llvm-project/llvm/lib/Target/ARM/ARMInstrInfo.td

3682 lines
137 KiB
TableGen
Raw Normal View History

//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM specific DAG Nodes.
//
// Type profiles.
def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
def SDT_ARMCMov : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisVT<3, i32>]>;
def SDT_ARMBrcond : SDTypeProfile<0, 2,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDT_ARMBrJT : SDTypeProfile<0, 3,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMBr2JT : SDTypeProfile<0, 4,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
[SDTCisVT<0, i32>,
SDTCisVT<1, i32>, SDTCisVT<2, i32>,
SDTCisVT<3, i32>, SDTCisVT<4, i32>,
SDTCisVT<5, OtherVT>]>;
def SDT_ARMAnd : SDTypeProfile<1, 2,
[SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
SDTCisInt<2>]>;
def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
def SDT_ARMEH_SJLJ_DispatchSetup: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
// Node definitions.
def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>;
def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>;
def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
2008-02-27 14:33:05 +08:00
[SDNPHasChain, SDNPOutFlag]>;
def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd,
2008-02-27 14:33:05 +08:00
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag,
SDNPVariadic]>;
def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag,
SDNPVariadic]>;
def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag,
SDNPVariadic]>;
def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
[SDNPInFlag]>;
def ARMcneg : SDNode<"ARMISD::CNEG", SDT_ARMCMov,
[SDNPInFlag]>;
def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag]>;
def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
[SDNPHasChain]>;
def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
[SDNPHasChain]>;
def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
[SDNPHasChain]>;
def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
[SDNPOutFlag]>;
def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
[SDNPOutFlag, SDNPCommutative]>;
def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>;
def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>;
def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInFlag ]>;
def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
SDT_ARMEH_SJLJ_Setjmp, [SDNPHasChain]>;
def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
SDT_ARMEH_SJLJ_Longjmp, [SDNPHasChain]>;
def ARMeh_sjlj_dispatchsetup: SDNode<"ARMISD::EH_SJLJ_DISPATCHSETUP",
SDT_ARMEH_SJLJ_DispatchSetup, [SDNPHasChain]>;
def ARMMemBarrier : SDNode<"ARMISD::MEMBARRIER", SDT_ARMMEMBARRIER,
[SDNPHasChain]>;
def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
[SDNPHasChain]>;
def ARMPreload : SDNode<"ARMISD::PRELOAD", SDTPrefetch,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
def ARMrbit : SDNode<"ARMISD::RBIT", SDTIntUnaryOp>;
2010-10-23 07:48:29 +08:00
def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
[SDNPHasChain, SDNPOptInFlag, SDNPVariadic]>;
def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasV4T : Predicate<"Subtarget->hasV4TOps()">, AssemblerPredicate;
def NoV4T : Predicate<"!Subtarget->hasV4TOps()">;
def HasV5T : Predicate<"Subtarget->hasV5TOps()">;
def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">, AssemblerPredicate;
def HasV6 : Predicate<"Subtarget->hasV6Ops()">, AssemblerPredicate;
def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">, AssemblerPredicate;
def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">;
def HasV7 : Predicate<"Subtarget->hasV7Ops()">, AssemblerPredicate;
def NoVFP : Predicate<"!Subtarget->hasVFP2()">;
def HasVFP2 : Predicate<"Subtarget->hasVFP2()">, AssemblerPredicate;
def HasVFP3 : Predicate<"Subtarget->hasVFP3()">, AssemblerPredicate;
def HasNEON : Predicate<"Subtarget->hasNEON()">, AssemblerPredicate;
def HasDivide : Predicate<"Subtarget->hasDivide()">, AssemblerPredicate;
def HasT2ExtractPack : Predicate<"Subtarget->hasT2ExtractPack()">,
AssemblerPredicate;
def HasDB : Predicate<"Subtarget->hasDataBarrier()">,
AssemblerPredicate;
def HasMP : Predicate<"Subtarget->hasMPExtension()">,
AssemblerPredicate;
def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">;
def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">;
def IsThumb : Predicate<"Subtarget->isThumb()">, AssemblerPredicate;
def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">;
def IsThumb2 : Predicate<"Subtarget->isThumb2()">, AssemblerPredicate;
def IsARM : Predicate<"!Subtarget->isThumb()">, AssemblerPredicate;
def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">;
def IsNotDarwin : Predicate<"!Subtarget->isTargetDarwin()">;
// FIXME: Eventually this will be just "hasV6T2Ops".
