llvm-project/mlir/test/IR/parser.mlir

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1442 lines
58 KiB
MLIR
Raw Normal View History

// RUN: mlir-opt -allow-unregistered-dialect %s | FileCheck %s
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0, d1, d2, d3, d4)[s0] -> (d0, d1, d2, d4, d3)>
#map0 = affine_map<(d0, d1, d2, d3, d4)[s0] -> (d0, d1, d2, d4, d3)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0) -> (d0)>
#map1 = affine_map<(d0) -> (d0)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
#map3 = affine_map<(d0, d1, d2) -> (d1, d0, d2)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0, d1, d2) -> (d2, d1, d0)>
#map4 = affine_map<(d0, d1, d2) -> (d2, d1, d0)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<()[s0] -> (0, s0 - 1)>
#inline_map_minmax_loop1 = affine_map<()[s0] -> (0, s0 - 1)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<()[s0] -> (100, s0 + 1)>
#inline_map_minmax_loop2 = affine_map<()[s0] -> (100, s0 + 1)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0, d1)[s0] -> (d0 + d1 + s0)>
#bound_map1 = affine_map<(i, j)[s] -> (i + j + s)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0, d1) -> (d0 + d1)>
#inline_map_loop_bounds2 = affine_map<(d0, d1) -> (d0 + d1)>
// CHECK-DAG: #map{{[0-9]+}} = affine_map<(d0)[s0] -> (d0 + s0, d0 - s0)>
#bound_map2 = affine_map<(i)[s] -> (i + s, i - s)>
// All maps appear in arbitrary order before all sets, in arbitrary order.
// CHECK-NOT: Placeholder
// CHECK-DAG: #set{{[0-9]+}} = affine_set<(d0)[s0, s1] : (d0 >= 0, -d0 + s0 >= 0, s0 - 5 == 0, -d0 + s1 + 1 >= 0)>
#set0 = affine_set<(i)[N, M] : (i >= 0, -i + N >= 0, N - 5 == 0, -i + M + 1 >= 0)>
// CHECK-DAG: #set{{[0-9]+}} = affine_set<(d0, d1)[s0] : (d0 >= 0, d1 >= 0)>
#set1 = affine_set<(d0, d1)[s0] : (d0 >= 0, d1 >= 0)>
// CHECK-DAG: #set{{[0-9]+}} = affine_set<(d0) : (d0 - 1 == 0)>
#set2 = affine_set<(d0) : (d0 - 1 == 0)>
// CHECK-DAG: [[$SET_TRUE:#set[0-9]+]] = affine_set<() : (0 == 0)>
// CHECK-DAG: #set{{[0-9]+}} = affine_set<(d0)[s0] : (d0 - 2 >= 0, -d0 + 4 >= 0)>
// CHECK: func private @foo(i32, i64) -> f32
func private @foo(i32, i64) -> f32
// CHECK: func private @bar()
func private @bar() -> ()
// CHECK: func private @baz() -> (i1, index, f32)
func private @baz() -> (i1, index, f32)
// CHECK: func private @missingReturn()
func private @missingReturn()
// CHECK: func private @int_types(i0, i1, i2, i4, i7, i87) -> (i1, index, i19)
func private @int_types(i0, i1, i2, i4, i7, i87) -> (i1, index, i19)
// CHECK: func private @sint_types(si2, si4) -> (si7, si1023)
func private @sint_types(si2, si4) -> (si7, si1023)
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-11 03:48:24 +08:00
// CHECK: func private @uint_types(ui2, ui4) -> (ui7, ui1023)
func private @uint_types(ui2, ui4) -> (ui7, ui1023)
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-11 03:48:24 +08:00
// CHECK: func private @float_types(f80, f128)
func private @float_types(f80, f128)
// CHECK: func private @vectors(vector<1xf32>, vector<2x4xf32>)
func private @vectors(vector<1 x f32>, vector<2x4xf32>)
// CHECK: func private @tensors(tensor<*xf32>, tensor<*xvector<2x4xf32>>, tensor<1x?x4x?x?xi32>, tensor<i8>)
func private @tensors(tensor<* x f32>, tensor<* x vector<2x4xf32>>,
tensor<1x?x4x?x?xi32>, tensor<i8>)
// CHECK: func private @tensor_encoding(tensor<16x32xf64, "sparse">)
func private @tensor_encoding(tensor<16x32xf64, "sparse">)
// CHECK: func private @memrefs(memref<1x?x4x?x?xi32, #map{{[0-9]+}}>, memref<8xi8>)
func private @memrefs(memref<1x?x4x?x?xi32, #map0>, memref<8xi8, #map1, #map1>)
// Test memref affine map compositions.
// CHECK: func private @memrefs2(memref<2x4x8xi8, 1>)
func private @memrefs2(memref<2x4x8xi8, #map2, 1>)
// CHECK: func private @memrefs23(memref<2x4x8xi8, #map{{[0-9]+}}>)
func private @memrefs23(memref<2x4x8xi8, #map2, #map3, 0>)
// CHECK: func private @memrefs234(memref<2x4x8xi8, #map{{[0-9]+}}, #map{{[0-9]+}}, 3>)
func private @memrefs234(memref<2x4x8xi8, #map2, #map3, #map4, 3>)
// Test memref inline affine map compositions, minding that identity maps are removed.
// CHECK: func private @memrefs3(memref<2x4x8xi8>)
func private @memrefs3(memref<2x4x8xi8, affine_map<(d0, d1, d2) -> (d0, d1, d2)>>)
// CHECK: func private @memrefs33(memref<2x4x8xi8, #map{{[0-9]+}}, 1>)
func private @memrefs33(memref<2x4x8xi8, affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d1, d0, d2)>, 1>)
// CHECK: func private @memrefs_drop_triv_id_inline(memref<2xi8>)
func private @memrefs_drop_triv_id_inline(memref<2xi8, affine_map<(d0) -> (d0)>>)
// CHECK: func private @memrefs_drop_triv_id_inline0(memref<2xi8>)
func private @memrefs_drop_triv_id_inline0(memref<2xi8, affine_map<(d0) -> (d0)>, 0>)
// CHECK: func private @memrefs_drop_triv_id_inline1(memref<2xi8, 1>)
func private @memrefs_drop_triv_id_inline1(memref<2xi8, affine_map<(d0) -> (d0)>, 1>)
// Identity maps should be dropped from the composition, but not the pair of
// "interchange" maps that, if composed, would be also an identity.
// CHECK: func private @memrefs_drop_triv_id_composition(memref<2x2xi8, #map{{[0-9]+}}, #map{{[0-9]+}}>)
func private @memrefs_drop_triv_id_composition(memref<2x2xi8,
affine_map<(d0, d1) -> (d1, d0)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d1, d0)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>>)
// CHECK: func private @memrefs_drop_triv_id_trailing(memref<2x2xi8, #map{{[0-9]+}}>)
func private @memrefs_drop_triv_id_trailing(memref<2x2xi8, affine_map<(d0, d1) -> (d1, d0)>,
affine_map<(d0, d1) -> (d0, d1)>>)
// CHECK: func private @memrefs_drop_triv_id_middle(memref<2x2xi8, #map{{[0-9]+}}, #map{{[0-9]+}}>)
func private @memrefs_drop_triv_id_middle(memref<2x2xi8,
affine_map<(d0, d1) -> (d0, d1 + 1)>,
affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0 + 1, d1)>>)
// CHECK: func private @memrefs_drop_triv_id_multiple(memref<2xi8>)
func private @memrefs_drop_triv_id_multiple(memref<2xi8, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>>)
// These maps appeared before, so they must be uniqued and hoisted to the beginning.
// Identity map should be removed.
