecTy *RecordRecTy::get(ArrayRef<Record *> UnsortedClasses) {
if (UnsortedClasses.empty()) {
static RecordRecTy AnyRecord(0);
return &AnyRecord;
}
FoldingSet<RecordRecTy> &ThePool =
UnsortedClasses[0]->getRecords().RecordTypePool;
SmallVector<Record *, 4> Classes(UnsortedClasses.begin(),
UnsortedClasses.end());
std::sort(Classes.begin(), Classes.end(),
[](Record *LHS, Record *RHS) {
return LHS->getNameInitAsString() < RHS->getNameInitAsString();
});
FoldingSetNodeID ID;
ProfileRecordRecTy(ID, Classes);
void *IP = nullptr;
if (RecordRecTy *Ty = ThePool.FindNodeOrInsertPos(ID, IP))
return Ty;
#ifndef NDEBUG
// Check for redundancy.
for (unsigned i = 0; i < Classes.size(); ++i) {
for (unsigned j = 0; j < Classes.size(); ++j) {
assert(i == j || !Classes[i]->isSubClassOf(Classes[j]));
}
assert(&Classes[0]->getRecords() == &Classes[i]->getRecords());
}
#endif
void *Mem = Allocator.Allocate(totalSizeToAlloc<Record *>(Classes.size()),
alignof(RecordRecTy));
RecordRecTy *Ty = new(Mem) RecordRecTy(Classes.size());
std::uninitialized_copy(Classes.begin(), Classes.end(),
Ty->getTrailingObjects<Record *>());
ThePool.InsertNode(Ty, IP);
return Ty;
}
void RecordRecTy::Profile(FoldingSetNodeID &ID) const {
ProfileRecordRecTy(ID, getClasses());
}
std::string RecordRecTy::getAsString() const {
if (NumClasses == 1)
return getClasses()[0]->getName();
std::string Str = "{";
bool First = true;
for (Record *R : getClasses()) {
if (!First)
Str += ", ";
First = false;
Str += R->getName();
}
Str += "}";
return Str;
}
bool RecordRecTy::isSubClassOf(Record *Class) const {
return llvm::any_of(getClasses(), [Class](Record *MySuperClass) {
return MySuperClass == Class ||
MySuperClass->isSubClassOf(Class);
});
}
bool RecordRecTy::typeIsConvertibleTo(const RecTy *RHS) const {
if (this == RHS)
return true;
const RecordRecTy *RTy = dyn_cast<RecordRecTy>(RHS);
if (!RTy)
return false;
return llvm::all_of(RTy->getClasses(), [this](Record *TargetClass) {
return isSubClassOf(TargetClass);
});
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
bool RecordRecTy::typeIsA(const RecTy *RHS) const {
return typeIsConvertibleTo(RHS);
}
static RecordRecTy *resolveRecordTypes(RecordRecTy *T1, RecordRecTy *T2) {
SmallVector<Record *, 4> CommonSuperClasses;
SmallVector<Record *, 4> Stack;
Stack.insert(Stack.end(), T1->classes_begin(), T1->classes_end());
while (!Stack.empty()) {
Record *R = Stack.back();
Stack.pop_back();
if (T2->isSubClassOf(R)) {
CommonSuperClasses.push_back(R);
} else {
R->getDirectSuperClasses(Stack);
}
}
return RecordRecTy::get(CommonSuperClasses);
}
RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) {
if (T1 == T2)
return T1;
if (RecordRecTy *RecTy1 = dyn_cast<RecordRecTy>(T1)) {
if (RecordRecTy *RecTy2 = dyn_cast<RecordRecTy>(T2))
return resolveRecordTypes(RecTy1, RecTy2);
}
if (T1->typeIsConvertibleTo(T2))
return T2;
if (T2->typeIsConvertibleTo(T1))
return T1;
if (ListRecTy *ListTy1 = dyn_cast<ListRecTy>(T1)) {
if (ListRecTy *ListTy2 = dyn_cast<ListRecTy>(T2)) {
RecTy* NewType = resolveTypes(ListTy1->getElementType(),
ListTy2->getElementType());
if (NewType)
return NewType->getListTy();
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Initializer implementations
//===----------------------------------------------------------------------===//
void Init::anchor() {}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Init::dump() const { return print(errs()); }
#endif
UnsetInit *UnsetInit::get() {
static UnsetInit TheInit;
return &TheInit;
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
Init *UnsetInit::getCastTo(RecTy *Ty) const {
return const_cast<UnsetInit *>(this);
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
Init *UnsetInit::convertInitializerTo(RecTy *Ty) const {
return const_cast<UnsetInit *>(this);
}
BitInit *BitInit::get(bool V) {
static BitInit True(true);
static BitInit False(false);
return V ? &True : &False;
}
Init *BitInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty))
return const_cast<BitInit *>(this);
if (isa<IntRecTy>(Ty))
return IntInit::get(getValue());
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// Can only convert single bit.
if (BRT->getNumBits() == 1)
return BitsInit::get(const_cast<BitInit *>(this));
}
return nullptr;
}
static void
ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) {
ID.AddInteger(Range.size());
for (Init *I : Range)
ID.AddPointer(I);
}
BitsInit *BitsInit::get(ArrayRef<Init *> Range) {
static FoldingSet<BitsInit> ThePool;
FoldingSetNodeID ID;
ProfileBitsInit(ID, Range);
void *IP = nullptr;
if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(Range.size()),
alignof(BitsInit));
BitsInit *I = new(Mem) BitsInit(Range.size());
std::uninitialized_copy(Range.begin(), Range.end(),
I->getTrailingObjects<Init *>());
ThePool.InsertNode(I, IP);
return I;
}
void BitsInit::Profile(FoldingSetNodeID &ID) const {
ProfileBitsInit(ID, makeArrayRef(getTrailingObjects<Init *>(), NumBits));
}
Init *BitsInit::convertInitializerTo(RecTy *Ty) const {
if (isa<BitRecTy>(Ty)) {
if (getNumBits() != 1) return nullptr; // Only accept if just one bit!
return getBit(0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
// If the number of bits is right, return it. Otherwise we need to expand
// or truncate.
if (getNumBits() != BRT->getNumBits()) return nullptr;
return const_cast<BitsInit *>(this);
}
if (isa<IntRecTy>(Ty)) {
int64_t Result = 0;
for (unsigned i = 0, e = getNumBits(); i != e; ++i)
if (auto *Bit = dyn_cast<BitInit>(getBit(i)))
Result |= static_cast<int64_t>(Bit->getValue()) << i;
else
return nullptr;
return IntInit::get(Result);
}
return nullptr;
}
Init *
BitsInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= getNumBits())
return nullptr;
NewBits[i] = getBit(Bits[i]);
}
return BitsInit::get(NewBits);
}
bool BitsInit::isConcrete() const {
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
if (!getBit(i)->isConcrete())
return false;
}
return true;
}
std::string BitsInit::getAsString() const {
std::string Result = "{ ";
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
if (i) Result += ", ";
if (Init *Bit = getBit(e-i-1))
Result += Bit->getAsString();
else
Result += "*";
}
return Result + " }";
}
// resolveReferences - If there are any field references that refer to fields
// that have been filled in, we can propagate the values now.
Init *BitsInit::resolveReferences(Resolver &R) const {
bool Changed = false;
SmallVector<Init *, 16> NewBits(getNumBits());
Init *CachedBitVarRef = nullptr;
Init *CachedBitVarResolved = nullptr;
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
Init *CurBit = getBit(i);
Init *NewBit = CurBit;
if (VarBitInit *CurBitVar = dyn_cast<VarBitInit>(CurBit)) {
if (CurBitVar->getBitVar() != CachedBitVarRef) {
CachedBitVarRef = CurBitVar->getBitVar();
CachedBitVarResolved = CachedBitVarRef->resolveReferences(R);
}
NewBit = CachedBitVarResolved->getBit(CurBitVar->getBitNum());
} else {
// getBit(0) implicitly converts int and bits<1> values to bit.