def UseMovt : Predicate<"Subtarget->useMovt()">;
def DontUseMovt : Predicate<"!Subtarget->useMovt()">;
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
def UseFPVMLx : Predicate<"Subtarget->useFPVMLx()">;
//===----------------------------------------------------------------------===//
// ARM Flag Definitions.
class RegConstraint<string C> {
string Constraints = C;
}
//===----------------------------------------------------------------------===//
// ARM specific transformation functions and pattern fragments.
//
// so_imm_neg_XFORM - Return a so_imm value packed into the format described for
// so_imm_neg def below.
def so_imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32);
}]>;
// so_imm_not_XFORM - Return a so_imm value packed into the format described for
// so_imm_not def below.
def so_imm_not_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~(int)N->getZExtValue(), MVT::i32);
}]>;
/// imm1_15 predicate - True if the 32-bit immediate is in the range [1,15].
def imm1_15 : PatLeaf<(i32 imm), [{
return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 16;
}]>;
/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
def imm16_31 : PatLeaf<(i32 imm), [{
return (int32_t)N->getZExtValue() >= 16 && (int32_t)N->getZExtValue() < 32;
}]>;
def so_imm_neg :
PatLeaf<(imm), [{
return ARM_AM::getSOImmVal(-(uint32_t)N->getZExtValue()) != -1;
}], so_imm_neg_XFORM>;
def so_imm_not :
PatLeaf<(imm), [{
return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
}], so_imm_not_XFORM>;
// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
def sext_16_node : PatLeaf<(i32 GPR:$a), [{
return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
}]>;
/// Split a 32-bit immediate into two 16 bit parts.
def hi16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32);
}]>;
def lo16AllZero : PatLeaf<(i32 imm), [{
// Returns true if all low 16-bits are 0.
return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
}], hi16>;
/// imm0_65535 predicate - True if the 32-bit immediate is in the range
/// [0.65535].
def imm0_65535 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 65536;
}]>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
/// adde and sube predicates - True based on whether the carry flag output
/// will be needed or not.
def adde_dead_carry :
PatFrag<(ops node:$LHS, node:$RHS), (adde node:$LHS, node:$RHS),
[{return !N->hasAnyUseOfValue(1);}]>;
def sube_dead_carry :
PatFrag<(ops node:$LHS, node:$RHS), (sube node:$LHS, node:$RHS),
[{return !N->hasAnyUseOfValue(1);}]>;
def adde_live_carry :
PatFrag<(ops node:$LHS, node:$RHS), (adde node:$LHS, node:$RHS),
[{return N->hasAnyUseOfValue(1);}]>;
def sube_live_carry :
PatFrag<(ops node:$LHS, node:$RHS), (sube node:$LHS, node:$RHS),
[{return N->hasAnyUseOfValue(1);}]>;
// An 'and' node with a single use.
def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'xor' node with a single use.
def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
Making use of VFP / NEON floating point multiply-accumulate / subtraction is difficult on current ARM implementations for a few reasons. 1. Even though a single vmla has latency that is one cycle shorter than a pair of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause additional pipeline stall. So it's frequently better to single codegen vmul + vadd. 2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to stall for 4 cycles. We need to schedule them apart. 3. A vmla followed vmla is a special case. Obvious issuing back to back RAW vmla + vmla is very bad. But this isn't ideal either: vmul vadd vmla Instead, we want to expand the second vmla: vmla vmul vadd Even with the 4 cycle vmul stall, the second sequence is still 2 cycles faster. Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough but it isn't the optimial solution. This patch attempts to make it possible to use vmla / vmls in cases where it is profitable. A. Add missing isel predicates which cause vmla to be codegen'ed. B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to compute a fmul and a fmla. C. Add additional isel checks for vmla, avoid cases where vmla is feeding into fp instructions (except for the #3 exceptional case). D. Add ARM hazard recognizer to model the vmla / vmls hazards. E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the vmla / vmls will trigger one of the special hazards. Work in progress, only A+B are enabled. llvm-svn: 120960
2010-12-06 06:04:16 +08:00
// An 'fmul' node with a single use.