// CHECK: func private @memrefs_compose_with_id(memref<2x2xi8, #map{{[0-9]+}}>)
func private @memrefs_compose_with_id(memref<2x2xi8, affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d1, d0)>>)
// Test memref with custom memory space
// CHECK: func private @memrefs_nomap_nospace(memref<5x6x7xf32>)
func private @memrefs_nomap_nospace(memref<5x6x7xf32>)
// CHECK: func private @memrefs_map_nospace(memref<5x6x7xf32, #map{{[0-9]+}}>)
func private @memrefs_map_nospace(memref<5x6x7xf32, #map3>)
// CHECK: func private @memrefs_nomap_intspace(memref<5x6x7xf32, 3>)
func private @memrefs_nomap_intspace(memref<5x6x7xf32, 3>)
// CHECK: func private @memrefs_map_intspace(memref<5x6x7xf32, #map{{[0-9]+}}, 5>)
func private @memrefs_map_intspace(memref<5x6x7xf32, #map3, 5>)
// CHECK: func private @memrefs_nomap_strspace(memref<5x6x7xf32, "local">)
func private @memrefs_nomap_strspace(memref<5x6x7xf32, "local">)
// CHECK: func private @memrefs_map_strspace(memref<5x6x7xf32, #map{{[0-9]+}}, "private">)
func private @memrefs_map_strspace(memref<5x6x7xf32, #map3, "private">)
// CHECK: func private @memrefs_nomap_dictspace(memref<5x6x7xf32, {memSpace = "special", subIndex = 1 : i64}>)
func private @memrefs_nomap_dictspace(memref<5x6x7xf32, {memSpace = "special", subIndex = 1}>)
// CHECK: func private @memrefs_map_dictspace(memref<5x6x7xf32, #map{{[0-9]+}}, {memSpace = "special", subIndex = 3 : i64}>)
func private @memrefs_map_dictspace(memref<5x6x7xf32, #map3, {memSpace = "special", subIndex = 3}>)
// CHECK: func private @complex_types(complex<i1>) -> complex<f32>
func private @complex_types(complex<i1>) -> complex<f32>
// CHECK: func private @memref_with_index_elems(memref<1x?xindex>)
func private @memref_with_index_elems(memref<1x?xindex>)
// CHECK: func private @memref_with_complex_elems(memref<1x?xcomplex<f32>>)
func private @memref_with_complex_elems(memref<1x?xcomplex<f32>>)
// CHECK: func private @memref_with_vector_elems(memref<1x?xvector<10xf32>>)
func private @memref_with_vector_elems(memref<1x?xvector<10xf32>>)
// CHECK: func private @memref_with_custom_elem(memref<1x?x!test.memref_element>)
func private @memref_with_custom_elem(memref<1x?x!test.memref_element>)
// CHECK: func private @memref_of_memref(memref<1xmemref<1xf64>>)
func private @memref_of_memref(memref<1xmemref<1xf64>>)
// CHECK: func private @memref_of_unranked_memref(memref<1xmemref<*xf32>>)
func private @memref_of_unranked_memref(memref<1xmemref<*xf32>>)
// CHECK: func private @unranked_memref_of_memref(memref<*xmemref<1xf32>>)
func private @unranked_memref_of_memref(memref<*xmemref<1xf32>>)
// CHECK: func private @unranked_memref_of_unranked_memref(memref<*xmemref<*xi32>>)
func private @unranked_memref_of_unranked_memref(memref<*xmemref<*xi32>>)
// CHECK: func private @unranked_memref_with_complex_elems(memref<*xcomplex<f32>>)
func private @unranked_memref_with_complex_elems(memref<*xcomplex<f32>>)
// CHECK: func private @unranked_memref_with_index_elems(memref<*xindex>)
func private @unranked_memref_with_index_elems(memref<*xindex>)
// CHECK: func private @unranked_memref_with_vector_elems(memref<*xvector<10xf32>>)
func private @unranked_memref_with_vector_elems(memref<*xvector<10xf32>>)
// CHECK: func private @functions((memref<1x?x4x?x?xi32, #map0>, memref<8xi8>) -> (), () -> ())
func private @functions((memref<1x?x4x?x?xi32, #map0, 0>, memref<8xi8, #map1, 0>) -> (), ()->())
// CHECK-LABEL: func @simpleCFG(%{{.*}}: i32, %{{.*}}: f32) -> i1 {
func @simpleCFG(%arg0: i32, %f: f32) -> i1 {
// CHECK: %{{.*}} = "foo"() : () -> i64
%1 = "foo"() : ()->i64
// CHECK: "bar"(%{{.*}}) : (i64) -> (i1, i1, i1)
%2:3 = "bar"(%1) : (i64) -> (i1,i1,i1)
// CHECK: return %{{.*}}#1
return %2#1 : i1
// CHECK: }
}
// CHECK-LABEL: func @simpleCFGUsingBBArgs(%{{.*}}: i32, %{{.*}}: i64) {
func @simpleCFGUsingBBArgs(i32, i64) {
^bb42 (%arg0: i32, %f: i64):
// CHECK: "bar"(%{{.*}}) : (i64) -> (i1, i1, i1)
%2:3 = "bar"(%f) : (i64) -> (i1,i1,i1)
// CHECK: return{{$}}
return
// CHECK: }
}
// CHECK-LABEL: func @multiblock() {
func @multiblock() {
return // CHECK: return
^bb1: // CHECK: ^bb1: // no predecessors
br ^bb4 // CHECK: br ^bb3
^bb2: // CHECK: ^bb2: // pred: ^bb2
br ^bb2 // CHECK: br ^bb2
^bb4: // CHECK: ^bb3: // pred: ^bb1
return // CHECK: return
} // CHECK: }
// CHECK-LABEL: func @emptyMLF() {
func @emptyMLF() {
return // CHECK: return
} // CHECK: }
// CHECK-LABEL: func @func_with_one_arg(%{{.*}}: i1) -> i2 {
func @func_with_one_arg(%c : i1) -> i2 {
// CHECK: %{{.*}} = "foo"(%{{.*}}) : (i1) -> i2
%b = "foo"(%c) : (i1) -> (i2)
return %b : i2 // CHECK: return %{{.*}} : i2
} // CHECK: }
// CHECK-LABEL: func @func_with_two_args(%{{.*}}: f16, %{{.*}}: i8) -> (i1, i32) {
func @func_with_two_args(%a : f16, %b : i8) -> (i1, i32) {
// CHECK: %{{.*}}:2 = "foo"(%{{.*}}, %{{.*}}) : (f16, i8) -> (i1, i32)
%c:2 = "foo"(%a, %b) : (f16, i8)->(i1, i32)
return %c#0, %c#1 : i1, i32 // CHECK: return %{{.*}}#0, %{{.*}}#1 : i1, i32
} // CHECK: }
// CHECK-LABEL: func @second_order_func() -> (() -> ()) {
func @second_order_func() -> (() -> ()) {
// CHECK-NEXT: %{{.*}} = constant @emptyMLF : () -> ()
%c = constant @emptyMLF : () -> ()
// CHECK-NEXT: return %{{.*}} : () -> ()
return %c : () -> ()
}
// CHECK-LABEL: func @third_order_func() -> (() -> (() -> ())) {
func @third_order_func() -> (() -> (() -> ())) {
// CHECK-NEXT: %{{.*}} = constant @second_order_func : () -> (() -> ())
%c = constant @second_order_func : () -> (() -> ())
// CHECK-NEXT: return %{{.*}} : () -> (() -> ())
return %c : () -> (() -> ())
}
// CHECK-LABEL: func @identity_functor(%{{.*}}: () -> ()) -> (() -> ()) {
func @identity_functor(%a : () -> ()) -> (() -> ()) {
// CHECK-NEXT: return %{{.*}} : () -> ()
return %a : () -> ()
}
// CHECK-LABEL: func @func_ops_in_loop() {
func @func_ops_in_loop() {
// CHECK: %{{.*}} = "foo"() : () -> i64
%a = "foo"() : ()->i64
// CHECK: affine.for %{{.*}} = 1 to 10 {
affine.for %i = 1 to 10 {
// CHECK: %{{.*}} = "doo"() : () -> f32
%b = "doo"() : ()->f32
// CHECK: "bar"(%{{.*}}, %{{.*}}) : (i64, f32) -> ()
"bar"(%a, %b) : (i64, f32) -> ()
// CHECK: }
}
// CHECK: return
return
// CHECK: }
}
// CHECK-LABEL: func @loops() {
func @loops() {
// CHECK: affine.for %{{.*}} = 1 to 100 step 2 {
affine.for %i = 1 to 100 step 2 {
// CHECK: affine.for %{{.*}} = 1 to 200 {
affine.for %j = 1 to 200 {
} // CHECK: }
} // CHECK: }
return // CHECK: return
} // CHECK: }
// CHECK-LABEL: func @complex_loops() {
func @complex_loops() {
affine.for %i1 = 1 to 100 { // CHECK: affine.for %{{.*}} = 1 to 100 {
affine.for %j1 = 1 to 100 { // CHECK: affine.for %{{.*}} = 1 to 100 {
// CHECK: "foo"(%{{.*}}, %{{.*}}) : (index, index) -> ()
"foo"(%i1, %j1) : (index,index) -> ()
} // CHECK: }
"boo"() : () -> () // CHECK: "boo"() : () -> ()
affine.for %j2 = 1 to 10 { // CHECK: affine.for %{{.*}} = 1 to 10 {
affine.for %k2 = 1 to 10 { // CHECK: affine.for %{{.*}} = 1 to 10 {
"goo"() : () -> () // CHECK: "goo"() : () -> ()
} // CHECK: }
} // CHECK: }
} // CHECK: }
return // CHECK: return
} // CHECK: }
// CHECK: func @triang_loop(%{{.*}}: index, %{{.*}}: memref<?x?xi32>) {
func @triang_loop(%arg0: index, %arg1: memref<?x?xi32>) {
%c = constant 0 : i32 // CHECK: %{{.*}} = constant 0 : i32
affine.for %i0 = 1 to %arg0 { // CHECK: affine.for %{{.*}} = 1 to %{{.*}} {
affine.for %i1 = affine_map<(d0)[]->(d0)>(%i0)[] to %arg0 { // CHECK: affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to %{{.*}} {
memref.store %c, %arg1[%i0, %i1] : memref<?x?xi32> // CHECK: memref.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}]
} // CHECK: }
} // CHECK: }
return // CHECK: return
} // CHECK: }
// CHECK: func @minmax_loop(%{{.*}}: index, %{{.*}}: index, %{{.*}}: memref<100xf32>) {
func @minmax_loop(%arg0: index, %arg1: index, %arg2: memref<100xf32>) {
// CHECK: affine.for %{{.*}} = max #map{{.*}}()[%{{.*}}] to min #map{{.*}}()[%{{.*}}] {
affine.for %i0 = max affine_map<()[s]->(0,s-1)>()[%arg0] to min affine_map<()[s]->(100,s+1)>()[%arg1] {
// CHECK: "foo"(%{{.*}}, %{{.*}}) : (memref<100xf32>, index) -> ()
