llvm-project/mlir/lib/IR/Block.cpp

349 lines
12 KiB
C++
Raw Normal View History

//===- Block.cpp - MLIR Block and BlockList Classes -----------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/InstVisitor.h"
#include "mlir/IR/Instruction.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// BlockArgument
//===----------------------------------------------------------------------===//
/// Returns the number of this argument.
unsigned BlockArgument::getArgNumber() const {
// Arguments are not stored in place, so we have to find it within the list.
auto argList = getOwner()->getArguments();
return std::distance(argList.begin(), llvm::find(argList, this));
}
//===----------------------------------------------------------------------===//
// Block
//===----------------------------------------------------------------------===//
Block::~Block() {
assert(!verifyInstOrder() && "Expected valid instruction ordering.");
clear();
llvm::DeleteContainerPointers(arguments);
}
/// Returns the closest surrounding instruction that contains this block or
/// nullptr if this is a top-level instruction block.
Instruction *Block::getContainingInst() {
return getParent() ? getParent()->getContainingInst() : nullptr;
}
Function *Block::getFunction() {
Block *block = this;
while (auto *inst = block->getContainingInst()) {
block = inst->getBlock();
if (!block)
return nullptr;
}
if (auto *list = block->getParent())
return list->getContainingFunction();
return nullptr;
}
/// Insert this block (which must not already be in a function) right before
/// the specified block.
void Block::insertBefore(Block *block) {
assert(!getParent() && "already inserted into a block!");
assert(block->getParent() && "cannot insert before a block without a parent");
block->getParent()->getBlocks().insert(BlockList::iterator(block), this);
}
/// Unlink this Block from its Function and delete it.
void Block::eraseFromFunction() {
assert(getFunction() && "Block has no parent");
getFunction()->getBlocks().erase(this);
}
/// Returns 'inst' if 'inst' lies in this block, or otherwise finds the
/// ancestor instruction of 'inst' that lies in this block. Returns nullptr if
/// the latter fails.
Instruction *Block::findAncestorInstInBlock(Instruction *inst) {
// Traverse up the instruction hierarchy starting from the owner of operand to
// find the ancestor instruction that resides in the block of 'forInst'.
auto *currInst = inst;
while (currInst->getBlock() != this) {
currInst = currInst->getParentInst();
if (!currInst)
return nullptr;
}
return currInst;
}
/// This drops all operand uses from instructions within this block, which is
/// an essential step in breaking cyclic dependences between references when
/// they are to be deleted.
void Block::dropAllReferences() {
for (Instruction &i : *this)
i.dropAllReferences();
}
/// Verifies the current ordering of child instructions. Returns false if the
/// order is valid, true otherwise.
bool Block::verifyInstOrder() const {
// The order is already known to be invalid.
if (!isInstOrderValid())
return false;
// The order is valid if there are less than 2 instructions.
if (instructions.empty() ||
std::next(instructions.begin()) == instructions.end())
return false;
const Instruction *prev = nullptr;
for (auto &i : *this) {
// The previous instruction must have a smaller order index than the next as
// it appears earlier in the list.
if (prev && prev->orderIndex >= i.orderIndex)
return true;
prev = &i;
}
return false;
}
/// Recomputes the ordering of child instructions within the block.
void Block::recomputeInstOrder() {
parentValidInstOrderPair.setInt(true);
// TODO(riverriddle) Have non-congruent indices to reduce the number of times
// an insert invalidates the list.
unsigned orderIndex = 0;
for (auto &inst : *this)
inst.orderIndex = orderIndex++;
}
//===----------------------------------------------------------------------===//
// Argument list management.
//===----------------------------------------------------------------------===//
BlockArgument *Block::addArgument(Type type) {
auto *arg = new BlockArgument(type, this);
arguments.push_back(arg);
return arg;
}
/// Add one argument to the argument list for each type specified in the list.
auto Block::addArguments(ArrayRef<Type> types)
-> llvm::iterator_range<args_iterator> {
arguments.reserve(arguments.size() + types.size());
auto initialSize = arguments.size();
for (auto type : types) {
addArgument(type);
}
return {arguments.data() + initialSize, arguments.data() + arguments.size()};
}
void Block::eraseArgument(unsigned index) {
assert(index < arguments.size());
// Delete the argument.
delete arguments[index];
arguments.erase(arguments.begin() + index);
// Erase this argument from each of the predecessor's terminator.
for (auto predIt = pred_begin(), predE = pred_end(); predIt != predE;
++predIt) {
auto *predTerminator = (*predIt)->getTerminator();
predTerminator->eraseSuccessorOperand(predIt.getSuccessorIndex(), index);
}
}
//===----------------------------------------------------------------------===//
// Terminator management
//===----------------------------------------------------------------------===//
OperationInst *Block::getTerminator() {
if (empty())
return nullptr;
// Check if the last instruction is a terminator.
auto &backInst = back();
auto *opInst = dyn_cast<OperationInst>(&backInst);
if (!opInst || !opInst->isTerminator())
return nullptr;
return opInst;
}
/// Return true if this block has no predecessors.
bool Block::hasNoPredecessors() const { return pred_begin() == pred_end(); }
// Indexed successor access.
unsigned Block::getNumSuccessors() const {
return getTerminator()->getNumSuccessors();
}
Block *Block::getSuccessor(unsigned i) {
return getTerminator()->getSuccessor(i);
}
/// If this block has exactly one predecessor, return it. Otherwise, return
/// null.