def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
return N->hasOneUse();
}]>;
// An 'fadd' node which checks for single non-hazardous use.
def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
return hasNoVMLxHazardUse(N);
}]>;
// An 'fsub' node which checks for single non-hazardous use.
def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
return hasNoVMLxHazardUse(N);
}]>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// Branch target.
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
}
def uncondbrtarget : Operand<OtherVT> {
let EncoderMethod = "getUnconditionalBranchTargetOpValue";
}
// Call target.
def bltarget : Operand<i32> {
// Encoded the same as branch targets.
let EncoderMethod = "getBranchTargetOpValue";
}
// A list of registers separated by comma. Used by load/store multiple.
def RegListAsmOperand : AsmOperandClass {
let Name = "RegList";
let SuperClasses = [];
}
def DPRRegListAsmOperand : AsmOperandClass {
let Name = "DPRRegList";
let SuperClasses = [];
}
def SPRRegListAsmOperand : AsmOperandClass {
let Name = "SPRRegList";
let SuperClasses = [];
}
def reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = RegListAsmOperand;
let PrintMethod = "printRegisterList";
}
def dpr_reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = DPRRegListAsmOperand;
let PrintMethod = "printRegisterList";
}
def spr_reglist : Operand<i32> {
let EncoderMethod = "getRegisterListOpValue";
let ParserMatchClass = SPRRegListAsmOperand;
let PrintMethod = "printRegisterList";
}
// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
def cpinst_operand : Operand<i32> {
let PrintMethod = "printCPInstOperand";
}
// Local PC labels.
def pclabel : Operand<i32> {
let PrintMethod = "printPCLabel";
}
// ADR instruction labels.
def adrlabel : Operand<i32> {
let EncoderMethod = "getAdrLabelOpValue";
}
def neon_vcvt_imm32 : Operand<i32> {
let EncoderMethod = "getNEONVcvtImm32OpValue";
}
// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
int32_t v = (int32_t)N->getZExtValue();
return v == 8 || v == 16 || v == 24; }]> {
let EncoderMethod = "getRotImmOpValue";
}
// shift_imm: An integer that encodes a shift amount and the type of shift
// (currently either asr or lsl) using the same encoding used for the
// immediates in so_reg operands.
def shift_imm : Operand<i32> {
let PrintMethod = "printShiftImmOperand";
}
// shifter_operand operands: so_reg and so_imm.
def so_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectShifterOperandReg",
[shl,srl,sra,rotr]> {
let EncoderMethod = "getSORegOpValue";
let PrintMethod = "printSORegOperand";
let MIOperandInfo = (ops GPR, GPR, i32imm);
}
def shift_so_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectShiftShifterOperandReg",
[shl,srl,sra,rotr]> {
let EncoderMethod = "getSORegOpValue";
let PrintMethod = "printSORegOperand";
let MIOperandInfo = (ops GPR, GPR, i32imm);
}
// so_imm - Match a 32-bit shifter_operand immediate operand, which is an
// 8-bit immediate rotated by an arbitrary number of bits. so_imm values are
// represented in the imm field in the same 12-bit form that they are encoded
// into so_imm instructions: the 8-bit immediate is the least significant bits
// [bits 0-7], the 4-bit shift amount is the next 4 bits [bits 8-11].
def so_imm : Operand<i32>, PatLeaf<(imm), [{ return Pred_so_imm(N); }]> {
let EncoderMethod = "getSOImmOpValue";
let PrintMethod = "printSOImmOperand";
}
// Break so_imm's up into two pieces. This handles immediates with up to 16
// bits set in them. This uses so_imm2part to match and so_imm2part_[12] to
// get the first/second pieces.
def so_imm2part : PatLeaf<(imm), [{
return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
}]>;
/// arm_i32imm - True for +V6T2, or true only if so_imm2part is true.