"foo"(%arg2, %i0) : (memref<100xf32>, index) -> ()
} // CHECK: }
return // CHECK: return
} // CHECK: }
// CHECK-LABEL: func @loop_bounds(%{{.*}}: index) {
func @loop_bounds(%N : index) {
// CHECK: %{{.*}} = "foo"(%{{.*}}) : (index) -> index
%s = "foo"(%N) : (index) -> index
// CHECK: affine.for %{{.*}} = %{{.*}} to %{{.*}}
affine.for %i = %s to %N {
// CHECK: affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to 0
affine.for %j = affine_map<(d0)[]->(d0)>(%i)[] to 0 step 1 {
// CHECK: %{{.*}} = affine.apply #map{{.*}}(%{{.*}}, %{{.*}})[%{{.*}}]
%w1 = affine.apply affine_map<(d0, d1)[s0] -> (d0+d1)> (%i, %j) [%s]
// CHECK: %{{.*}} = affine.apply #map{{.*}}(%{{.*}}, %{{.*}})[%{{.*}}]
%w2 = affine.apply affine_map<(d0, d1)[s0] -> (s0+1)> (%i, %j) [%s]
// CHECK: affine.for %{{.*}} = #map{{.*}}(%{{.*}}, %{{.*}})[%{{.*}}] to #map{{.*}}(%{{.*}}, %{{.*}})[%{{.*}}] {
affine.for %k = #bound_map1 (%w1, %i)[%N] to affine_map<(i, j)[s] -> (i + j + s)> (%w2, %j)[%s] {
// CHECK: "foo"(%{{.*}}, %{{.*}}, %{{.*}}) : (index, index, index) -> ()
"foo"(%i, %j, %k) : (index, index, index)->()
// CHECK: %{{.*}} = constant 30 : index
%c = constant 30 : index
// CHECK: %{{.*}} = affine.apply #map{{.*}}(%{{.*}}, %{{.*}})
%u = affine.apply affine_map<(d0, d1)->(d0+d1)> (%N, %c)
// CHECK: affine.for %{{.*}} = max #map{{.*}}(%{{.*}})[%{{.*}}] to min #map{{.*}}(%{{.*}})[%{{.*}}] {
affine.for %l = max #bound_map2(%i)[%u] to min #bound_map2(%k)[%c] {
// CHECK: "bar"(%{{.*}}) : (index) -> ()
"bar"(%l) : (index) -> ()
} // CHECK: }
} // CHECK: }
} // CHECK: }
} // CHECK: }
return // CHECK: return
} // CHECK: }
// CHECK-LABEL: func @ifinst(%{{.*}}: index) {
func @ifinst(%N: index) {
%c = constant 200 : index // CHECK %{{.*}} = constant 200
affine.for %i = 1 to 10 { // CHECK affine.for %{{.*}} = 1 to 10 {
affine.if #set0(%i)[%N, %c] { // CHECK affine.if #set0(%{{.*}})[%{{.*}}, %{{.*}}] {
%x = constant 1 : i32
// CHECK: %{{.*}} = constant 1 : i32
%y = "add"(%x, %i) : (i32, index) -> i32 // CHECK: %{{.*}} = "add"(%{{.*}}, %{{.*}}) : (i32, index) -> i32
%z = "mul"(%y, %y) : (i32, i32) -> i32 // CHECK: %{{.*}} = "mul"(%{{.*}}, %{{.*}}) : (i32, i32) -> i32
} else { // CHECK } else {
affine.if affine_set<(i)[N] : (i - 2 >= 0, 4 - i >= 0)>(%i)[%N] { // CHECK affine.if (#set1(%{{.*}})[%{{.*}}]) {
// CHECK: %{{.*}} = constant 1 : index
%u = constant 1 : index
// CHECK: %{{.*}} = affine.apply #map{{.*}}(%{{.*}}, %{{.*}})[%{{.*}}]
%w = affine.apply affine_map<(d0,d1)[s0] -> (d0+d1+s0)> (%i, %i) [%u]
} else { // CHECK } else {
%v = constant 3 : i32 // %c3_i32 = constant 3 : i32
}
} // CHECK }
} // CHECK }
return // CHECK return
} // CHECK }
// CHECK-LABEL: func @simple_ifinst(%{{.*}}: index) {
func @simple_ifinst(%N: index) {
%c = constant 200 : index // CHECK %{{.*}} = constant 200
affine.for %i = 1 to 10 { // CHECK affine.for %{{.*}} = 1 to 10 {
affine.if #set0(%i)[%N, %c] { // CHECK affine.if #set0(%{{.*}})[%{{.*}}, %{{.*}}] {
%x = constant 1 : i32
// CHECK: %{{.*}} = constant 1 : i32
%y = "add"(%x, %i) : (i32, index) -> i32 // CHECK: %{{.*}} = "add"(%{{.*}}, %{{.*}}) : (i32, index) -> i32
%z = "mul"(%y, %y) : (i32, i32) -> i32 // CHECK: %{{.*}} = "mul"(%{{.*}}, %{{.*}}) : (i32, i32) -> i32
} // CHECK }
} // CHECK }
return // CHECK return
} // CHECK }
// CHECK-LABEL: func @attributes() {
func @attributes() {
// CHECK: "foo"()
"foo"(){} : ()->()
// CHECK: "foo"() {a = 1 : i64, b = -423 : i64, c = [true, false], d = 1.600000e+01 : f64} : () -> ()
"foo"() {a = 1, b = -423, c = [true, false], d = 16.0 } : () -> ()
// CHECK: "foo"() {map1 = #map{{[0-9]+}}}
"foo"() {map1 = #map1} : () -> ()
// CHECK: "foo"() {map2 = #map{{[0-9]+}}}
"foo"() {map2 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>} : () -> ()
// CHECK: "foo"() {map12 = [#map{{[0-9]+}}, #map{{[0-9]+}}]}
"foo"() {map12 = [#map1, #map2]} : () -> ()
// CHECK: "foo"() {set1 = #set{{[0-9]+}}}
"foo"() {set1 = #set1} : () -> ()
// CHECK: "foo"() {set2 = #set{{[0-9]+}}}
"foo"() {set2 = affine_set<(d0, d1, d2) : (d0 >= 0, d1 >= 0, d2 - d1 == 0)>} : () -> ()
// CHECK: "foo"() {set12 = [#set{{[0-9]+}}, #set{{[0-9]+}}]}
"foo"() {set12 = [#set1, #set2]} : () -> ()
// CHECK: "foo"() {dictionary = {bool = true, fn = @ifinst}}
"foo"() {dictionary = {bool = true, fn = @ifinst}} : () -> ()
// Check that the dictionary attribute elements are sorted.
// CHECK: "foo"() {dictionary = {bar = false, bool = true, fn = @ifinst}}
"foo"() {dictionary = {fn = @ifinst, bar = false, bool = true}} : () -> ()
// CHECK: "foo"() {d = 1.000000e-09 : f64, func = [], i123 = 7 : i64, if = "foo"} : () -> ()
"foo"() {if = "foo", func = [], i123 = 7, d = 1.e-9} : () -> ()
// CHECK: "foo"() {fn = @attributes, if = @ifinst} : () -> ()
"foo"() {fn = @attributes, if = @ifinst} : () -> ()
// CHECK: "foo"() {int = 0 : i42} : () -> ()
"foo"() {int = 0 : i42} : () -> ()
return
}
// CHECK-LABEL: func @ssa_values() -> (i16, i8) {
func @ssa_values() -> (i16, i8) {
// CHECK: %{{.*}}:2 = "foo"() : () -> (i1, i17)
%0:2 = "foo"() : () -> (i1, i17)
br ^bb2
^bb1: // CHECK: ^bb1: // pred: ^bb2
// CHECK: %{{.*}}:2 = "baz"(%{{.*}}#1, %{{.*}}#0, %{{.*}}#1) : (f32, i11, i17) -> (i16, i8)
%1:2 = "baz"(%2#1, %2#0, %0#1) : (f32, i11, i17) -> (i16, i8)
// CHECK: return %{{.*}}#0, %{{.*}}#1 : i16, i8
return %1#0, %1#1 : i16, i8
^bb2: // CHECK: ^bb2: // pred: ^bb0
// CHECK: %{{.*}}:2 = "bar"(%{{.*}}#0, %{{.*}}#1) : (i1, i17) -> (i11, f32)
%2:2 = "bar"(%0#0, %0#1) : (i1, i17) -> (i11, f32)
br ^bb1
}
// CHECK-LABEL: func @bbargs() -> (i16, i8) {
func @bbargs() -> (i16, i8) {
// CHECK: %{{.*}}:2 = "foo"() : () -> (i1, i17)
%0:2 = "foo"() : () -> (i1, i17)
br ^bb1(%0#1, %0#0 : i17, i1)
^bb1(%x: i17, %y: i1): // CHECK: ^bb1(%{{.*}}: i17, %{{.*}}: i1):
// CHECK: %{{.*}}:2 = "baz"(%{{.*}}, %{{.*}}, %{{.*}}#1) : (i17, i1, i17) -> (i16, i8)
%1:2 = "baz"(%x, %y, %0#1) : (i17, i1, i17) -> (i16, i8)
return %1#0, %1#1 : i16, i8
}
// CHECK-LABEL: func @verbose_terminators() -> (i1, i17)
func @verbose_terminators() -> (i1, i17) {
%0:2 = "foo"() : () -> (i1, i17)
// CHECK: br ^bb1(%{{.*}}#0, %{{.*}}#1 : i1, i17)
"std.br"(%0#0, %0#1)[^bb1] : (i1, i17) -> ()
^bb1(%x : i1, %y : i17):
// CHECK: cond_br %{{.*}}, ^bb2(%{{.*}} : i17), ^bb3(%{{.*}}, %{{.*}} : i1, i17)
"std.cond_br"(%x, %y, %x, %y) [^bb2, ^bb3] {operand_segment_sizes = dense<[1, 1, 2]>: vector<3xi32>} : (i1, i17, i1, i17) -> ()
^bb2(%a : i17):
%true = constant true
// CHECK: return %{{.*}}, %{{.*}} : i1, i17
"std.return"(%true, %a) : (i1, i17) -> ()
^bb3(%b : i1, %c : i17):
// CHECK: return %{{.*}}, %{{.*}} : i1, i17
"std.return"(%b, %c) : (i1, i17) -> ()
}
// CHECK-LABEL: func @condbr_simple
func @condbr_simple() -> (i32) {
%cond = "foo"() : () -> i1
%a = "bar"() : () -> i32
%b = "bar"() : () -> i64
// CHECK: cond_br %{{.*}}, ^bb1(%{{.*}} : i32), ^bb2(%{{.*}} : i64)
cond_br %cond, ^bb1(%a : i32), ^bb2(%b : i64)
// CHECK: ^bb1({{.*}}: i32): // pred: ^bb0
^bb1(%x : i32):
br ^bb2(%b: i64)
// CHECK: ^bb2({{.*}}: i64): // 2 preds: ^bb0, ^bb1
^bb2(%y : i64):
%z = "foo"() : () -> i32
return %z : i32
}
// CHECK-LABEL: func @condbr_moarargs
func @condbr_moarargs() -> (i32) {
%cond = "foo"() : () -> i1
%a = "bar"() : () -> i32
%b = "bar"() : () -> i64
// CHECK: cond_br %{{.*}}, ^bb1(%{{.*}}, %{{.*}} : i32, i64), ^bb2(%{{.*}}, %{{.*}}, %{{.*}} : i64, i32, i32)
cond_br %cond, ^bb1(%a, %b : i32, i64), ^bb2(%b, %a, %a : i64, i32, i32)
^bb1(%x : i32, %y : i64):
return %x : i32
^bb2(%x2 : i64, %y2 : i32, %z2 : i32):
%z = "foo"() : () -> i32
return %z : i32
}
// Test pretty printing of constant names.
// CHECK-LABEL: func @constants
func @constants() -> (i32, i23, i23, i1, i1) {
// CHECK: %{{.*}} = constant 42 : i32
%x = constant 42 : i32
// CHECK: %{{.*}} = constant 17 : i23
%y = constant 17 : i23
// This is a redundant definition of 17, the asmprinter gives it a unique name
// CHECK: %{{.*}} = constant 17 : i23
%z = constant 17 : i23
// CHECK: %{{.*}} = constant true
%t = constant true
// CHECK: %{{.*}} = constant false
%f = constant false
// The trick to parse type declarations should not interfere with hex
// literals.