NewBit = CurBit->resolveReferences(R)->getBit(0);
}
if (isa<UnsetInit>(NewBit) && R.keepUnsetBits())
NewBit = CurBit;
NewBits[i] = NewBit;
Changed |= CurBit != NewBit;
}
if (Changed)
return BitsInit::get(NewBits);
return const_cast<BitsInit *>(this);
}
IntInit *IntInit::get(int64_t V) {
static DenseMap<int64_t, IntInit*> ThePool;
IntInit *&I = ThePool[V];
if (!I) I = new(Allocator) IntInit(V);
return I;
}
std::string IntInit::getAsString() const {
return itostr(Value);
}
static bool canFitInBitfield(int64_t Value, unsigned NumBits) {
// For example, with NumBits == 4, we permit Values from [-7 .. 15].
return (NumBits >= sizeof(Value) * 8) ||
(Value >> NumBits == 0) || (Value >> (NumBits-1) == -1);
}
Init *IntInit::convertInitializerTo(RecTy *Ty) const {
if (isa<IntRecTy>(Ty))
return const_cast<IntInit *>(this);
if (isa<BitRecTy>(Ty)) {
int64_t Val = getValue();
if (Val != 0 && Val != 1) return nullptr; // Only accept 0 or 1 for a bit!
return BitInit::get(Val != 0);
}
if (auto *BRT = dyn_cast<BitsRecTy>(Ty)) {
int64_t Value = getValue();
// Make sure this bitfield is large enough to hold the integer value.
if (!canFitInBitfield(Value, BRT->getNumBits()))
return nullptr;
SmallVector<Init *, 16> NewBits(BRT->getNumBits());
for (unsigned i = 0; i != BRT->getNumBits(); ++i)
NewBits[i] = BitInit::get(Value & (1LL << i));
return BitsInit::get(NewBits);
}
return nullptr;
}
Init *
IntInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= 64)
return nullptr;
NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i]));
}
return BitsInit::get(NewBits);
}
CodeInit *CodeInit::get(StringRef V) {
static StringMap<CodeInit*, BumpPtrAllocator &> ThePool(Allocator);
auto &Entry = *ThePool.insert(std::make_pair(V, nullptr)).first;
if (!Entry.second)
Entry.second = new(Allocator) CodeInit(Entry.getKey());
return Entry.second;
}
StringInit *StringInit::get(StringRef V) {
static StringMap<StringInit*, BumpPtrAllocator &> ThePool(Allocator);
auto &Entry = *ThePool.insert(std::make_pair(V, nullptr)).first;
if (!Entry.second)
Entry.second = new(Allocator) StringInit(Entry.getKey());
return Entry.second;
}
Init *StringInit::convertInitializerTo(RecTy *Ty) const {
if (isa<StringRecTy>(Ty))
return const_cast<StringInit *>(this);
if (isa<CodeRecTy>(Ty))
return CodeInit::get(getValue());
return nullptr;
}
Init *CodeInit::convertInitializerTo(RecTy *Ty) const {
if (isa<CodeRecTy>(Ty))
return const_cast<CodeInit *>(this);
if (isa<StringRecTy>(Ty))
return StringInit::get(getValue());
return nullptr;
}
static void ProfileListInit(FoldingSetNodeID &ID,
ArrayRef<Init *> Range,
RecTy *EltTy) {
ID.AddInteger(Range.size());
ID.AddPointer(EltTy);
for (Init *I : Range)
ID.AddPointer(I);
}
ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) {
static FoldingSet<ListInit> ThePool;
FoldingSetNodeID ID;
ProfileListInit(ID, Range, EltTy);
void *IP = nullptr;
if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
assert(Range.empty() || !isa<TypedInit>(Range[0]) ||
cast<TypedInit>(Range[0])->getType()->typeIsConvertibleTo(EltTy));
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(Range.size()),
alignof(ListInit));
ListInit *I = new(Mem) ListInit(Range.size(), EltTy);
std::uninitialized_copy(Range.begin(), Range.end(),
I->getTrailingObjects<Init *>());
ThePool.InsertNode(I, IP);
return I;
}
void ListInit::Profile(FoldingSetNodeID &ID) const {
RecTy *EltTy = cast<ListRecTy>(getType())->getElementType();
ProfileListInit(ID, getValues(), EltTy);
}
Init *ListInit::convertInitializerTo(RecTy *Ty) const {
if (getType() == Ty)
return const_cast<ListInit*>(this);
if (auto *LRT = dyn_cast<ListRecTy>(Ty)) {
SmallVector<Init*, 8> Elements;
Elements.reserve(getValues().size());
// Verify that all of the elements of the list are subclasses of the
// appropriate class!
bool Changed = false;
RecTy *ElementType = LRT->getElementType();
for (Init *I : getValues())
if (Init *CI = I->convertInitializerTo(ElementType)) {
Elements.push_back(CI);
if (CI != I)
Changed = true;
2017-08-28 14:47:47 +08:00
} else
return nullptr;
if (!Changed)
return const_cast<ListInit*>(this);
return ListInit::get(Elements, ElementType);
}
return nullptr;
}
Init *ListInit::convertInitListSlice(ArrayRef<unsigned> Elements) const {
SmallVector<Init*, 8> Vals;
Vals.reserve(Elements.size());
for (unsigned Element : Elements) {
if (Element >= size())
return nullptr;
Vals.push_back(getElement(Element));
}
return ListInit::get(Vals, getElementType());
}
2007-02-28 06:08:27 +08:00
Record *ListInit::getElementAsRecord(unsigned i) const {
assert(i < NumValues && "List element index out of range!");
DefInit *DI = dyn_cast<DefInit>(getElement(i));
if (!DI)
PrintFatalError("Expected record in list!");
2007-02-28 06:08:27 +08:00
return DI->getDef();
}
Init *ListInit::resolveReferences(Resolver &R) const {
SmallVector<Init*, 8> Resolved;
Resolved.reserve(size());
bool Changed = false;
for (Init *CurElt : getValues()) {
Init *E;
do {
E = CurElt;
CurElt = CurElt->resolveReferences(R);
Changed |= E != CurElt;
} while (E != CurElt);
Resolved.push_back(E);
}
if (Changed)
return ListInit::get(Resolved, getElementType());
return const_cast<ListInit *>(this);
}
bool ListInit::isConcrete() const {
for (Init *Element : *this) {
if (!Element->isConcrete())
return false;
}
return true;
}
std::string ListInit::getAsString() const {
std::string Result = "[";
const char *sep = "";
for (Init *Element : *this) {
Result += sep;
sep = ", ";
Result += Element->getAsString();
}
return Result + "]";
}
Init *OpInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<OpInit*>(this);
return VarBitInit::get(const_cast<OpInit*>(this), Bit);
}
static void
ProfileUnOpInit(FoldingSetNodeID &ID, unsigned Opcode, Init *Op, RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(Op);
ID.AddPointer(Type);
}
UnOpInit *UnOpInit::get(UnaryOp Opc, Init *LHS, RecTy *Type) {
static FoldingSet<UnOpInit> ThePool;
FoldingSetNodeID ID;
ProfileUnOpInit(ID, Opc, LHS, Type);
void *IP = nullptr;
if (UnOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
UnOpInit *I = new(Allocator) UnOpInit(Opc, LHS, Type);
ThePool.InsertNode(I, IP);
return I;
}
void UnOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileUnOpInit(ID, getOpcode(), getOperand(), getType());
}
Init *UnOpInit::Fold(Record *CurRec) const {
2009-05-15 05:22:49 +08:00
switch (getOpcode()) {
case CAST:
if (isa<StringRecTy>(getType())) {
if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
return LHSs;
2009-05-15 05:22:49 +08:00
if (DefInit *LHSd = dyn_cast<DefInit>(LHS))
return StringInit::get(LHSd->getAsString());
if (IntInit *LHSi = dyn_cast<IntInit>(LHS))
return StringInit::get(LHSi->getAsString());
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
} else if (isa<RecordRecTy>(getType())) {
if (StringInit *Name = dyn_cast<StringInit>(LHS)) {
assert(CurRec && "NULL pointer");
if (Record *D = (CurRec->getRecords()).getDef(Name->getValue()))
return DefInit::get(D);
2009-05-15 05:22:49 +08:00
PrintFatalError(CurRec->getLoc(),
Twine("Undefined reference to record: '") +
Name->getValue() + "'\n");
}
2009-05-15 05:22:49 +08:00
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
if (Init *NewInit = LHS->convertInitializerTo(getType()))
return NewInit;
2009-05-15 05:22:49 +08:00
break;
case HEAD:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in head");
return LHSl->getElement(0);
}
break;
case TAIL:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) {
assert(!LHSl->empty() && "Empty list in tail");
// Note the +1. We can't just pass the result of getValues()
// directly.