///
def arm_i32imm : PatLeaf<(imm), [{
if (Subtarget->hasV6T2Ops())
return true;
return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
}]>;
def so_imm2part_1 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartFirst((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def so_imm2part_2 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartSecond((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def so_neg_imm2part : Operand<i32>, PatLeaf<(imm), [{
return ARM_AM::isSOImmTwoPartVal(-(int)N->getZExtValue());
}]> {
let PrintMethod = "printSOImm2PartOperand";
}
def so_neg_imm2part_1 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartFirst(-(int)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def so_neg_imm2part_2 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartSecond(-(int)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
def imm0_31 : Operand<i32>, PatLeaf<(imm), [{
return (int32_t)N->getZExtValue() < 32;
}]>;
/// imm0_31_m1 - Matches and prints like imm0_31, but encodes as 'value - 1'.
def imm0_31_m1 : Operand<i32>, PatLeaf<(imm), [{
return (int32_t)N->getZExtValue() < 32;
}]> {
let EncoderMethod = "getImmMinusOneOpValue";
}
// For movt/movw - sets the MC Encoder method.
// The imm is split into imm{15-12}, imm{11-0}
//
def movt_imm : Operand<i32> {
let EncoderMethod = "getMovtImmOpValue";
}
/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
/// e.g., 0xf000ffff
def bf_inv_mask_imm : Operand<i32>,
PatLeaf<(imm), [{
return ARM::isBitFieldInvertedMask(N->getZExtValue());
}] > {
let EncoderMethod = "getBitfieldInvertedMaskOpValue";
let PrintMethod = "printBitfieldInvMaskImmOperand";
}
// Define ARM specific addressing modes.
// addrmode_imm12 := reg +/- imm12
//
def addrmode_imm12 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
// 12-bit immediate operand. Note that instructions using this encode
// #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
// immediate values are as normal.
let EncoderMethod = "getAddrModeImm12OpValue";
let PrintMethod = "printAddrModeImm12Operand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
// ldst_so_reg := reg +/- reg shop imm
//
def ldst_so_reg : Operand<i32>,
ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
let EncoderMethod = "getLdStSORegOpValue";
// FIXME: Simplify the printer
let PrintMethod = "printAddrMode2Operand";
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
// addrmode2 := reg +/- imm12
// := reg +/- reg shop imm
//
def addrmode2 : Operand<i32>,
ComplexPattern<i32, 3, "SelectAddrMode2", []> {
let EncoderMethod = "getAddrMode2OpValue";
let PrintMethod = "printAddrMode2Operand";
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def am2offset : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode2Offset",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode2OffsetOpValue";
let PrintMethod = "printAddrMode2OffsetOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addrmode3 := reg +/- reg
// addrmode3 := reg +/- imm8
//
def addrmode3 : Operand<i32>,
ComplexPattern<i32, 3, "SelectAddrMode3", []> {
let EncoderMethod = "getAddrMode3OpValue";
let PrintMethod = "printAddrMode3Operand";
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def am3offset : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode3Offset",
[], [SDNPWantRoot]> {
let EncoderMethod = "getAddrMode3OffsetOpValue";
let PrintMethod = "printAddrMode3OffsetOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// ldstm_mode := {ia, ib, da, db}
//
def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
let EncoderMethod = "getLdStmModeOpValue";
let PrintMethod = "printLdStmModeOperand";
}
def MemMode5AsmOperand : AsmOperandClass {
let Name = "MemMode5";
let SuperClasses = [];
}
// addrmode5 := reg +/- imm8*4
//
def addrmode5 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode5", []> {
let PrintMethod = "printAddrMode5Operand";
let MIOperandInfo = (ops GPR:$base, i32imm);
let ParserMatchClass = MemMode5AsmOperand;
let EncoderMethod = "getAddrMode5OpValue";
}
// addrmode6 := reg with optional writeback
//
def addrmode6 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6AddressOpValue";
}
def am6offset : Operand<i32> {
let PrintMethod = "printAddrMode6OffsetOperand";
let MIOperandInfo = (ops GPR);
let EncoderMethod = "getAddrMode6OffsetOpValue";
}
// Special version of addrmode6 to handle alignment encoding for VLD-dup
// instructions, specifically VLD4-dup.