// CHECK: %{{.*}} = constant 3890 : i32
%h = constant 0xf32 : i32
// CHECK: return %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}
return %x, %y, %z, %t, %f : i32, i23, i23, i1, i1
}
// CHECK-LABEL: func @typeattr
func @typeattr() -> () {
^bb0:
// CHECK: "foo"() {bar = tensor<*xf32>} : () -> ()
"foo"(){bar = tensor<*xf32>} : () -> ()
return
}
// CHECK-LABEL: func @stringquote
func @stringquote() -> () {
^bb0:
// CHECK: "foo"() {bar = "a\22quoted\22string"} : () -> ()
"foo"(){bar = "a\"quoted\"string"} : () -> ()
// CHECK-NEXT: "typed_string" : !foo.string
"foo"(){bar = "typed_string" : !foo.string} : () -> ()
return
}
// CHECK-LABEL: func @unitAttrs
func @unitAttrs() -> () {
// CHECK-NEXT: "foo"() {unitAttr}
"foo"() {unitAttr = unit} : () -> ()
// CHECK-NEXT: "foo"() {unitAttr}
"foo"() {unitAttr} : () -> ()
// CHECK-NEXT: "foo"() {nested = {unitAttr}}
"foo"() {nested = {unitAttr}} : () -> ()
return
}
// CHECK-LABEL: func @floatAttrs
func @floatAttrs() -> () {
^bb0:
// CHECK: "foo"() {a = 4.000000e+00 : f64, b = 2.000000e+00 : f64, c = 7.100000e+00 : f64, d = -0.000000e+00 : f64} : () -> ()
"foo"(){a = 4.0, b = 2.0, c = 7.1, d = -0.0} : () -> ()
return
}
// CHECK-LABEL: func private @externalfuncattr
func private @externalfuncattr() -> ()
// CHECK: attributes {dialect.a = "a\22quoted\22string", dialect.b = 4.000000e+00 : f64, dialect.c = tensor<*xf32>}
attributes {dialect.a = "a\"quoted\"string", dialect.b = 4.0, dialect.c = tensor<*xf32>}
// CHECK-LABEL: func private @funcattrempty
func private @funcattrempty() -> ()
attributes {}
// CHECK-LABEL: func private @funcattr
func private @funcattr() -> ()
// CHECK: attributes {dialect.a = "a\22quoted\22string", dialect.b = 4.000000e+00 : f64, dialect.c = tensor<*xf32>}
attributes {dialect.a = "a\"quoted\"string", dialect.b = 4.0, dialect.c = tensor<*xf32>} {
^bb0:
return
}
// CHECK-LABEL: func @funcattrwithblock
func @funcattrwithblock() -> ()
attributes {} {
^bb0:
return
}
// CHECK-label func @funcsimplemap
#map_simple0 = affine_map<()[] -> (10)>
#map_simple1 = affine_map<()[s0] -> (s0)>
#map_non_simple0 = affine_map<(d0)[] -> (d0)>
#map_non_simple1 = affine_map<(d0)[s0] -> (d0 + s0)>
#map_non_simple2 = affine_map<()[s0, s1] -> (s0 + s1)>
#map_non_simple3 = affine_map<()[s0] -> (s0 + 3)>
func @funcsimplemap(%arg0: index, %arg1: index) -> () {
affine.for %i0 = 0 to #map_simple0()[] {
// CHECK: affine.for %{{.*}} = 0 to 10 {
affine.for %i1 = 0 to #map_simple1()[%arg1] {
// CHECK: affine.for %{{.*}} = 0 to %{{.*}} {
affine.for %i2 = 0 to #map_non_simple0(%i0)[] {
// CHECK: affine.for %{{.*}} = 0 to #map{{[a-z_0-9]*}}(%{{.*}}) {
affine.for %i3 = 0 to #map_non_simple1(%i0)[%arg1] {
// CHECK: affine.for %{{.*}} = 0 to #map{{[a-z_0-9]*}}(%{{.*}})[%{{.*}}] {
affine.for %i4 = 0 to #map_non_simple2()[%arg1, %arg0] {
// CHECK: affine.for %{{.*}} = 0 to #map{{[a-z_0-9]*}}()[%{{.*}}, %{{.*}}] {
affine.for %i5 = 0 to #map_non_simple3()[%arg0] {
// CHECK: affine.for %{{.*}} = 0 to #map{{[a-z_0-9]*}}()[%{{.*}}] {
%c42_i32 = constant 42 : i32
}
}
}
}
}
}
return
}
// CHECK-LABEL: func @splattensorattr
func @splattensorattr() -> () {
^bb0:
// CHECK: "splatBoolTensor"() {bar = dense<false> : tensor<i1>} : () -> ()
"splatBoolTensor"(){bar = dense<false> : tensor<i1>} : () -> ()
// CHECK: "splatUIntTensor"() {bar = dense<222> : tensor<2x1x4xui8>} : () -> ()
"splatUIntTensor"(){bar = dense<222> : tensor<2x1x4xui8>} : () -> ()
// CHECK: "splatIntTensor"() {bar = dense<5> : tensor<2x1x4xi32>} : () -> ()
"splatIntTensor"(){bar = dense<5> : tensor<2x1x4xi32>} : () -> ()
// CHECK: "splatFloatTensor"() {bar = dense<-5.000000e+00> : tensor<2x1x4xf32>} : () -> ()
"splatFloatTensor"(){bar = dense<-5.0> : tensor<2x1x4xf32>} : () -> ()
// CHECK: "splatIntVector"() {bar = dense<5> : vector<2x1x4xi64>} : () -> ()
"splatIntVector"(){bar = dense<5> : vector<2x1x4xi64>} : () -> ()
// CHECK: "splatFloatVector"() {bar = dense<-5.000000e+00> : vector<2x1x4xf16>} : () -> ()
"splatFloatVector"(){bar = dense<-5.0> : vector<2x1x4xf16>} : () -> ()
// CHECK: "splatIntScalar"() {bar = dense<5> : tensor<i9>} : () -> ()
"splatIntScalar"() {bar = dense<5> : tensor<i9>} : () -> ()
// CHECK: "splatFloatScalar"() {bar = dense<-5.000000e+00> : tensor<f16>} : () -> ()
"splatFloatScalar"() {bar = dense<-5.0> : tensor<f16>} : () -> ()
return
}
// CHECK-LABEL: func @densetensorattr
func @densetensorattr() -> () {
^bb0:
// NOTE: The {{\[\[}} syntax is because "[[" confuses FileCheck.
// CHECK: "fooi3"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 2, -1, 2]]]> : tensor<2x1x4xi3>} : () -> ()
"fooi3"(){bar = dense<[[[1, -2, 1, 2]], [[0, 2, -1, 2]]]> : tensor<2x1x4xi3>} : () -> ()
// CHECK: "fooi6"() {bar = dense<{{\[\[\[}}5, -6, 1, 2]], {{\[\[}}7, 8, 3, 4]]]> : tensor<2x1x4xi6>} : () -> ()
"fooi6"(){bar = dense<[[[5, -6, 1, 2]], [[7, 8, 3, 4]]]> : tensor<2x1x4xi6>} : () -> ()
// CHECK: "fooi8"() {bar = dense<5> : tensor<1x1x1xi8>} : () -> ()
"fooi8"(){bar = dense<[[[5]]]> : tensor<1x1x1xi8>} : () -> ()
// CHECK: "fooi13"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 2, -1, 2]]]> : tensor<2x1x4xi13>} : () -> ()
"fooi13"(){bar = dense<[[[1, -2, 1, 2]], [[0, 2, -1, 2]]]> : tensor<2x1x4xi13>} : () -> ()
// CHECK: "fooi16"() {bar = dense<-5> : tensor<1x1x1xi16>} : () -> ()
"fooi16"(){bar = dense<[[[-5]]]> : tensor<1x1x1xi16>} : () -> ()
// CHECK: "fooi23"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 2, -1, 2]]]> : tensor<2x1x4xi23>} : () -> ()
"fooi23"(){bar = dense<[[[1, -2, 1, 2]], [[0, 2, -1, 2]]]> : tensor<2x1x4xi23>} : () -> ()
// CHECK: "fooi32"() {bar = dense<5> : tensor<1x1x1xi32>} : () -> ()
"fooi32"(){bar = dense<[[[5]]]> : tensor<1x1x1xi32>} : () -> ()
// CHECK: "fooi33"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 2, -1, 2]]]> : tensor<2x1x4xi33>} : () -> ()
"fooi33"(){bar = dense<[[[1, -2, 1, 2]], [[0, 2, -1, 2]]]> : tensor<2x1x4xi33>} : () -> ()
// CHECK: "fooi43"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 2, -1, 2]]]> : tensor<2x1x4xi43>} : () -> ()
"fooi43"(){bar = dense<[[[1, -2, 1, 2]], [[0, 2, -1, 2]]]> : tensor<2x1x4xi43>} : () -> ()
// CHECK: "fooi53"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 2, -1, 2]]]> : tensor<2x1x4xi53>} : () -> ()
"fooi53"(){bar = dense<[[[1, -2, 1, 2]], [[0, 2, -1, 2]]]> : tensor<2x1x4xi53>} : () -> ()
// CHECK: "fooi64"() {bar = dense<{{\[\[\[}}1, -2, 1, 2]], {{\[\[}}0, 3, -1, 2]]]> : tensor<2x1x4xi64>} : () -> ()
"fooi64"(){bar = dense<[[[1, -2, 1, 2]], [[0, 3, -1, 2]]]> : tensor<2x1x4xi64>} : () -> ()
// CHECK: "fooi64"() {bar = dense<-5> : tensor<1x1x1xi64>} : () -> ()
"fooi64"(){bar = dense<[[[-5]]]> : tensor<1x1x1xi64>} : () -> ()
// CHECK: "fooi67"() {bar = dense<{{\[\[\[}}-5, 4, 6, 2]]]> : vector<1x1x4xi67>} : () -> ()
"fooi67"(){bar = dense<[[[-5, 4, 6, 2]]]> : vector<1x1x4xi67>} : () -> ()
// CHECK: "foo2"() {bar = dense<> : tensor<0xi32>} : () -> ()
"foo2"(){bar = dense<> : tensor<0xi32>} : () -> ()
// CHECK: "foo2"() {bar = dense<> : tensor<1x0xi32>} : () -> ()
"foo2"(){bar = dense<> : tensor<1x0xi32>} : () -> ()
// CHECK: dense<> : tensor<0x512x512xi32>