return ListInit::get(LHSl->getValues().slice(1), LHSl->getElementType());
}
break;
case SIZE:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(LHSl->size());
break;
case EMPTY:
if (ListInit *LHSl = dyn_cast<ListInit>(LHS))
return IntInit::get(LHSl->empty());
if (StringInit *LHSs = dyn_cast<StringInit>(LHS))
return IntInit::get(LHSs->getValue().empty());
break;
}
return const_cast<UnOpInit *>(this);
2009-05-15 05:22:49 +08:00
}
Init *UnOpInit::resolveReferences(Resolver &R) const {
Init *lhs = LHS->resolveReferences(R);
2009-11-22 12:24:42 +08:00
2009-05-15 05:22:49 +08:00
if (LHS != lhs)
return (UnOpInit::get(getOpcode(), lhs, getType()))
->Fold(R.getCurrentRecord());
return Fold(R.getCurrentRecord());
2009-05-15 05:22:49 +08:00
}
std::string UnOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
2009-05-15 05:22:49 +08:00
case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break;
case HEAD: Result = "!head"; break;
case TAIL: Result = "!tail"; break;
case SIZE: Result = "!size"; break;
case EMPTY: Result = "!empty"; break;
2009-05-15 05:22:49 +08:00
}
return Result + "(" + LHS->getAsString() + ")";
}
static void
ProfileBinOpInit(FoldingSetNodeID &ID, unsigned Opcode, Init *LHS, Init *RHS,
RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(LHS);
ID.AddPointer(RHS);
ID.AddPointer(Type);
}
BinOpInit *BinOpInit::get(BinaryOp Opc, Init *LHS,
Init *RHS, RecTy *Type) {
static FoldingSet<BinOpInit> ThePool;
FoldingSetNodeID ID;
ProfileBinOpInit(ID, Opc, LHS, RHS, Type);
void *IP = nullptr;
if (BinOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
BinOpInit *I = new(Allocator) BinOpInit(Opc, LHS, RHS, Type);
ThePool.InsertNode(I, IP);
return I;
}
void BinOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileBinOpInit(ID, getOpcode(), getLHS(), getRHS(), getType());
}
static StringInit *ConcatStringInits(const StringInit *I0,
const StringInit *I1) {
SmallString<80> Concat(I0->getValue());
Concat.append(I1->getValue());
return StringInit::get(Concat);
}
Init *BinOpInit::Fold(Record *CurRec) const {
switch (getOpcode()) {
case CONCAT: {
DagInit *LHSs = dyn_cast<DagInit>(LHS);
DagInit *RHSs = dyn_cast<DagInit>(RHS);
if (LHSs && RHSs) {
DefInit *LOp = dyn_cast<DefInit>(LHSs->getOperator());
DefInit *ROp = dyn_cast<DefInit>(RHSs->getOperator());
if (!LOp || !ROp)
break;
if (LOp->getDef() != ROp->getDef()) {
PrintFatalError(Twine("Concatenated Dag operators do not match: '") +
LHSs->getAsString() + "' vs. '" + RHSs->getAsString() +
"'");
}
SmallVector<Init*, 8> Args;
SmallVector<StringInit*, 8> ArgNames;
for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) {
Args.push_back(LHSs->getArg(i));
ArgNames.push_back(LHSs->getArgName(i));
}
for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) {
Args.push_back(RHSs->getArg(i));
ArgNames.push_back(RHSs->getArgName(i));
}
return DagInit::get(LHSs->getOperator(), nullptr, Args, ArgNames);
}
break;
}
case LISTCONCAT: {
ListInit *LHSs = dyn_cast<ListInit>(LHS);
ListInit *RHSs = dyn_cast<ListInit>(RHS);
if (LHSs && RHSs) {
SmallVector<Init *, 8> Args;
Args.insert(Args.end(), LHSs->begin(), LHSs->end());
Args.insert(Args.end(), RHSs->begin(), RHSs->end());
return ListInit::get(Args, LHSs->getElementType());
}
break;
}
case STRCONCAT: {
StringInit *LHSs = dyn_cast<StringInit>(LHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
if (LHSs && RHSs)
return ConcatStringInits(LHSs, RHSs);
break;
}
case EQ:
case NE:
case LE:
case LT:
case GE:
case GT: {
// try to fold eq comparison for 'bit' and 'int', otherwise fallback
// to string objects.
IntInit *L =
dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit *R =
dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
if (L && R) {
bool Result;
switch (getOpcode()) {
case EQ: Result = L->getValue() == R->getValue(); break;
case NE: Result = L->getValue() != R->getValue(); break;
case LE: Result = L->getValue() <= R->getValue(); break;
case LT: Result = L->getValue() < R->getValue(); break;
case GE: Result = L->getValue() >= R->getValue(); break;
case GT: Result = L->getValue() > R->getValue(); break;
default: llvm_unreachable("unhandled comparison");
}
return BitInit::get(Result);
}
if (getOpcode() == EQ || getOpcode() == NE) {
StringInit *LHSs = dyn_cast<StringInit>(LHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
// Make sure we've resolved
if (LHSs && RHSs) {
bool Equal = LHSs->getValue() == RHSs->getValue();
return BitInit::get(getOpcode() == EQ ? Equal : !Equal);
}
}
break;
}
case ADD:
case AND:
case OR:
case SHL:
case SRA:
case SRL: {
IntInit *LHSi =
dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit *RHSi =
dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get()));
if (LHSi && RHSi) {
int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue();
int64_t Result;
switch (getOpcode()) {
default: llvm_unreachable("Bad opcode!");
case ADD: Result = LHSv + RHSv; break;
case AND: Result = LHSv & RHSv; break;
case OR: Result = LHSv | RHSv; break;
case SHL: Result = LHSv << RHSv; break;
case SRA: Result = LHSv >> RHSv; break;
case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
}
return IntInit::get(Result);
}
break;
}
}
return const_cast<BinOpInit *>(this);
}
Init *BinOpInit::resolveReferences(Resolver &R) const {
Init *lhs = LHS->resolveReferences(R);
Init *rhs = RHS->resolveReferences(R);
2009-11-22 12:24:42 +08:00
if (LHS != lhs || RHS != rhs)
return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))
->Fold(R.getCurrentRecord());
return Fold(R.getCurrentRecord());
}
std::string BinOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
case CONCAT: Result = "!con"; break;
case ADD: Result = "!add"; break;
case AND: Result = "!and"; break;
case OR: Result = "!or"; break;
case SHL: Result = "!shl"; break;
case SRA: Result = "!sra"; break;
case SRL: Result = "!srl"; break;
case EQ: Result = "!eq"; break;
case NE: Result = "!ne"; break;
case LE: Result = "!le"; break;
case LT: Result = "!lt"; break;
case GE: Result = "!ge"; break;
case GT: Result = "!gt"; break;
case LISTCONCAT: Result = "!listconcat"; break;
case STRCONCAT: Result = "!strconcat"; break;
}
return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")";
}
static void
ProfileTernOpInit(FoldingSetNodeID &ID, unsigned Opcode, Init *LHS, Init *MHS,
Init *RHS, RecTy *Type) {
ID.AddInteger(Opcode);
ID.AddPointer(LHS);
ID.AddPointer(MHS);
ID.AddPointer(RHS);
ID.AddPointer(Type);
}
TernOpInit *TernOpInit::get(TernaryOp Opc, Init *LHS, Init *MHS, Init *RHS,
RecTy *Type) {
static FoldingSet<TernOpInit> ThePool;
FoldingSetNodeID ID;
ProfileTernOpInit(ID, Opc, LHS, MHS, RHS, Type);
void *IP = nullptr;
if (TernOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
TernOpInit *I = new(Allocator) TernOpInit(Opc, LHS, MHS, RHS, Type);
ThePool.InsertNode(I, IP);
return I;
}
void TernOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileTernOpInit(ID, getOpcode(), getLHS(), getMHS(), getRHS(), getType());
}
static Init *ForeachApply(Init *LHS, Init *MHSe, Init *RHS, Record *CurRec) {
MapResolver R(CurRec);
R.set(LHS, MHSe);
return RHS->resolveReferences(R);
}
static Init *ForeachDagApply(Init *LHS, DagInit *MHSd, Init *RHS,
Record *CurRec) {
bool Change = false;
Init *Val = ForeachApply(LHS, MHSd->getOperator(), RHS, CurRec);
if (Val != MHSd->getOperator())
Change = true;
SmallVector<std::pair<Init *, StringInit *>, 8> NewArgs;
for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) {
Init *Arg = MHSd->getArg(i);
Init *NewArg;
StringInit *ArgName = MHSd->getArgName(i);
if (DagInit *Argd = dyn_cast<DagInit>(Arg))
NewArg = ForeachDagApply(LHS, Argd, RHS, CurRec);
else
NewArg = ForeachApply(LHS, Arg, RHS, CurRec);
NewArgs.push_back(std::make_pair(NewArg, ArgName));
if (Arg != NewArg)
Change = true;
}
if (Change)
return DagInit::get(Val, nullptr, NewArgs);
return MHSd;
}
// Applies RHS to all elements of MHS, using LHS as a temp variable.