def addrmode6dup : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
let PrintMethod = "printAddrMode6Operand";
let MIOperandInfo = (ops GPR:$addr, i32imm);
let EncoderMethod = "getAddrMode6DupAddressOpValue";
}
// addrmodepc := pc + reg
//
def addrmodepc : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrModePC", []> {
let PrintMethod = "printAddrModePCOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
def nohash_imm : Operand<i32> {
let PrintMethod = "printNoHashImmediate";
}
//===----------------------------------------------------------------------===//
include "ARMInstrFormats.td"
//===----------------------------------------------------------------------===//
// Multiclass helpers...
//
2008-08-29 15:36:24 +08:00
/// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a
/// binop that produces a value.
multiclass AsI1_bin_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0> {
// The register-immediate version is re-materializable. This is useful
// in particular for taking the address of a local.
let isReMaterializable = 1 in {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
iir, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{25} = 0;
let isCommutable = Commutable;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
}
def rs : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift), DPSoRegFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg:$shift))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = shift;
}
}
/// AI1_bin_s_irs - Similar to AsI1_bin_irs except it sets the 's' bit so the
/// instruction modifies the CPSR register.
let Defs = [CPSR] in {
multiclass AI1_bin_s_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0> {
def ri : AI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
iii, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
def rr : AI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
iir, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let isCommutable = Commutable;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
}
def rs : AI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift), DPSoRegFrm,
iis, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg:$shift))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-0} = shift;
}
}
}
/// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
let isCompare = 1, Defs = [CPSR] in {
multiclass AI1_cmp_irs<bits<4> opcod, string opc,
InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
PatFrag opnode, bit Commutable = 0> {
def ri : AI1<opcod, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, iii,
opc, "\t$Rn, $imm",
[(opnode GPR:$Rn, so_imm:$imm)]> {
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-0} = imm;
}
def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
opc, "\t$Rn, $Rm",
[(opnode GPR:$Rn, GPR:$Rm)]> {
bits<4> Rn;
bits<4> Rm;
let isCommutable = Commutable;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
}
def rs : AI1<opcod, (outs), (ins GPR:$Rn, so_reg:$shift), DPSoRegFrm, iis,
opc, "\t$Rn, $shift",
[(opnode GPR:$Rn, so_reg:$shift)]> {
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{19-16} = Rn;
let Inst{15-12} = 0b0000;
let Inst{11-0} = shift;
}
}
}
2006-10-17 02:32:36 +08:00
/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
multiclass AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode> {
def r : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iEXTr, opc, "\t$Rd, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rm))]>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rm;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-10} = 0b00;
let Inst{3-0} = Rm;
}
def r_rot : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rm, rot_imm:$rot),
IIC_iEXTr, opc, "\t$Rd, $Rm, ror $rot",
[(set GPR:$Rd, (opnode (rotr GPR:$Rm, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rm;
bits<2> rot;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-10} = rot;
let Inst{3-0} = Rm;
}
}
multiclass AI_ext_rrot_np<bits<8> opcod, string opc> {
def r : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iEXTr, opc, "\t$Rd, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]> {
let Inst{19-16} = 0b1111;
let Inst{11-10} = 0b00;
}
def r_rot : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rm, rot_imm:$rot),
IIC_iEXTr, opc, "\t$Rd, $Rm, ror $rot",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]> {
bits<2> rot;
let Inst{19-16} = 0b1111;
let Inst{11-10} = rot;
}
}
/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
multiclass AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode> {
def rr : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-10} = 0b00;
let Inst{9-4} = 0b000111;
let Inst{3-0} = Rm;
}
def rr_rot : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm,
rot_imm:$rot),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm, ror $rot",
[(set GPR:$Rd, (opnode GPR:$Rn,
(rotr GPR:$Rm, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
bits<2> rot;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{11-10} = rot;
let Inst{9-4} = 0b000111;
let Inst{3-0} = Rm;
}
}
// For disassembly only.