"foo2"(){bar = dense<> : tensor<0x512x512xi32>} : () -> ()
// CHECK: "foo3"() {bar = dense<{{\[\[\[}}5, -6, 1, 2]], {{\[\[}}7, 8, 3, 4]]]> : tensor<2x1x4xi32>} : () -> ()
"foo3"(){bar = dense<[[[5, -6, 1, 2]], [[7, 8, 3, 4]]]> : tensor<2x1x4xi32>} : () -> ()
// CHECK: "float1"() {bar = dense<5.000000e+00> : tensor<1x1x1xf32>} : () -> ()
"float1"(){bar = dense<[[[5.0]]]> : tensor<1x1x1xf32>} : () -> ()
// CHECK: "float2"() {bar = dense<> : tensor<0xf32>} : () -> ()
"float2"(){bar = dense<> : tensor<0xf32>} : () -> ()
// CHECK: "float2"() {bar = dense<> : tensor<1x0xf32>} : () -> ()
"float2"(){bar = dense<> : tensor<1x0xf32>} : () -> ()
// CHECK: "bfloat16"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : tensor<2x1x4xbf16>} : () -> ()
"bfloat16"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : tensor<2x1x4xbf16>} : () -> ()
// CHECK: "float16"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : tensor<2x1x4xf16>} : () -> ()
"float16"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : tensor<2x1x4xf16>} : () -> ()
// CHECK: "float32"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : tensor<2x1x4xf32>} : () -> ()
"float32"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : tensor<2x1x4xf32>} : () -> ()
// CHECK: "float64"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : tensor<2x1x4xf64>} : () -> ()
"float64"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : tensor<2x1x4xf64>} : () -> ()
// CHECK: "intscalar"() {bar = dense<1> : tensor<i32>} : () -> ()
"intscalar"(){bar = dense<1> : tensor<i32>} : () -> ()
// CHECK: "floatscalar"() {bar = dense<5.000000e+00> : tensor<f32>} : () -> ()
"floatscalar"(){bar = dense<5.0> : tensor<f32>} : () -> ()
// CHECK: "index"() {bar = dense<1> : tensor<index>} : () -> ()
"index"(){bar = dense<1> : tensor<index>} : () -> ()
// CHECK: "index"() {bar = dense<[1, 2]> : tensor<2xindex>} : () -> ()
"index"(){bar = dense<[1, 2]> : tensor<2xindex>} : () -> ()
// CHECK: dense<(1,1)> : tensor<complex<i64>>
"complex_attr"(){bar = dense<(1,1)> : tensor<complex<i64>>} : () -> ()
// CHECK: dense<[(1,1), (2,2)]> : tensor<2xcomplex<i64>>
"complex_attr"(){bar = dense<[(1,1), (2,2)]> : tensor<2xcomplex<i64>>} : () -> ()
// CHECK: dense<(1.000000e+00,0.000000e+00)> : tensor<complex<f32>>
"complex_attr"(){bar = dense<(1.000000e+00,0.000000e+00)> : tensor<complex<f32>>} : () -> ()
// CHECK: dense<[(1.000000e+00,0.000000e+00), (2.000000e+00,2.000000e+00)]> : tensor<2xcomplex<f32>>
"complex_attr"(){bar = dense<[(1.000000e+00,0.000000e+00), (2.000000e+00,2.000000e+00)]> : tensor<2xcomplex<f32>>} : () -> ()
return
}
// CHECK-LABEL: func @densevectorattr
func @densevectorattr() -> () {
^bb0:
// NOTE: The {{\[\[}} syntax is because "[[" confuses FileCheck.
// CHECK: "fooi8"() {bar = dense<5> : vector<1x1x1xi8>} : () -> ()
"fooi8"(){bar = dense<[[[5]]]> : vector<1x1x1xi8>} : () -> ()
// CHECK: "fooi16"() {bar = dense<-5> : vector<1x1x1xi16>} : () -> ()
"fooi16"(){bar = dense<[[[-5]]]> : vector<1x1x1xi16>} : () -> ()
// CHECK: "foo32"() {bar = dense<5> : vector<1x1x1xi32>} : () -> ()
"foo32"(){bar = dense<[[[5]]]> : vector<1x1x1xi32>} : () -> ()
// CHECK: "fooi64"() {bar = dense<-5> : vector<1x1x1xi64>} : () -> ()
"fooi64"(){bar = dense<[[[-5]]]> : vector<1x1x1xi64>} : () -> ()
// CHECK: "foo3"() {bar = dense<{{\[\[\[}}5, -6, 1, 2]], {{\[\[}}7, 8, 3, 4]]]> : vector<2x1x4xi32>} : () -> ()
"foo3"(){bar = dense<[[[5, -6, 1, 2]], [[7, 8, 3, 4]]]> : vector<2x1x4xi32>} : () -> ()
// CHECK: "float1"() {bar = dense<5.000000e+00> : vector<1x1x1xf32>} : () -> ()
"float1"(){bar = dense<[[[5.0]]]> : vector<1x1x1xf32>} : () -> ()
// CHECK: "bfloat16"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : vector<2x1x4xbf16>} : () -> ()
"bfloat16"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : vector<2x1x4xbf16>} : () -> ()
// CHECK: "float16"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : vector<2x1x4xf16>} : () -> ()
"float16"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : vector<2x1x4xf16>} : () -> ()
// CHECK: "float32"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : vector<2x1x4xf32>} : () -> ()
"float32"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : vector<2x1x4xf32>} : () -> ()
// CHECK: "float64"() {bar = dense<{{\[\[\[}}-5.000000e+00, 6.000000e+00, 1.000000e+00, 2.000000e+00]], {{\[\[}}7.000000e+00, -8.000000e+00, 3.000000e+00, 4.000000e+00]]]> : vector<2x1x4xf64>} : () -> ()
"float64"(){bar = dense<[[[-5.0, 6.0, 1.0, 2.0]], [[7.0, -8.0, 3.0, 4.0]]]> : vector<2x1x4xf64>} : () -> ()
return
}
// CHECK-LABEL: func @sparsetensorattr
func @sparsetensorattr() -> () {
^bb0:
// NOTE: The {{\[\[}} syntax is because "[[" confuses FileCheck.
// CHECK: "fooi8"() {bar = sparse<0, -2> : tensor<1x1x1xi8>} : () -> ()
"fooi8"(){bar = sparse<0, -2> : tensor<1x1x1xi8>} : () -> ()
// CHECK: "fooi16"() {bar = sparse<{{\[\[}}1, 1, 0], {{\[}}0, 1, 0], {{\[}}0, 0, 1]], {{\[}}2, -1, 5]> : tensor<2x2x2xi16>} : () -> ()
"fooi16"(){bar = sparse<[[1, 1, 0], [0, 1, 0], [0, 0, 1]], [2, -1, 5]> : tensor<2x2x2xi16>} : () -> ()
// CHECK: "fooi32"() {bar = sparse<> : tensor<1x1xi32>} : () -> ()
"fooi32"(){bar = sparse<> : tensor<1x1xi32>} : () -> ()
// CHECK: "fooi64"() {bar = sparse<0, -1> : tensor<1xi64>} : () -> ()
"fooi64"(){bar = sparse<[[0]], [-1]> : tensor<1xi64>} : () -> ()
// CHECK: "foo2"() {bar = sparse<> : tensor<0xi32>} : () -> ()
"foo2"(){bar = sparse<> : tensor<0xi32>} : () -> ()
// CHECK: "foo3"() {bar = sparse<> : tensor<i32>} : () -> ()
"foo3"(){bar = sparse<> : tensor<i32>} : () -> ()
// CHECK: "foof16"() {bar = sparse<0, -2.000000e+00> : tensor<1x1x1xf16>} : () -> ()
"foof16"(){bar = sparse<0, -2.0> : tensor<1x1x1xf16>} : () -> ()
// CHECK: "foobf16"() {bar = sparse<{{\[\[}}1, 1, 0], {{\[}}0, 1, 0], {{\[}}0, 0, 1]], {{\[}}2.000000e+00, -1.000000e+00, 5.000000e+00]> : tensor<2x2x2xbf16>} : () -> ()
"foobf16"(){bar = sparse<[[1, 1, 0], [0, 1, 0], [0, 0, 1]], [2.0, -1.0, 5.0]> : tensor<2x2x2xbf16>} : () -> ()
// CHECK: "foof32"() {bar = sparse<> : tensor<1x0x1xf32>} : () -> ()
"foof32"(){bar = sparse<> : tensor<1x0x1xf32>} : () -> ()
// CHECK: "foof64"() {bar = sparse<0, -1.000000e+00> : tensor<1xf64>} : () -> ()
"foof64"(){bar = sparse<[[0]], [-1.0]> : tensor<1xf64>} : () -> ()
// CHECK: "foof320"() {bar = sparse<> : tensor<0xf32>} : () -> ()
"foof320"(){bar = sparse<> : tensor<0xf32>} : () -> ()
// CHECK: "foof321"() {bar = sparse<> : tensor<f32>} : () -> ()
"foof321"(){bar = sparse<> : tensor<f32>} : () -> ()
// CHECK: "foostr"() {bar = sparse<0, "foo"> : tensor<1x1x1x!unknown<"">>} : () -> ()
"foostr"(){bar = sparse<0, "foo"> : tensor<1x1x1x!unknown<"">>} : () -> ()
// CHECK: "foostr"() {bar = sparse<{{\[\[}}1, 1, 0], {{\[}}0, 1, 0], {{\[}}0, 0, 1]], {{\[}}"a", "b", "c"]> : tensor<2x2x2x!unknown<"">>} : () -> ()
"foostr"(){bar = sparse<[[1, 1, 0], [0, 1, 0], [0, 0, 1]], ["a", "b", "c"]> : tensor<2x2x2x!unknown<"">>} : () -> ()
return
}
// CHECK-LABEL: func @sparsevectorattr
func @sparsevectorattr() -> () {
^bb0:
// NOTE: The {{\[\[}} syntax is because "[[" confuses FileCheck.