static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
Record *CurRec) {
if (DagInit *MHSd = dyn_cast<DagInit>(MHS))
return ForeachDagApply(LHS, MHSd, RHS, CurRec);
if (ListInit *MHSl = dyn_cast<ListInit>(MHS)) {
SmallVector<Init *, 8> NewList(MHSl->begin(), MHSl->end());
for (Init *&Item : NewList) {
Init *NewItem = ForeachApply(LHS, Item, RHS, CurRec);
if (NewItem != Item)
Item = NewItem;
}
return ListInit::get(NewList, cast<ListRecTy>(Type)->getElementType());
}
return nullptr;
}
Init *TernOpInit::Fold(Record *CurRec) const {
switch (getOpcode()) {
case SUBST: {
DefInit *LHSd = dyn_cast<DefInit>(LHS);
VarInit *LHSv = dyn_cast<VarInit>(LHS);
StringInit *LHSs = dyn_cast<StringInit>(LHS);
DefInit *MHSd = dyn_cast<DefInit>(MHS);
VarInit *MHSv = dyn_cast<VarInit>(MHS);
StringInit *MHSs = dyn_cast<StringInit>(MHS);
DefInit *RHSd = dyn_cast<DefInit>(RHS);
VarInit *RHSv = dyn_cast<VarInit>(RHS);
StringInit *RHSs = dyn_cast<StringInit>(RHS);
if (LHSd && MHSd && RHSd) {
Record *Val = RHSd->getDef();
if (LHSd->getAsString() == RHSd->getAsString())
Val = MHSd->getDef();
return DefInit::get(Val);
}
if (LHSv && MHSv && RHSv) {
std::string Val = RHSv->getName();
if (LHSv->getAsString() == RHSv->getAsString())
Val = MHSv->getName();
return VarInit::get(Val, getType());
}
if (LHSs && MHSs && RHSs) {
std::string Val = RHSs->getValue();
std::string::size_type found;
std::string::size_type idx = 0;
while (true) {
found = Val.find(LHSs->getValue(), idx);
if (found == std::string::npos)
break;
Val.replace(found, LHSs->getValue().size(), MHSs->getValue());
idx = found + MHSs->getValue().size();
}
return StringInit::get(Val);
}
break;
2009-11-22 12:24:42 +08:00
}
case FOREACH: {
if (Init *Result = ForeachHelper(LHS, MHS, RHS, getType(), CurRec))
return Result;
break;
}
case IF: {
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
if (IntInit *LHSi = dyn_cast_or_null<IntInit>(
LHS->convertInitializerTo(IntRecTy::get()))) {
if (LHSi->getValue())
return MHS;
return RHS;
}
break;
}
case DAG: {
ListInit *MHSl = dyn_cast<ListInit>(MHS);
ListInit *RHSl = dyn_cast<ListInit>(RHS);
bool MHSok = MHSl || isa<UnsetInit>(MHS);
bool RHSok = RHSl || isa<UnsetInit>(RHS);
if (isa<UnsetInit>(MHS) && isa<UnsetInit>(RHS))
break; // Typically prevented by the parser, but might happen with template args
if (MHSok && RHSok && (!MHSl || !RHSl || MHSl->size() == RHSl->size())) {
SmallVector<std::pair<Init *, StringInit *>, 8> Children;
unsigned Size = MHSl ? MHSl->size() : RHSl->size();
for (unsigned i = 0; i != Size; ++i) {
Init *Node = MHSl ? MHSl->getElement(i) : UnsetInit::get();
Init *Name = RHSl ? RHSl->getElement(i) : UnsetInit::get();
if (!isa<StringInit>(Name) && !isa<UnsetInit>(Name))
return const_cast<TernOpInit *>(this);
Children.emplace_back(Node, dyn_cast<StringInit>(Name));
}
return DagInit::get(LHS, nullptr, Children);
}
break;
}
}
return const_cast<TernOpInit *>(this);
}
Init *TernOpInit::resolveReferences(Resolver &R) const {
Init *lhs = LHS->resolveReferences(R);
if (getOpcode() == IF && lhs != LHS) {
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
if (IntInit *Value = dyn_cast_or_null<IntInit>(
lhs->convertInitializerTo(IntRecTy::get()))) {
// Short-circuit
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
if (Value->getValue())
return MHS->resolveReferences(R);
return RHS->resolveReferences(R);
}
}
2009-11-22 12:24:42 +08:00
Init *mhs = MHS->resolveReferences(R);
Init *rhs;
if (getOpcode() == FOREACH) {
ShadowResolver SR(R);
SR.addShadow(lhs);
rhs = RHS->resolveReferences(SR);
} else {
rhs = RHS->resolveReferences(R);
}
if (LHS != lhs || MHS != mhs || RHS != rhs)
return (TernOpInit::get(getOpcode(), lhs, mhs, rhs, getType()))
->Fold(R.getCurrentRecord());
return Fold(R.getCurrentRecord());
}
std::string TernOpInit::getAsString() const {
std::string Result;
switch (getOpcode()) {
case SUBST: Result = "!subst"; break;
2009-11-22 12:24:42 +08:00
case FOREACH: Result = "!foreach"; break;
case IF: Result = "!if"; break;
case DAG: Result = "!dag"; break;
}
return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", " +
RHS->getAsString() + ")";
}
static void ProfileFoldOpInit(FoldingSetNodeID &ID, Init *A, Init *B,
Init *Start, Init *List, Init *Expr,
RecTy *Type) {
ID.AddPointer(Start);
ID.AddPointer(List);
ID.AddPointer(A);
ID.AddPointer(B);
ID.AddPointer(Expr);
ID.AddPointer(Type);
}
FoldOpInit *FoldOpInit::get(Init *Start, Init *List, Init *A, Init *B,
Init *Expr, RecTy *Type) {
static FoldingSet<FoldOpInit> ThePool;
FoldingSetNodeID ID;
ProfileFoldOpInit(ID, Start, List, A, B, Expr, Type);
void *IP = nullptr;
if (FoldOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
FoldOpInit *I = new (Allocator) FoldOpInit(Start, List, A, B, Expr, Type);
ThePool.InsertNode(I, IP);
return I;
}
void FoldOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileFoldOpInit(ID, Start, List, A, B, Expr, getType());
}
Init *FoldOpInit::Fold(Record *CurRec) const {
if (ListInit *LI = dyn_cast<ListInit>(List)) {
Init *Accum = Start;
for (Init *Elt : *LI) {
MapResolver R(CurRec);
R.set(A, Accum);
R.set(B, Elt);
Accum = Expr->resolveReferences(R);
}
return Accum;
}
return const_cast<FoldOpInit *>(this);
}
Init *FoldOpInit::resolveReferences(Resolver &R) const {
Init *NewStart = Start->resolveReferences(R);
Init *NewList = List->resolveReferences(R);
ShadowResolver SR(R);
SR.addShadow(A);
SR.addShadow(B);
Init *NewExpr = Expr->resolveReferences(SR);
if (Start == NewStart && List == NewList && Expr == NewExpr)
return const_cast<FoldOpInit *>(this);
return get(NewStart, NewList, A, B, NewExpr, getType())
->Fold(R.getCurrentRecord());
}
Init *FoldOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(const_cast<FoldOpInit *>(this), Bit);
}
std::string FoldOpInit::getAsString() const {
return (Twine("!foldl(") + Start->getAsString() + ", " + List->getAsString() +
", " + A->getAsUnquotedString() + ", " + B->getAsUnquotedString() +
", " + Expr->getAsString() + ")")