multiclass AI_exta_rrot_np<bits<8> opcod, string opc> {
def rr : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]> {
let Inst{11-10} = 0b00;
}
def rr_rot : AExtI<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm,
rot_imm:$rot),
IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm, ror $rot",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]> {
bits<4> Rn;
bits<2> rot;
let Inst{19-16} = Rn;
let Inst{11-10} = rot;
}
}
/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
let Uses = [CPSR] in {
multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let isCommutable = Commutable;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def rs : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift),
DPSoRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg:$shift))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{11-0} = shift;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
}
// Carry setting variants
let Defs = [CPSR] in {
multiclass AI1_adde_sube_s_irs<bits<4> opcod, string opc, PatFrag opnode,
bit Commutable = 0> {
def Sri : AXI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
DPFrm, IIC_iALUi, !strconcat(opc, "\t$Rd, $Rn, $imm"),
[(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
let Inst{20} = 1;
let Inst{25} = 1;
}
def Srr : AXI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, !strconcat(opc, "\t$Rd, $Rn, $Rm"),
[(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let isCommutable = Commutable;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{20} = 1;
let Inst{25} = 0;
}
def Srs : AXI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift),
DPSoRegFrm, IIC_iALUsr, !strconcat(opc, "\t$Rd, $Rn, $shift"),
[(set GPR:$Rd, (opnode GPR:$Rn, so_reg:$shift))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{11-0} = shift;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{20} = 1;
let Inst{25} = 0;
}
}
}
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
[(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
[(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
bits<4> Rt;
bits<17> shift;
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
}
multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
InstrItinClass iir, PatFrag opnode> {
// Note: We use the complex addrmode_imm12 rather than just an input
// GPR and a constrained immediate so that we can use this to match
// frame index references and avoid matching constant pool references.
def i12 : AI2ldst<0b010, 0, isByte, (outs),
(ins GPR:$Rt, addrmode_imm12:$addr),
AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
[(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
[(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
bits<4> Rt;
bits<17> shift;
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{19-16} = shift{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = shift{11-0};
}
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
/// the function. The first operand is the ID# for this instruction, the second
/// is the index into the MachineConstantPool that this is, the third is the
/// size in bytes of this constant pool entry.
let neverHasSideEffects = 1, isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size), NoItinerary, []>;
// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def ADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
[(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary,
[(ARMcallseq_start timm:$amt)]>;
}
def NOP : AI<(outs), (ins), MiscFrm, NoItinerary, "nop", "",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6T2]> {
let Inst{27-16} = 0b001100100000;
let Inst{15-8} = 0b11110000;
let Inst{7-0} = 0b00000000;
}
def YIELD : AI<(outs), (ins), MiscFrm, NoItinerary, "yield", "",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6T2]> {
let Inst{27-16} = 0b001100100000;
let Inst{15-8} = 0b11110000;
let Inst{7-0} = 0b00000001;
}
def WFE : AI<(outs), (ins), MiscFrm, NoItinerary, "wfe", "",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6T2]> {
let Inst{27-16} = 0b001100100000;
let Inst{15-8} = 0b11110000;
let Inst{7-0} = 0b00000010;
}
def WFI : AI<(outs), (ins), MiscFrm, NoItinerary, "wfi", "",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6T2]> {
let Inst{27-16} = 0b001100100000;
let Inst{15-8} = 0b11110000;
let Inst{7-0} = 0b00000011;
}
def SEL : AI<(outs GPR:$dst), (ins GPR:$a, GPR:$b), DPFrm, NoItinerary, "sel",
"\t$dst, $a, $b",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{27-20} = 0b01101000;
let Inst{7-4} = 0b1011;
let Inst{11-8} = 0b1111;
}
def SEV : AI<(outs), (ins), MiscFrm, NoItinerary, "sev", "",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6T2]> {
let Inst{27-16} = 0b001100100000;
let Inst{15-8} = 0b11110000;
let Inst{7-0} = 0b00000100;
}
// The i32imm operand $val can be used by a debugger to store more information
// about the breakpoint.
def BKPT : AI<(outs), (ins i32imm:$val), MiscFrm, NoItinerary, "bkpt", "\t$val",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM]> {
bits<16> val;
let Inst{3-0} = val{3-0};
let Inst{19-8} = val{15-4};
let Inst{27-20} = 0b00010010;
let Inst{7-4} = 0b0111;
}
// Change Processor State is a system instruction -- for disassembly only.