// CHECK: "fooi8"() {bar = sparse<0, -2> : vector<1x1x1xi8>} : () -> ()
"fooi8"(){bar = sparse<0, -2> : vector<1x1x1xi8>} : () -> ()
// CHECK: "fooi16"() {bar = sparse<{{\[\[}}1, 1, 0], {{\[}}0, 1, 0], {{\[}}0, 0, 1]], {{\[}}2, -1, 5]> : vector<2x2x2xi16>} : () -> ()
"fooi16"(){bar = sparse<[[1, 1, 0], [0, 1, 0], [0, 0, 1]], [2, -1, 5]> : vector<2x2x2xi16>} : () -> ()
// CHECK: "fooi32"() {bar = sparse<> : vector<1x1xi32>} : () -> ()
"fooi32"(){bar = sparse<> : vector<1x1xi32>} : () -> ()
// CHECK: "fooi64"() {bar = sparse<0, -1> : vector<1xi64>} : () -> ()
"fooi64"(){bar = sparse<[[0]], [-1]> : vector<1xi64>} : () -> ()
// CHECK: "foof16"() {bar = sparse<0, -2.000000e+00> : vector<1x1x1xf16>} : () -> ()
"foof16"(){bar = sparse<0, -2.0> : vector<1x1x1xf16>} : () -> ()
// CHECK: "foobf16"() {bar = sparse<{{\[\[}}1, 1, 0], {{\[}}0, 1, 0], {{\[}}0, 0, 1]], {{\[}}2.000000e+00, -1.000000e+00, 5.000000e+00]> : vector<2x2x2xbf16>} : () -> ()
"foobf16"(){bar = sparse<[[1, 1, 0], [0, 1, 0], [0, 0, 1]], [2.0, -1.0, 5.0]> : vector<2x2x2xbf16>} : () -> ()
// CHECK: "foof64"() {bar = sparse<0, -1.000000e+00> : vector<1xf64>} : () -> ()
"foof64"(){bar = sparse<0, [-1.0]> : vector<1xf64>} : () -> ()
return
}
// CHECK-LABEL: func @unknown_dialect_type() -> !bar<""> {
func @unknown_dialect_type() -> !bar<""> {
// Unregistered dialect 'bar'.
// CHECK: "foo"() : () -> !bar<"">
%0 = "foo"() : () -> !bar<"">
// CHECK: "foo"() : () -> !bar.baz
%1 = "foo"() : () -> !bar<"baz">
return %0 : !bar<"">
}
// CHECK-LABEL: func @type_alias() -> i32 {
!i32_type_alias = type i32
func @type_alias() -> !i32_type_alias {
// Return a non-aliased i32 type.
%0 = "foo"() : () -> i32
return %0 : i32
}
// CHECK-LABEL: func @no_integer_set_constraints(
func @no_integer_set_constraints() {
// CHECK: affine.if [[$SET_TRUE]]() {
affine.if affine_set<() : ()> () {
}
return
}
// CHECK-LABEL: func @verbose_if(
func @verbose_if(%N: index) {
%c = constant 200 : index
// CHECK: affine.if #set{{.*}}(%{{.*}})[%{{.*}}, %{{.*}}] {
"affine.if"(%c, %N, %c) ({
// CHECK-NEXT: "add"
%y = "add"(%c, %N) : (index, index) -> index
"affine.yield"() : () -> ()
// CHECK-NEXT: } else {
}, { // The else region.
// CHECK-NEXT: "add"
%z = "add"(%c, %c) : (index, index) -> index
"affine.yield"() : () -> ()
})
{ condition = #set0 } : (index, index, index) -> ()
return
}
// CHECK-LABEL: func @terminator_with_regions
func @terminator_with_regions() {
// Combine successors and regions in the same operation.
// CHECK: "region"()[^bb1] ( {
// CHECK: }) : () -> ()
"region"()[^bb2] ({}) : () -> ()
^bb2:
return
}
// CHECK-LABEL: func @unregistered_term
func @unregistered_term(%arg0 : i1) -> i1 {
// CHECK-NEXT: "unregistered_br"(%{{.*}})[^bb1] : (i1) -> ()
"unregistered_br"(%arg0)[^bb1] : (i1) -> ()
^bb1(%arg1 : i1):
return %arg1 : i1
}
// CHECK-LABEL: func @dialect_attrs
func @dialect_attrs()
// CHECK: attributes {dialect.attr = 10
attributes {dialect.attr = 10} {
return
}
// CHECK-LABEL: func private @_valid.function$name
func private @_valid.function$name()
// CHECK-LABEL: func private @external_func_arg_attrs(i32, i1 {dialect.attr = 10 : i64}, i32)
func private @external_func_arg_attrs(i32, i1 {dialect.attr = 10 : i64}, i32)
// CHECK-LABEL: func @func_arg_attrs(%{{.*}}: i1 {dialect.attr = 10 : i64})
func @func_arg_attrs(%arg0: i1 {dialect.attr = 10 : i64}) {
return
}
// CHECK-LABEL: func @func_result_attrs({{.*}}) -> (f32 {dialect.attr = 1 : i64})
func @func_result_attrs(%arg0: f32) -> (f32 {dialect.attr = 1}) {
return %arg0 : f32
}
// CHECK-LABEL: func private @empty_tuple(tuple<>)
func private @empty_tuple(tuple<>)
// CHECK-LABEL: func private @tuple_single_element(tuple<i32>)
func private @tuple_single_element(tuple<i32>)
// CHECK-LABEL: func private @tuple_multi_element(tuple<i32, i16, f32>)
func private @tuple_multi_element(tuple<i32, i16, f32>)
// CHECK-LABEL: func private @tuple_nested(tuple<tuple<tuple<i32>>>)
func private @tuple_nested(tuple<tuple<tuple<i32>>>)
// CHECK-LABEL: func @pretty_form_multi_result
func @pretty_form_multi_result() -> (i16, i16) {
// CHECK: %{{.*}}:2 = "foo_div"() : () -> (i16, i16)
%quot, %rem = "foo_div"() : () -> (i16, i16)
return %quot, %rem : i16, i16
}
// CHECK-LABEL: func @pretty_form_multi_result_groups
func @pretty_form_multi_result_groups() -> (i16, i16, i16, i16, i16) {
// CHECK: %[[RES:.*]]:5 =
// CHECK: return %[[RES]]#0, %[[RES]]#1, %[[RES]]#2, %[[RES]]#3, %[[RES]]#4
%group_1:2, %group_2, %group_3:2 = "foo_test"() : () -> (i16, i16, i16, i16, i16)
return %group_1#0, %group_1#1, %group_2, %group_3#0, %group_3#1 : i16, i16, i16, i16, i16
}
// CHECK-LABEL: func @pretty_dialect_attribute()
func @pretty_dialect_attribute() {
// CHECK: "foo.unknown_op"() {foo = #foo.simple_attr} : () -> ()
"foo.unknown_op"() {foo = #foo.simple_attr} : () -> ()
// CHECK: "foo.unknown_op"() {foo = #foo.complexattr<abcd>} : () -> ()
"foo.unknown_op"() {foo = #foo.complexattr<abcd>} : () -> ()
// CHECK: "foo.unknown_op"() {foo = #foo.complexattr<abcd<f32>>} : () -> ()
"foo.unknown_op"() {foo = #foo.complexattr<abcd<f32>>} : () -> ()
// CHECK: "foo.unknown_op"() {foo = #foo.complexattr<abcd<[f]$$[32]>>} : () -> ()
"foo.unknown_op"() {foo = #foo.complexattr<abcd<[f]$$[32]>>} : () -> ()
// CHECK: "foo.unknown_op"() {foo = #foo.dialect<!x@#!@#>} : () -> ()
"foo.unknown_op"() {foo = #foo.dialect<!x@#!@#>} : () -> ()
// Extraneous extra > character can't use the pretty syntax.
// CHECK: "foo.unknown_op"() {foo = #foo<"dialect<!x@#!@#>>">} : () -> ()
"foo.unknown_op"() {foo = #foo<"dialect<!x@#!@#>>">} : () -> ()
return
}
// CHECK-LABEL: func @pretty_dialect_type()
func @pretty_dialect_type() {
// CHECK: %{{.*}} = "foo.unknown_op"() : () -> !foo.simpletype
%0 = "foo.unknown_op"() : () -> !foo.simpletype
// CHECK: %{{.*}} = "foo.unknown_op"() : () -> !foo.complextype<abcd>
%1 = "foo.unknown_op"() : () -> !foo.complextype<abcd>
// CHECK: %{{.*}} = "foo.unknown_op"() : () -> !foo.complextype<abcd<f32>>
%2 = "foo.unknown_op"() : () -> !foo.complextype<abcd<f32>>
// CHECK: %{{.*}} = "foo.unknown_op"() : () -> !foo.complextype<abcd<[f]$$[32]>>
%3 = "foo.unknown_op"() : () -> !foo.complextype<abcd<[f]$$[32]>>
// CHECK: %{{.*}} = "foo.unknown_op"() : () -> !foo.dialect<!x@#!@#>
%4 = "foo.unknown_op"() : () -> !foo.dialect<!x@#!@#>
// Extraneous extra > character can't use the pretty syntax.
// CHECK: %{{.*}} = "foo.unknown_op"() : () -> !foo<"dialect<!x@#!@#>>">
%5 = "foo.unknown_op"() : () -> !foo<"dialect<!x@#!@#>>">
return
}
// CHECK-LABEL: func @none_type
func @none_type() {
// CHECK: "foo.unknown_op"() : () -> none
%none_val = "foo.unknown_op"() : () -> none
return
}
// CHECK-LABEL: func @scoped_names
func @scoped_names() {
// CHECK-NEXT: "foo.region_op"
"foo.region_op"() ({
// CHECK-NEXT: "foo.unknown_op"
%scoped_name = "foo.unknown_op"() : () -> none
"foo.terminator"() : () -> ()
}, {
// CHECK: "foo.unknown_op"
%scoped_name = "foo.unknown_op"() : () -> none
"foo.terminator"() : () -> ()
}) : () -> ()
return
}
// CHECK-LABEL: func @dialect_attribute_with_type
func @dialect_attribute_with_type() {
// CHECK-NEXT: foo = #foo.attr : i32
"foo.unknown_op"() {foo = #foo.attr : i32} : () -> ()
}
// CHECK-LABEL: @f16_special_values
func @f16_special_values() {
// F16 NaNs.