///
/// Note that multiple edges from a single block (e.g. if you have a cond
/// branch with the same block as the true/false destinations) is not
/// considered to be a single predecessor.
Block *Block::getSinglePredecessor() {
auto it = pred_begin();
if (it == pred_end())
return nullptr;
auto *firstPred = *it;
++it;
return it == pred_end() ? firstPred : nullptr;
}
//===----------------------------------------------------------------------===//
// Other
//===----------------------------------------------------------------------===//
/// Split the block into two blocks before the specified instruction or
/// iterator.
///
/// Note that all instructions BEFORE the specified iterator stay as part of
/// the original basic block, and the rest of the instructions in the original
/// block are moved to the new block, including the old terminator. The
/// original block is left without a terminator.
///
/// The newly formed Block is returned, and the specified iterator is
/// invalidated.
Block *Block::splitBlock(iterator splitBefore) {
// Start by creating a new basic block, and insert it immediate after this
// one in the containing function.
auto newBB = new Block();
getFunction()->getBlocks().insert(++Function::iterator(this), newBB);
// Move all of the operations from the split point to the end of the function
// into the new block.
newBB->getInstructions().splice(newBB->end(), getInstructions(), splitBefore,
end());
return newBB;
}
//===----------------------------------------------------------------------===//
// BlockList
//===----------------------------------------------------------------------===//
BlockList::BlockList(Function *container) : container(container) {}
BlockList::BlockList(Instruction *container) : container(container) {}
Instruction *BlockList::getContainingInst() {
return container.dyn_cast<Instruction *>();
}
Function *BlockList::getContainingFunction() {
return container.dyn_cast<Function *>();
}
/// Clone the internal blocks from this block list into dest. Any
/// cloned blocks are appended to the back of dest.
void BlockList::cloneInto(BlockList *dest, BlockAndValueMapping &mapper,
MLIRContext *context) const {
assert(dest && "expected valid block list to clone into");
// If the list is empty there is nothing to clone.
if (empty())
return;
iterator lastOldBlock = --dest->end();
for (const Block &block : *this) {
Block *newBlock = new Block();
mapper.map(&block, newBlock);
// Clone the block arguments. The user might be deleting arguments to the
// block by specifying them in the mapper. If so, we don't add the
// argument to the cloned block.
for (const auto *arg : block.getArguments())
if (!mapper.contains(arg))
mapper.map(arg, newBlock->addArgument(arg->getType()));
// Clone and remap the instructions within this block.
for (const auto &inst : block)
newBlock->push_back(inst.clone(mapper, context));
dest->push_back(newBlock);
}
// Now that each of the blocks have been cloned, go through and remap the
// operands of each of the instructions.
struct Walker : public InstWalker<Walker> {
BlockAndValueMapping &mapper;
Walker(BlockAndValueMapping &mapper) : mapper(mapper) {}
/// Remap the instruction operands.
void visitInstruction(Instruction *inst) {
for (auto &instOp : inst->getInstOperands())
if (auto *mappedOp = mapper.lookupOrNull(instOp.get()))
instOp.set(mappedOp);
}
// Remap the successor block operands.
void visitOperationInst(OperationInst *opInst) {
if (!opInst->isTerminator())
return;
for (auto &succOp : opInst->getBlockOperands())
if (auto *mappedOp = mapper.lookupOrNull(succOp.get()))
succOp.set(mappedOp);
}
};
Walker v(mapper);
for (auto it = std::next(lastOldBlock), e = dest->end(); it != e; ++it)
v.walk(it->begin(), it->end());
}
BlockList *llvm::ilist_traits<::mlir::Block>::getContainingBlockList() {
size_t Offset(
size_t(&((BlockList *)nullptr->*BlockList::getSublistAccess(nullptr))));
iplist<Block> *Anchor(static_cast<iplist<Block> *>(this));
return reinterpret_cast<BlockList *>(reinterpret_cast<char *>(Anchor) -
Offset);
}
/// This is a trait method invoked when a basic block is added to a function.
/// We keep the function pointer up to date.
void llvm::ilist_traits<::mlir::Block>::addNodeToList(Block *block) {
assert(!block->getParent() && "already in a function!");
block->parentValidInstOrderPair.setPointer(getContainingBlockList());
}
/// This is a trait method invoked when an instruction is removed from a
/// function. We keep the function pointer up to date.
void llvm::ilist_traits<::mlir::Block>::removeNodeFromList(Block *block) {
assert(block->getParent() && "not already in a function!");
block->parentValidInstOrderPair.setPointer(nullptr);
}
/// This is a trait method invoked when an instruction is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Block>::transferNodesFromList(
ilist_traits<Block> &otherList, block_iterator first, block_iterator last) {
// If we are transferring instructions within the same function, the parent
// pointer doesn't need to be updated.
auto *curParent = getContainingBlockList();
if (curParent == otherList.getContainingBlockList())
return;
// Update the 'parent' member of each Block.
for (; first != last; ++first)
first->parentValidInstOrderPair.setPointer(curParent);
}