.str();
}
static void ProfileIsAOpInit(FoldingSetNodeID &ID, RecTy *CheckType,
Init *Expr) {
ID.AddPointer(CheckType);
ID.AddPointer(Expr);
}
IsAOpInit *IsAOpInit::get(RecTy *CheckType, Init *Expr) {
static FoldingSet<IsAOpInit> ThePool;
FoldingSetNodeID ID;
ProfileIsAOpInit(ID, CheckType, Expr);
void *IP = nullptr;
if (IsAOpInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
IsAOpInit *I = new (Allocator) IsAOpInit(CheckType, Expr);
ThePool.InsertNode(I, IP);
return I;
}
void IsAOpInit::Profile(FoldingSetNodeID &ID) const {
ProfileIsAOpInit(ID, CheckType, Expr);
}
Init *IsAOpInit::Fold() const {
if (TypedInit *TI = dyn_cast<TypedInit>(Expr)) {
// Is the expression type known to be (a subclass of) the desired type?
if (TI->getType()->typeIsConvertibleTo(CheckType))
return IntInit::get(1);
if (isa<RecordRecTy>(CheckType)) {
// If the target type is not a subclass of the expression type, or if
// the expression has fully resolved to a record, we know that it can't
// be of the required type.
if (!CheckType->typeIsConvertibleTo(TI->getType()) || isa<DefInit>(Expr))
return IntInit::get(0);
} else {
// We treat non-record types as not castable.
return IntInit::get(0);
}
}
return const_cast<IsAOpInit *>(this);
}
Init *IsAOpInit::resolveReferences(Resolver &R) const {
Init *NewExpr = Expr->resolveReferences(R);
if (Expr != NewExpr)
return get(CheckType, NewExpr)->Fold();
return const_cast<IsAOpInit *>(this);
}
Init *IsAOpInit::getBit(unsigned Bit) const {
return VarBitInit::get(const_cast<IsAOpInit *>(this), Bit);
}
std::string IsAOpInit::getAsString() const {
return (Twine("!isa<") + CheckType->getAsString() + ">(" +
Expr->getAsString() + ")")
.str();
}
RecTy *TypedInit::getFieldType(StringInit *FieldName) const {
if (RecordRecTy *RecordType = dyn_cast<RecordRecTy>(getType())) {
for (Record *Rec : RecordType->getClasses()) {
if (RecordVal *Field = Rec->getValue(FieldName))
return Field->getType();
}
}
return nullptr;
}
Init *
TypedInit::convertInitializerTo(RecTy *Ty) const {
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
if (getType() == Ty || getType()->typeIsA(Ty))
return const_cast<TypedInit *>(this);
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
if (isa<BitRecTy>(getType()) && isa<BitsRecTy>(Ty) &&
cast<BitsRecTy>(Ty)->getNumBits() == 1)
return BitsInit::get({const_cast<TypedInit *>(this)});
return nullptr;
}
Init *TypedInit::convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
BitsRecTy *T = dyn_cast<BitsRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-bits variable.
unsigned NumBits = T->getNumBits();
SmallVector<Init *, 16> NewBits;
NewBits.reserve(Bits.size());
for (unsigned Bit : Bits) {
if (Bit >= NumBits)
return nullptr;
NewBits.push_back(VarBitInit::get(const_cast<TypedInit *>(this), Bit));
}
return BitsInit::get(NewBits);
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
Init *TypedInit::getCastTo(RecTy *Ty) const {
// Handle the common case quickly
if (getType() == Ty || getType()->typeIsA(Ty))
return const_cast<TypedInit *>(this);
if (Init *Converted = convertInitializerTo(Ty)) {
assert(!isa<TypedInit>(Converted) ||
cast<TypedInit>(Converted)->getType()->typeIsA(Ty));
return Converted;
}
if (!getType()->typeIsConvertibleTo(Ty))
return nullptr;
return UnOpInit::get(UnOpInit::CAST, const_cast<TypedInit *>(this), Ty)
->Fold(nullptr);
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
}
Init *TypedInit::convertInitListSlice(ArrayRef<unsigned> Elements) const {
ListRecTy *T = dyn_cast<ListRecTy>(getType());
if (!T) return nullptr; // Cannot subscript a non-list variable.
if (Elements.size() == 1)
return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]);
SmallVector<Init*, 8> ListInits;
ListInits.reserve(Elements.size());
for (unsigned Element : Elements)
ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this),
Element));
return ListInit::get(ListInits, T->getElementType());
}
VarInit *VarInit::get(StringRef VN, RecTy *T) {
Init *Value = StringInit::get(VN);
return VarInit::get(Value, T);
}
VarInit *VarInit::get(Init *VN, RecTy *T) {
using Key = std::pair<RecTy *, Init *>;
static DenseMap<Key, VarInit*> ThePool;
Key TheKey(std::make_pair(T, VN));
VarInit *&I = ThePool[TheKey];
if (!I)
I = new(Allocator) VarInit(VN, T);
return I;
}
StringRef VarInit::getName() const {
StringInit *NameString = cast<StringInit>(getNameInit());
return NameString->getValue();
}
Init *VarInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<VarInit*>(this);
return VarBitInit::get(const_cast<VarInit*>(this), Bit);
}
Init *VarInit::resolveReferences(Resolver &R) const {
if (Init *Val = R.resolve(VarName))
return Val;
return const_cast<VarInit *>(this);
}
VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) {
using Key = std::pair<TypedInit *, unsigned>;
static DenseMap<Key, VarBitInit*> ThePool;
Key TheKey(std::make_pair(T, B));
VarBitInit *&I = ThePool[TheKey];
if (!I)
I = new(Allocator) VarBitInit(T, B);
return I;
}
std::string VarBitInit::getAsString() const {
return TI->getAsString() + "{" + utostr(Bit) + "}";
}
Init *VarBitInit::resolveReferences(Resolver &R) const {
Init *I = TI->resolveReferences(R);
if (TI != I)
return I->getBit(getBitNum());
return const_cast<VarBitInit*>(this);
}
VarListElementInit *VarListElementInit::get(TypedInit *T,
unsigned E) {
using Key = std::pair<TypedInit *, unsigned>;
static DenseMap<Key, VarListElementInit*> ThePool;
Key TheKey(std::make_pair(T, E));
VarListElementInit *&I = ThePool[TheKey];
if (!I) I = new(Allocator) VarListElementInit(T, E);
return I;
}
std::string VarListElementInit::getAsString() const {
return TI->getAsString() + "[" + utostr(Element) + "]";
}
Init *VarListElementInit::resolveReferences(Resolver &R) const {
Init *NewTI = TI->resolveReferences(R);
if (ListInit *List = dyn_cast<ListInit>(NewTI)) {
// Leave out-of-bounds array references as-is. This can happen without
// being an error, e.g. in the untaken "branch" of an !if expression.