// CHECK: constant 0x7C01 : f16
%0 = constant 0x7C01 : f16
// CHECK: constant 0x7FFF : f16
%1 = constant 0x7FFF : f16
// CHECK: constant 0xFFFF : f16
%2 = constant 0xFFFF : f16
// F16 positive infinity.
// CHECK: constant 0x7C00 : f16
%3 = constant 0x7C00 : f16
// F16 negative infinity.
// CHECK: constant 0xFC00 : f16
%4 = constant 0xFC00 : f16
return
}
// CHECK-LABEL: @f32_special_values
func @f32_special_values() {
// F32 signaling NaNs.
// CHECK: constant 0x7F800001 : f32
%0 = constant 0x7F800001 : f32
// CHECK: constant 0x7FBFFFFF : f32
%1 = constant 0x7FBFFFFF : f32
// F32 quiet NaNs.
// CHECK: constant 0x7FC00000 : f32
%2 = constant 0x7FC00000 : f32
// CHECK: constant 0xFFFFFFFF : f32
%3 = constant 0xFFFFFFFF : f32
// F32 positive infinity.
// CHECK: constant 0x7F800000 : f32
%4 = constant 0x7F800000 : f32
// F32 negative infinity.
// CHECK: constant 0xFF800000 : f32
%5 = constant 0xFF800000 : f32
return
}
// CHECK-LABEL: @f64_special_values
func @f64_special_values() {
// F64 signaling NaNs.
// CHECK: constant 0x7FF0000000000001 : f64
%0 = constant 0x7FF0000000000001 : f64
// CHECK: constant 0x7FF8000000000000 : f64
%1 = constant 0x7FF8000000000000 : f64
// F64 quiet NaNs.
// CHECK: constant 0x7FF0000001000000 : f64
%2 = constant 0x7FF0000001000000 : f64
// CHECK: constant 0xFFF0000001000000 : f64
%3 = constant 0xFFF0000001000000 : f64
// F64 positive infinity.
// CHECK: constant 0x7FF0000000000000 : f64
%4 = constant 0x7FF0000000000000 : f64
// F64 negative infinity.
// CHECK: constant 0xFFF0000000000000 : f64
%5 = constant 0xFFF0000000000000 : f64
// Check that values that can't be represented with the default format, use
// hex instead.
// CHECK: constant 0xC1CDC00000000000 : f64
%6 = constant 0xC1CDC00000000000 : f64
return
}
// CHECK-LABEL: @bfloat16_special_values
func @bfloat16_special_values() {
// bfloat16 signaling NaNs.
// CHECK: constant 0x7F81 : bf16
%0 = constant 0x7F81 : bf16
// CHECK: constant 0xFF81 : bf16
%1 = constant 0xFF81 : bf16
// bfloat16 quiet NaNs.
// CHECK: constant 0x7FC0 : bf16
%2 = constant 0x7FC0 : bf16
// CHECK: constant 0xFFC0 : bf16
%3 = constant 0xFFC0 : bf16
// bfloat16 positive infinity.
// CHECK: constant 0x7F80 : bf16
%4 = constant 0x7F80 : bf16
// bfloat16 negative infinity.
// CHECK: constant 0xFF80 : bf16
%5 = constant 0xFF80 : bf16
return
}
// We want to print floats in exponential notation with 6 significant digits,
// but it may lead to precision loss when parsing back, in which case we print
// the decimal form instead.
// CHECK-LABEL: @f32_potential_precision_loss()
func @f32_potential_precision_loss() {
// CHECK: constant -1.23697901 : f32
%0 = constant -1.23697901 : f32
return
}
// CHECK-LABEL: @special_float_values_in_tensors
func @special_float_values_in_tensors() {
// CHECK: dense<0xFFFFFFFF> : tensor<4x4xf32>
"foo"(){bar = dense<0xFFFFFFFF> : tensor<4x4xf32>} : () -> ()
// CHECK: dense<[{{\[}}0xFFFFFFFF, 0x7F800000], [0x7FBFFFFF, 0x7F800001]]> : tensor<2x2xf32>
"foo"(){bar = dense<[[0xFFFFFFFF, 0x7F800000], [0x7FBFFFFF, 0x7F800001]]> : tensor<2x2xf32>} : () -> ()
// CHECK: dense<[0xFFFFFFFF, 0.000000e+00]> : tensor<2xf32>
"foo"(){bar = dense<[0xFFFFFFFF, 0.0]> : tensor<2xf32>} : () -> ()
// CHECK: sparse<[{{\[}}1, 1, 0], [0, 1, 1]], [0xFFFFFFFF, 0x7F800001]>
"foo"(){bar = sparse<[[1,1,0],[0,1,1]], [0xFFFFFFFF, 0x7F800001]> : tensor<2x2x2xf32>} : () -> ()
}
// Test parsing of an op with multiple region arguments, and without a
// delimiter.
// CHECK-LABEL: func @op_with_region_args
func @op_with_region_args() {
// CHECK: "test.polyfor"() ( {
// CHECK-NEXT: ^bb{{.*}}(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index):
test.polyfor %i, %j, %k {
"foo"() : () -> ()
}
return
}
// Test allowing different name scopes for regions isolated from above.
// CHECK-LABEL: func @op_with_passthrough_region_args
func @op_with_passthrough_region_args() {
// CHECK: [[VAL:%.*]] = constant
%0 = constant 10 : index
// CHECK: test.isolated_region [[VAL]] {
// CHECK-NEXT: "foo.consumer"([[VAL]]) : (index)
// CHECK-NEXT: }
test.isolated_region %0 {
"foo.consumer"(%0) : (index) -> ()
}
// CHECK: [[VAL:%.*]]:2 = "foo.op"
%result:2 = "foo.op"() : () -> (index, index)
// CHECK: test.isolated_region [[VAL]]#1 {
// CHECK-NEXT: "foo.consumer"([[VAL]]#1) : (index)
// CHECK-NEXT: }
test.isolated_region %result#1 {
"foo.consumer"(%result#1) : (index) -> ()
}
return
}
// CHECK-LABEL: func private @ptr_to_function() -> !unreg.ptr<() -> ()>
func private @ptr_to_function() -> !unreg.ptr<() -> ()>
// CHECK-LABEL: func private @escaped_string_char(i1 {foo.value = "\0A"})
func private @escaped_string_char(i1 {foo.value = "\n"})
// CHECK-LABEL: func @parse_integer_literal_test
func @parse_integer_literal_test() {
// CHECK: test.parse_integer_literal : 5
test.parse_integer_literal : 5
return
}
// CHECK-LABEL: func @parse_wrapped_keyword_test
func @parse_wrapped_keyword_test() {
// CHECK: test.parse_wrapped_keyword foo.keyword
test.parse_wrapped_keyword foo.keyword
return
}
// CHECK-LABEL: func @"\22_string_symbol_reference\22"
func @"\"_string_symbol_reference\""() {
// CHECK: ref = @"\22_string_symbol_reference\22"
"foo.symbol_reference"() {ref = @"\"_string_symbol_reference\""} : () -> ()
return
}
// CHECK-LABEL: func private @parse_opaque_attr_escape
func private @parse_opaque_attr_escape() {
// CHECK: value = #foo<"\22escaped\\\0A\22">
"foo.constant"() {value = #foo<"\"escaped\\\n\"">} : () -> ()
}
// CHECK-LABEL: func private @string_attr_name
// CHECK-SAME: {"0 . 0", nested = {"0 . 0"}}
func private @string_attr_name() attributes {"0 . 0", nested = {"0 . 0"}}
// CHECK-LABEL: func private @nested_reference
// CHECK: ref = @some_symbol::@some_nested_symbol
func private @nested_reference() attributes {test.ref = @some_symbol::@some_nested_symbol }
// CHECK-LABEL: func @custom_asm_names
func @custom_asm_names() -> (i32, i32, i32, i32, i32, i32, i32) {
// CHECK: %[[FIRST:first.*]], %[[MIDDLE:middle_results.*]]:2, %[[LAST:[0-9]+]]
%0, %1:2, %2 = "test.asm_interface_op"() : () -> (i32, i32, i32, i32)
// CHECK: %[[FIRST_2:first.*]], %[[LAST_2:[0-9]+]]
%3, %4 = "test.asm_interface_op"() : () -> (i32, i32)
// CHECK: %[[RESULT:result.*]]
%5 = "test.asm_dialect_interface_op"() : () -> (i32)
// CHECK: return %[[FIRST]], %[[MIDDLE]]#0, %[[MIDDLE]]#1, %[[LAST]], %[[FIRST_2]], %[[LAST_2]]
return %0, %1#0, %1#1, %2, %3, %4, %5 : i32, i32, i32, i32, i32, i32, i32
}
// CHECK-LABEL: func @pretty_names
// This tests the behavior
func @pretty_names() {
// Simple case, should parse and print as %x being an implied 'name'
// attribute.
%x = test.string_attr_pretty_name
// CHECK: %x = test.string_attr_pretty_name
// CHECK-NOT: attributes
// This specifies an explicit name, which should override the result.
%YY = test.string_attr_pretty_name attributes { names = ["y"] }
// CHECK: %y = test.string_attr_pretty_name
// CHECK-NOT: attributes
// Conflicts with the 'y' name, so need an explicit attribute.
%0 = "test.string_attr_pretty_name"() { names = ["y"]} : () -> i32
// CHECK: %y_0 = test.string_attr_pretty_name attributes {names = ["y"]}
// Name contains a space.
%1 = "test.string_attr_pretty_name"() { names = ["space name"]} : () -> i32
// CHECK: %space_name = test.string_attr_pretty_name attributes {names = ["space name"]}
"unknown.use"(%x, %YY, %0, %1) : (i32, i32, i32, i32) -> ()
// Multi-result support.