if (getElementNum() < List->size())
return List->getElement(getElementNum());
}
if (NewTI != TI && isa<TypedInit>(NewTI))
return VarListElementInit::get(cast<TypedInit>(NewTI), getElementNum());
return const_cast<VarListElementInit *>(this);
}
Init *VarListElementInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<VarListElementInit*>(this);
return VarBitInit::get(const_cast<VarListElementInit*>(this), Bit);
}
static RecordRecTy *makeDefInitType(Record *Rec) {
SmallVector<Record *, 4> SuperClasses;
Rec->getDirectSuperClasses(SuperClasses);
return RecordRecTy::get(SuperClasses);
}
DefInit::DefInit(Record *D)
: TypedInit(IK_DefInit, makeDefInitType(D)), Def(D) {}
DefInit *DefInit::get(Record *R) {
return R->getDefInit();
}
Init *DefInit::convertInitializerTo(RecTy *Ty) const {
if (auto *RRT = dyn_cast<RecordRecTy>(Ty))
if (getType()->typeIsConvertibleTo(RRT))
return const_cast<DefInit *>(this);
return nullptr;
}
RecTy *DefInit::getFieldType(StringInit *FieldName) const {
if (const RecordVal *RV = Def->getValue(FieldName))
return RV->getType();
return nullptr;
}
std::string DefInit::getAsString() const {
return Def->getName();
}
static void ProfileVarDefInit(FoldingSetNodeID &ID,
Record *Class,
ArrayRef<Init *> Args) {
ID.AddInteger(Args.size());
ID.AddPointer(Class);
for (Init *I : Args)
ID.AddPointer(I);
}
VarDefInit *VarDefInit::get(Record *Class, ArrayRef<Init *> Args) {
static FoldingSet<VarDefInit> ThePool;
FoldingSetNodeID ID;
ProfileVarDefInit(ID, Class, Args);
void *IP = nullptr;
if (VarDefInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *>(Args.size()),
alignof(VarDefInit));
VarDefInit *I = new(Mem) VarDefInit(Class, Args.size());
std::uninitialized_copy(Args.begin(), Args.end(),
I->getTrailingObjects<Init *>());
ThePool.InsertNode(I, IP);
return I;
}
void VarDefInit::Profile(FoldingSetNodeID &ID) const {
ProfileVarDefInit(ID, Class, args());
}
DefInit *VarDefInit::instantiate() {
if (!Def) {
RecordKeeper &Records = Class->getRecords();
auto NewRecOwner = make_unique<Record>(Records.getNewAnonymousName(),
Class->getLoc(), Records,
/*IsAnonymous=*/true);
Record *NewRec = NewRecOwner.get();
// Copy values from class to instance
for (const RecordVal &Val : Class->getValues()) {
if (Val.getName() != "NAME")
NewRec->addValue(Val);
}
// Substitute and resolve template arguments
ArrayRef<Init *> TArgs = Class->getTemplateArgs();
MapResolver R(NewRec);
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < args_size())
R.set(TArgs[i], getArg(i));
else
R.set(TArgs[i], NewRec->getValue(TArgs[i])->getValue());
NewRec->removeValue(TArgs[i]);
}
NewRec->resolveReferences(R);
// Add superclasses.
ArrayRef<std::pair<Record *, SMRange>> SCs = Class->getSuperClasses();
for (const auto &SCPair : SCs)
NewRec->addSuperClass(SCPair.first, SCPair.second);
NewRec->addSuperClass(Class,
SMRange(Class->getLoc().back(),
Class->getLoc().back()));
// Resolve internal references and store in record keeper
NewRec->resolveReferences();
Records.addDef(std::move(NewRecOwner));
Def = DefInit::get(NewRec);
}
return Def;
}
Init *VarDefInit::resolveReferences(Resolver &R) const {
TrackUnresolvedResolver UR(&R);
bool Changed = false;
SmallVector<Init *, 8> NewArgs;
NewArgs.reserve(args_size());
for (Init *Arg : args()) {
Init *NewArg = Arg->resolveReferences(UR);
NewArgs.push_back(NewArg);
Changed |= NewArg != Arg;
}
if (Changed) {
auto New = VarDefInit::get(Class, NewArgs);
if (!UR.foundUnresolved())
return New->instantiate();
return New;
}
return const_cast<VarDefInit *>(this);
}
Init *VarDefInit::Fold() const {
if (Def)
return Def;
TrackUnresolvedResolver R;
for (Init *Arg : args())
Arg->resolveReferences(R);
if (!R.foundUnresolved())
return const_cast<VarDefInit *>(this)->instantiate();
return const_cast<VarDefInit *>(this);
}
std::string VarDefInit::getAsString() const {
std::string Result = Class->getNameInitAsString() + "<";
const char *sep = "";
for (Init *Arg : args()) {
Result += sep;
sep = ", ";
Result += Arg->getAsString();
}
return Result + ">";
}
FieldInit *FieldInit::get(Init *R, StringInit *FN) {
using Key = std::pair<Init *, StringInit *>;
static DenseMap<Key, FieldInit*> ThePool;
Key TheKey(std::make_pair(R, FN));
FieldInit *&I = ThePool[TheKey];
if (!I) I = new(Allocator) FieldInit(R, FN);
return I;
}
Init *FieldInit::getBit(unsigned Bit) const {
if (getType() == BitRecTy::get())
return const_cast<FieldInit*>(this);
return VarBitInit::get(const_cast<FieldInit*>(this), Bit);
}
Init *FieldInit::resolveReferences(Resolver &R) const {
Init *NewRec = Rec->resolveReferences(R);
if (NewRec != Rec)
return FieldInit::get(NewRec, FieldName)->Fold();
return const_cast<FieldInit *>(this);
}
Init *FieldInit::Fold() const {
if (DefInit *DI = dyn_cast<DefInit>(Rec)) {
Init *FieldVal = DI->getDef()->getValue(FieldName)->getValue();
if (FieldVal->isComplete())
return FieldVal;
}
return const_cast<FieldInit *>(this);
}
static void ProfileDagInit(FoldingSetNodeID &ID, Init *V, StringInit *VN,
ArrayRef<Init *> ArgRange,
ArrayRef<StringInit *> NameRange) {
ID.AddPointer(V);
ID.AddPointer(VN);
ArrayRef<Init *>::iterator Arg = ArgRange.begin();
ArrayRef<StringInit *>::iterator Name = NameRange.begin();
while (Arg != ArgRange.end()) {
assert(Name != NameRange.end() && "Arg name underflow!");
ID.AddPointer(*Arg++);
ID.AddPointer(*Name++);
}
assert(Name == NameRange.end() && "Arg name overflow!");
}
DagInit *
DagInit::get(Init *V, StringInit *VN, ArrayRef<Init *> ArgRange,
ArrayRef<StringInit *> NameRange) {
static FoldingSet<DagInit> ThePool;
FoldingSetNodeID ID;
ProfileDagInit(ID, V, VN, ArgRange, NameRange);
void *IP = nullptr;
if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
void *Mem = Allocator.Allocate(totalSizeToAlloc<Init *, StringInit *>(ArgRange.size(), NameRange.size()), alignof(BitsInit));
DagInit *I = new(Mem) DagInit(V, VN, ArgRange.size(), NameRange.size());
std::uninitialized_copy(ArgRange.begin(), ArgRange.end(),
I->getTrailingObjects<Init *>());
std::uninitialized_copy(NameRange.begin(), NameRange.end(),
I->getTrailingObjects<StringInit *>());
ThePool.InsertNode(I, IP);
return I;
}
DagInit *
DagInit::get(Init *V, StringInit *VN,
ArrayRef<std::pair<Init*, StringInit*>> args) {
SmallVector<Init *, 8> Args;
SmallVector<StringInit *, 8> Names;
for (const auto &Arg : args) {
Args.push_back(Arg.first);
Names.push_back(Arg.second);
}
return DagInit::get(V, VN, Args, Names);
}
void DagInit::Profile(FoldingSetNodeID &ID) const {
ProfileDagInit(ID, Val, ValName, makeArrayRef(getTrailingObjects<Init *>(), NumArgs), makeArrayRef(getTrailingObjects<StringInit *>(), NumArgNames));
}
Init *DagInit::resolveReferences(Resolver &R) const {
SmallVector<Init*, 8> NewArgs;
NewArgs.reserve(arg_size());
bool ArgsChanged = false;
for (const Init *Arg : getArgs()) {
Init *NewArg = Arg->resolveReferences(R);
NewArgs.push_back(NewArg);
ArgsChanged |= NewArg != Arg;
}
2009-11-22 12:24:42 +08:00
Init *Op = Val->resolveReferences(R);
if (Op != Val || ArgsChanged)
return DagInit::get(Op, ValName, NewArgs, getArgNames());
2009-11-22 12:24:42 +08:00
return const_cast<DagInit *>(this);
}
bool DagInit::isConcrete() const {
if (!Val->isConcrete())
return false;
for (const Init *Elt : getArgs()) {
if (!Elt->isConcrete())
return false;
}
return true;
}
std::string DagInit::getAsString() const {
std::string Result = "(" + Val->getAsString();
if (ValName)
Result += ":" + ValName->getAsUnquotedString();
if (!arg_empty()) {
Result += " " + getArg(0)->getAsString();
if (getArgName(0)) Result += ":$" + getArgName(0)->getAsUnquotedString();
for (unsigned i = 1, e = getNumArgs(); i != e; ++i) {
Result += ", " + getArg(i)->getAsString();
if (getArgName(i)) Result += ":$" + getArgName(i)->getAsUnquotedString();
}
}
return Result + ")";
}
//===----------------------------------------------------------------------===//
// Other implementations
//===----------------------------------------------------------------------===//
RecordVal::RecordVal(Init *N, RecTy *T, bool P)
: Name(N), TyAndPrefix(T, P) {
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
setValue(UnsetInit::get());
assert(Value && "Cannot create unset value for current type!");
}
StringRef RecordVal::getName() const {
return cast<StringInit>(getNameInit())->getValue();
}
TableGen: Allow !cast of records, cleanup conversion machinery Summary: Distinguish two relationships between types: is-a and convertible-to. For example, a bit is not an int or vice versa, but they can be converted into each other (with range checks that you can think of as "dynamic": unlike other type checks, those range checks do not happen during parsing, but only once the final values have been established). Actually converting initializers between types is subtle: even when values of type A can be converted to type B (e.g. int into string), it may not be possible to do so with a concrete initializer (e.g., a VarInit that refers to a variable of type int cannot be immediately converted to a string). For this reason, distinguish between getCastTo and convertInitializerTo: the latter implements the actual conversion when appropriate, while the former will first try to do the actual conversion and fall back to introducing a !cast operation so that the conversion will be delayed until variable references have been resolved. To make the approach of adding !cast operations to work, !cast needs to fallback to convertInitializerTo when the special string <-> record logic does not apply. This enables casting records to a subclass, although that new functionality is only truly useful together with !isa, which will be added in a later change. The test is removed because it uses !srl on a bit sequence, which cannot really be supported consistently, but luckily isn't used anywhere either. Change-Id: I98168bf52649176654ed2ec61a29bdb29970cfe7 Reviewers: arsenm, craig.topper, tra, MartinO Subscribers: wdng, llvm-commits Differential Revision: https://reviews.llvm.org/D43753 llvm-svn: 326785
2018-03-06 21:48:39 +08:00
bool RecordVal::setValue(Init *V) {
if (V) {
Value = V->getCastTo(getType());
if (Value) {
assert(!isa<TypedInit>(Value) ||
cast<TypedInit>(Value)->getType()->typeIsA(getType()));
if (BitsRecTy *BTy = dyn_cast<BitsRecTy>(getType())) {
if (!isa<BitsInit>(Value)) {
SmallVector<Init *, 64> Bits;
Bits.reserve(BTy->getNumBits());
for (unsigned i = 0, e = BTy->getNumBits(); i < e; ++i)
Bits.push_back(Value->getBit(i));
Value = BitsInit::get(Bits);
}
}
}
return Value == nullptr;
}
Value = nullptr;
return false;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecordVal::dump() const { errs() << *this; }
#endif
void RecordVal::print(raw_ostream &OS, bool PrintSem) const {
if (getPrefix()) OS << "field ";
OS << *getType() << " " << getNameInitAsString();
if (getValue())
OS << " = " << *getValue();
if (PrintSem) OS << ";\n";
}
unsigned Record::LastID = 0;
void Record::init() {
checkName();
// Every record potentially has a def at the top. This value is
// replaced with the top-level def name at instantiation time.
addValue(RecordVal(StringInit::get("NAME"), StringRecTy::get(), false));
}
void Record::checkName() {
// Ensure the record name has string type.
const TypedInit *TypedName = cast<const TypedInit>(Name);
if (!isa<StringRecTy>(TypedName->getType()))
PrintFatalError(getLoc(), "Record name is not a string!");
}
DefInit *Record::getDefInit() {
if (!TheInit)
TheInit = new(Allocator) DefInit(this);
return TheInit;
}
void Record::setName(Init *NewName) {
Name = NewName;
checkName();
// DO NOT resolve record values to the name at this point because
// there might be default values for arguments of this def. Those
// arguments might not have been resolved yet so we don't want to
// prematurely assume values for those arguments were not passed to
// this def.
//
// Nonetheless, it may be that some of this Record's values
// reference the record name. Indeed, the reason for having the
// record name be an Init is to provide this flexibility. The extra
// resolve steps after completely instantiating defs takes care of
// this. See TGParser::ParseDef and TGParser::ParseDefm.
}
void Record::getDirectSuperClasses(SmallVectorImpl<Record *> &Classes) const {
ArrayRef<std::pair<Record *, SMRange>> SCs = getSuperClasses();
while (!SCs.empty()) {
// Superclasses are in reverse preorder, so 'back' is a direct superclass,
// and its transitive superclasses are directly preceding it.