%a, %b, %c = test.string_attr_pretty_name
// CHECK: %a, %b, %c = test.string_attr_pretty_name
// CHECK-NOT: attributes
%q:3, %r = test.string_attr_pretty_name
// CHECK: %q, %q_1, %q_2, %r = test.string_attr_pretty_name attributes {names = ["q", "q", "q", "r"]}
// CHECK: return
return
}
[MLIR] Add RegionKindInterface Some dialects have semantics which is not well represented by common SSA structures with dominance constraints. This patch allows operations to declare the 'kind' of their contained regions. Currently, two kinds are allowed: "SSACFG" and "Graph". The only difference between them at the moment is that SSACFG regions are required to have dominance, while Graph regions are not required to have dominance. The intention is that this Interface would be generated by ODS for existing operations, although this has not yet been implemented. Presumably, if someone were interested in code generation, we might also have a "CFG" dialect, which defines control flow, but does not require SSA. The new behavior is mostly identical to the previous behavior, since registered operations without a RegionKindInterface are assumed to contain SSACFG regions. However, the behavior has changed for unregistered operations. Previously, these were checked for dominance, however the new behavior allows dominance violations, in order to allow the processing of unregistered dialects with Graph regions. One implication of this is that regions in unregistered operations with more than one op are no longer CSE'd (since it requires dominance info). I've also reorganized the LangRef documentation to remove assertions about "sequential execution", "SSA Values", and "Dominance". Instead, the core IR is simply "ordered" (i.e. totally ordered) and consists of "Values". I've also clarified some things about how control flow passes between blocks in an SSACFG region. Control Flow must enter a region at the entry block and follow terminator operation successors or be returned to the containing op. Graph regions do not define a notion of control flow. see discussion here: https://llvm.discourse.group/t/rfc-allowing-dialects-to-relax-the-ssa-dominance-condition/833/53 Differential Revision: https://reviews.llvm.org/D80358
2020-05-16 01:33:13 +08:00
// CHECK-LABEL: func @unreachable_dominance_violation_ok
func @unreachable_dominance_violation_ok() -> i1 {
[MLIR] Add RegionKindInterface Some dialects have semantics which is not well represented by common SSA structures with dominance constraints. This patch allows operations to declare the 'kind' of their contained regions. Currently, two kinds are allowed: "SSACFG" and "Graph". The only difference between them at the moment is that SSACFG regions are required to have dominance, while Graph regions are not required to have dominance. The intention is that this Interface would be generated by ODS for existing operations, although this has not yet been implemented. Presumably, if someone were interested in code generation, we might also have a "CFG" dialect, which defines control flow, but does not require SSA. The new behavior is mostly identical to the previous behavior, since registered operations without a RegionKindInterface are assumed to contain SSACFG regions. However, the behavior has changed for unregistered operations. Previously, these were checked for dominance, however the new behavior allows dominance violations, in order to allow the processing of unregistered dialects with Graph regions. One implication of this is that regions in unregistered operations with more than one op are no longer CSE'd (since it requires dominance info). I've also reorganized the LangRef documentation to remove assertions about "sequential execution", "SSA Values", and "Dominance". Instead, the core IR is simply "ordered" (i.e. totally ordered) and consists of "Values". I've also clarified some things about how control flow passes between blocks in an SSACFG region. Control Flow must enter a region at the entry block and follow terminator operation successors or be returned to the containing op. Graph regions do not define a notion of control flow. see discussion here: https://llvm.discourse.group/t/rfc-allowing-dialects-to-relax-the-ssa-dominance-condition/833/53 Differential Revision: https://reviews.llvm.org/D80358
2020-05-16 01:33:13 +08:00
// CHECK: [[VAL:%.*]] = constant false
// CHECK: return [[VAL]] : i1
// CHECK: ^bb1: // no predecessors
// CHECK: [[VAL2:%.*]]:3 = "bar"([[VAL3:%.*]]) : (i64) -> (i1, i1, i1)
// CHECK: br ^bb3
// CHECK: ^bb2: // pred: ^bb2
// CHECK: br ^bb2
// CHECK: ^bb3: // pred: ^bb1
// CHECK: [[VAL3]] = "foo"() : () -> i64
// CHECK: return [[VAL2]]#1 : i1
// CHECK: }
%c = constant false
return %c : i1
^bb1:
// %1 is not dominated by it's definition, but block is not reachable.
[MLIR] Add RegionKindInterface Some dialects have semantics which is not well represented by common SSA structures with dominance constraints. This patch allows operations to declare the 'kind' of their contained regions. Currently, two kinds are allowed: "SSACFG" and "Graph". The only difference between them at the moment is that SSACFG regions are required to have dominance, while Graph regions are not required to have dominance. The intention is that this Interface would be generated by ODS for existing operations, although this has not yet been implemented. Presumably, if someone were interested in code generation, we might also have a "CFG" dialect, which defines control flow, but does not require SSA. The new behavior is mostly identical to the previous behavior, since registered operations without a RegionKindInterface are assumed to contain SSACFG regions. However, the behavior has changed for unregistered operations. Previously, these were checked for dominance, however the new behavior allows dominance violations, in order to allow the processing of unregistered dialects with Graph regions. One implication of this is that regions in unregistered operations with more than one op are no longer CSE'd (since it requires dominance info). I've also reorganized the LangRef documentation to remove assertions about "sequential execution", "SSA Values", and "Dominance". Instead, the core IR is simply "ordered" (i.e. totally ordered) and consists of "Values". I've also clarified some things about how control flow passes between blocks in an SSACFG region. Control Flow must enter a region at the entry block and follow terminator operation successors or be returned to the containing op. Graph regions do not define a notion of control flow. see discussion here: https://llvm.discourse.group/t/rfc-allowing-dialects-to-relax-the-ssa-dominance-condition/833/53 Differential Revision: https://reviews.llvm.org/D80358
2020-05-16 01:33:13 +08:00
%2:3 = "bar"(%1) : (i64) -> (i1,i1,i1)
br ^bb3
^bb2:
br ^bb2
^bb3:
%1 = "foo"() : ()->i64
return %2#1 : i1
}
// CHECK-LABEL: func @graph_region_in_hierarchy_ok
func @graph_region_in_hierarchy_ok() -> i64 {
// CHECK: br ^bb2
// CHECK: ^bb1:
// CHECK: test.graph_region {
// CHECK: [[VAL2:%.*]]:3 = "bar"([[VAL3:%.*]]) : (i64) -> (i1, i1, i1)
// CHECK: }
// CHECK: br ^bb3
// CHECK: ^bb2: // pred: ^bb0
// CHECK: [[VAL3]] = "foo"() : () -> i64
// CHECK: br ^bb1
// CHECK: ^bb3: // pred: ^bb1
// CHECK: return [[VAL3]] : i64
// CHECK: }
br ^bb2
^bb1:
test.graph_region {
// %1 is well-defined here, since bb2 dominates bb1.
%2:3 = "bar"(%1) : (i64) -> (i1,i1,i1)
}
br ^bb4
^bb2:
%1 = "foo"() : ()->i64
br ^bb1
^bb4:
return %1 : i64
}
// CHECK-LABEL: func @graph_region_kind
func @graph_region_kind() -> () {
// CHECK: [[VAL2:%.*]]:3 = "bar"([[VAL3:%.*]]) : (i64) -> (i1, i1, i1)
// CHECK: [[VAL3]] = "baz"([[VAL2]]#0) : (i1) -> i64
test.graph_region {
// %1 OK here in in graph region.
%2:3 = "bar"(%1) : (i64) -> (i1,i1,i1)
%1 = "baz"(%2#0) : (i1) -> (i64)
}
return
}
// CHECK-LABEL: func @graph_region_inside_ssacfg_region
func @graph_region_inside_ssacfg_region() -> () {
// CHECK: "test.ssacfg_region"
// CHECK: [[VAL3:%.*]] = "baz"() : () -> i64
// CHECK: test.graph_region {
// CHECK: [[VAL2:%.*]]:3 = "bar"([[VAL3]]) : (i64) -> (i1, i1, i1)
// CHECK: }
// CHECK: [[VAL4:.*]] = "baz"() : () -> i64
"test.ssacfg_region"() ({
%1 = "baz"() : () -> (i64)
test.graph_region {
%2:3 = "bar"(%1) : (i64) -> (i1,i1,i1)
}
%3 = "baz"() : () -> (i64)
}) : () -> ()
return
}
// CHECK-LABEL: func @graph_region_in_graph_region_ok
func @graph_region_in_graph_region_ok() -> () {
// CHECK: test.graph_region {
// CHECK: test.graph_region {
// CHECK: [[VAL2:%.*]]:3 = "bar"([[VAL3:%.*]]) : (i64) -> (i1, i1, i1)
// CHECK: }
// CHECK: [[VAL3]] = "foo"() : () -> i64
// CHECK: }
test.graph_region {
test.graph_region {
// %1 is well-defined here since defined in graph region
%2:3 = "bar"(%1) : (i64) -> (i1,i1,i1)
}
%1 = "foo"() : ()->i64
"test.terminator"() : ()->()
}
return
}
// CHECK: test.graph_region {
test.graph_region {
// CHECK: [[VAL1:%.*]] = "op1"([[VAL3:%.*]]) : (i32) -> i32
// CHECK: [[VAL2:%.*]] = "test.ssacfg_region"([[VAL1]], [[VAL2]], [[VAL3]], [[VAL4:%.*]]) ( {
// CHECK: [[VAL5:%.*]] = "op2"([[VAL1]], [[VAL2]], [[VAL3]], [[VAL4]]) : (i32, i32, i32, i32) -> i32
// CHECK: }) : (i32, i32, i32, i32) -> i32
// CHECK: [[VAL3]] = "op2"([[VAL1]], [[VAL4]]) : (i32, i32) -> i32
// CHECK: [[VAL4]] = "op3"([[VAL1]]) : (i32) -> i32
%1 = "op1"(%3) : (i32) -> (i32)
%2 = "test.ssacfg_region"(%1, %2, %3, %4) ({
%5 = "op2"(%1, %2, %3, %4) :
(i32, i32, i32, i32) -> (i32)
}) : (i32, i32, i32, i32) -> (i32)
%3 = "op2"(%1, %4) : (i32, i32) -> (i32)
%4 = "op3"(%1) : (i32) -> (i32)
}
// CHECK: "unregistered_func_might_have_graph_region"() ( {
// CHECK: [[VAL1:%.*]] = "foo"([[VAL1]], [[VAL2:%.*]]) : (i64, i64) -> i64
// CHECK: [[VAL2]] = "bar"([[VAL1]])
"unregistered_func_might_have_graph_region"() ( {
%1 = "foo"(%1, %2) : (i64, i64) -> i64
%2 = "bar"(%1) : (i64) -> i64
"unregistered_terminator"() : () -> ()
}) {sym_name = "unregistered_op_dominance_violation_ok", type = () -> i1} : () -> ()
// This is an unregister operation, the printing/parsing is handled by the dialect.
// CHECK: test.dialect_custom_printer custom_format
test.dialect_custom_printer custom_format