Record *SC = SCs.back().first;
SCs = SCs.drop_back(1 + SC->getSuperClasses().size());
Classes.push_back(SC);
}
}
void Record::resolveReferences(Resolver &R, const RecordVal *SkipVal) {
for (RecordVal &Value : Values) {
if (SkipVal == &Value) // Skip resolve the same field as the given one
continue;
if (Init *V = Value.getValue()) {
Init *VR = V->resolveReferences(R);
if (Value.setValue(VR)) {
std::string Type;
if (TypedInit *VRT = dyn_cast<TypedInit>(VR))
Type =
(Twine("of type '") + VRT->getType()->getAsString() + "' ").str();
PrintFatalError(getLoc(), Twine("Invalid value ") + Type +
"is found when setting '" +
Value.getNameInitAsString() +
" of type '" +
Value.getType()->getAsString() +
"' after resolving references: " +
VR->getAsUnquotedString() + "\n");
}
}
}
Init *OldName = getNameInit();
Init *NewName = Name->resolveReferences(R);
if (NewName != OldName) {
// Re-register with RecordKeeper.
setName(NewName);
}
}
void Record::resolveReferences() {
RecordResolver R(*this);
resolveReferences(R);
}
void Record::resolveReferencesTo(const RecordVal *RV) {
RecordValResolver R(*this, RV);
resolveReferences(R, RV);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void Record::dump() const { errs() << *this; }
#endif
raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) {
OS << R.getNameInitAsString();
ArrayRef<Init *> TArgs = R.getTemplateArgs();
if (!TArgs.empty()) {
OS << "<";
bool NeedComma = false;
for (const Init *TA : TArgs) {
if (NeedComma) OS << ", ";
NeedComma = true;
const RecordVal *RV = R.getValue(TA);
assert(RV && "Template argument record not found??");
RV->print(OS, false);
}
OS << ">";
}
OS << " {";
ArrayRef<std::pair<Record *, SMRange>> SC = R.getSuperClasses();
if (!SC.empty()) {
OS << "\t//";
for (const auto &SuperPair : SC)
OS << " " << SuperPair.first->getNameInitAsString();
}
OS << "\n";
for (const RecordVal &Val : R.getValues())
if (Val.getPrefix() && !R.isTemplateArg(Val.getNameInit()))
OS << Val;
for (const RecordVal &Val : R.getValues())
if (!Val.getPrefix() && !R.isTemplateArg(Val.getNameInit()))
OS << Val;
return OS << "}\n";
}
Init *Record::getValueInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
return R->getValue();
}
StringRef Record::getValueAsString(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (StringInit *SI = dyn_cast<StringInit>(R->getValue()))
return SI->getValue();
if (CodeInit *CI = dyn_cast<CodeInit>(R->getValue()))
return CI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a string initializer!");
}
BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (BitsInit *BI = dyn_cast<BitsInit>(R->getValue()))
return BI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a BitsInit initializer!");
}
ListInit *Record::getValueAsListInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (ListInit *LI = dyn_cast<ListInit>(R->getValue()))
return LI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a list initializer!");
}
2009-11-22 12:24:42 +08:00
std::vector<Record*>
Record::getValueAsListOfDefs(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<Record*> Defs;
for (Init *I : List->getValues()) {
if (DefInit *DI = dyn_cast<DefInit>(I))
Defs.push_back(DI->getDef());
else
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' list is not entirely DefInit!");
}
return Defs;
}
int64_t Record::getValueAsInt(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (IntInit *II = dyn_cast<IntInit>(R->getValue()))
return II->getValue();
PrintFatalError(getLoc(), Twine("Record `") + getName() + "', field `" +
FieldName +
"' does not have an int initializer: " +
R->getValue()->getAsString());
}
2009-11-22 12:24:42 +08:00
std::vector<int64_t>
Record::getValueAsListOfInts(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<int64_t> Ints;
for (Init *I : List->getValues()) {
if (IntInit *II = dyn_cast<IntInit>(I))
Ints.push_back(II->getValue());
else
PrintFatalError(getLoc(),
Twine("Record `") + getName() + "', field `" + FieldName +
"' does not have a list of ints initializer: " +
I->getAsString());
}
return Ints;
}
std::vector<StringRef>
Record::getValueAsListOfStrings(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<StringRef> Strings;
for (Init *I : List->getValues()) {
if (StringInit *SI = dyn_cast<StringInit>(I))
Strings.push_back(SI->getValue());
else
PrintFatalError(getLoc(),
Twine("Record `") + getName() + "', field `" + FieldName +
"' does not have a list of strings initializer: " +
I->getAsString());
}
return Strings;
}
Record *Record::getValueAsDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DefInit *DI = dyn_cast<DefInit>(R->getValue()))
return DI->getDef();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a def initializer!");
}
bool Record::getValueAsBit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName.str() + "'!\n");
if (isa<UnsetInit>(R->getValue())) {
Unset = true;
return false;
}
Unset = false;
if (BitInit *BI = dyn_cast<BitInit>(R->getValue()))
return BI->getValue();
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a bit initializer!");
}
DagInit *Record::getValueAsDag(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (!R || !R->getValue())
PrintFatalError(getLoc(), "Record `" + getName() +
"' does not have a field named `" + FieldName + "'!\n");
if (DagInit *DI = dyn_cast<DagInit>(R->getValue()))
return DI;
PrintFatalError(getLoc(), "Record `" + getName() + "', field `" +
FieldName + "' does not have a dag initializer!");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MultiClass::dump() const {
errs() << "Record:\n";
Rec.dump();
2009-11-22 12:24:42 +08:00
errs() << "Defs:\n";
for (const auto &Proto : DefPrototypes)
Proto->dump();
}
LLVM_DUMP_METHOD void RecordKeeper::dump() const { errs() << *this; }
#endif
raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
OS << "------------- Classes -----------------\n";
for (const auto &C : RK.getClasses())
OS << "class " << *C.second;
OS << "------------- Defs -----------------\n";
for (const auto &D : RK.getDefs())
OS << "def " << *D.second;
return OS;
}
/// GetNewAnonymousName - Generate a unique anonymous name that can be used as
/// an identifier.
Init *RecordKeeper::getNewAnonymousName() {
return StringInit::get("anonymous_" + utostr(AnonCounter++));
}
std::vector<Record *>
RecordKeeper::getAllDerivedDefinitions(StringRef ClassName) const {
Record *Class = getClass(ClassName);
if (!Class)
PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n");
std::vector<Record*> Defs;
for (const auto &D : getDefs())
if (D.second->isSubClassOf(Class))
Defs.push_back(D.second.get());
return Defs;
}
static Init *GetStrConcat(Init *I0, Init *I1) {
// Shortcut for the common case of concatenating two strings.
if (const StringInit *I0s = dyn_cast<StringInit>(I0))
if (const StringInit *I1s = dyn_cast<StringInit>(I1))
return ConcatStringInits(I0s, I1s);
return BinOpInit::get(BinOpInit::STRCONCAT, I0, I1, StringRecTy::get());
}
Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass,
Init *Name, StringRef Scoper) {
Init *NewName = GetStrConcat(CurRec.getNameInit(), StringInit::get(Scoper));
NewName = GetStrConcat(NewName, Name);
if (CurMultiClass && Scoper != "::") {
Init *Prefix = GetStrConcat(CurMultiClass->Rec.getNameInit(),
StringInit::get("::"));
NewName = GetStrConcat(Prefix, NewName);
}
if (BinOpInit *BinOp = dyn_cast<BinOpInit>(NewName))
NewName = BinOp->Fold(&CurRec);
return NewName;
}
Init *MapResolver::resolve(Init *VarName) {
auto It = Map.find(VarName);
if (It == Map.end())
return nullptr;
Init *I = It->second.V;
if (!It->second.Resolved && Map.size() > 1) {
// Resolve mutual references among the mapped variables, but prevent
// infinite recursion.
Map.erase(It);
I = I->resolveReferences(*this);
Map[VarName] = {I, true};
}
return I;
}
Init *RecordResolver::resolve(Init *VarName) {
Init *Val = Cache.lookup(VarName);
if (Val)
return Val;
for (Init *S : Stack) {
if (S == VarName)
return nullptr; // prevent infinite recursion
}
if (RecordVal *RV = getCurrentRecord()->getValue(VarName)) {
if (!isa<UnsetInit>(RV->getValue())) {
Val = RV->getValue();
Stack.push_back(VarName);
Val = Val->resolveReferences(*this);
Stack.pop_back();
}
}
Cache[VarName] = Val;
return Val;
}
Init *TrackUnresolvedResolver::resolve(Init *VarName) {
Init *I = nullptr;
if (R) {
I = R->resolve(VarName);
if (I && !FoundUnresolved) {
// Do not recurse into the resolved initializer, as that would change
// the behavior of the resolver we're delegating, but do check to see
// if there are unresolved variables remaining.
TrackUnresolvedResolver Sub;
I->resolveReferences(Sub);
FoundUnresolved |= Sub.FoundUnresolved;
}
}
if (!I)
FoundUnresolved = true;
return I;
}