// The singleton $opt operand contains the following information:
// opt{4-0} = mode from Inst{4-0}
// opt{5} = changemode from Inst{17}
// opt{8-6} = AIF from Inst{8-6}
// opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable
2010-10-14 04:38:04 +08:00
// FIXME: Integrated assembler will need these split out.
def CPS : AXI<(outs), (ins cps_opt:$opt), MiscFrm, NoItinerary, "cps$opt",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM]> {
let Inst{31-28} = 0b1111;
let Inst{27-20} = 0b00010000;
let Inst{16} = 0;
let Inst{5} = 0;
}
// Preload signals the memory system of possible future data/instruction access.
// These are for disassembly only.
multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
def i12 : AXI<(outs), (ins addrmode_imm12:$addr), MiscFrm, IIC_Preload,
!strconcat(opc, "\t$addr"),
[(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]> {
bits<4> Rt;
bits<17> addr;
let Inst{31-26} = 0b111101;
let Inst{25} = 0; // 0 for immediate form
let Inst{24} = data;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{22} = read;
let Inst{21-20} = 0b01;
let Inst{19-16} = addr{16-13}; // Rn
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
!strconcat(opc, "\t$shift"),
[(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]> {
bits<4> Rt;
bits<17> shift;
let Inst{31-26} = 0b111101;
let Inst{25} = 1; // 1 for register form
let Inst{24} = data;
let Inst{23} = shift{12}; // U (add = ('U' == 1))
let Inst{22} = read;
let Inst{21-20} = 0b01;
let Inst{19-16} = shift{16-13}; // Rn
let Inst{11-0} = shift{11-0};
}
}
defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>;
defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>;
def SETEND : AXI<(outs),(ins setend_op:$end), MiscFrm, NoItinerary,
"setend\t$end",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM]> {
bits<1> end;
let Inst{31-10} = 0b1111000100000001000000;
let Inst{9} = end;
let Inst{8-0} = 0;
}
def DBG : AI<(outs), (ins i32imm:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV7]> {
bits<4> opt;
let Inst{27-4} = 0b001100100000111100001111;
let Inst{3-0} = opt;
}
// A5.4 Permanently UNDEFINED instructions.
let isBarrier = 1, isTerminator = 1 in
2010-10-23 07:48:29 +08:00
def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
"trap", [(trap)]>,
Requires<[IsARM]> {
let Inst = 0xe7ffdefe;
}
// Address computation and loads and stores in PIC mode.
let isNotDuplicable = 1 in {
def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
Size4Bytes, IIC_iALUr,
[(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>;
let AddedComplexity = 10 in {
def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iLoad_r,
[(set GPR:$dst, (load addrmodepc:$addr))]>;
def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iLoad_bh_r,
[(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iLoad_bh_r,
[(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iLoad_bh_r,
[(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iLoad_bh_r,
[(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
}
let AddedComplexity = 10 in {
def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iStore_bh_r, [(truncstorei16 GPR:$src, addrmodepc:$addr)]>;
def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
Size4Bytes, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
}
} // isNotDuplicable = 1
2009-06-23 13:25:29 +08:00
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
let neverHasSideEffects = 1, isReMaterializable = 1 in
// The 'adr' mnemonic encodes differently if the label is before or after
// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
// know until then which form of the instruction will be used.
def ADR : AI1<0, (outs GPR:$Rd), (ins adrlabel:$label),
MiscFrm, IIC_iALUi, "adr", "\t$Rd, #$label", []> {
bits<4> Rd;
bits<12> label;
let Inst{27-25} = 0b001;
let Inst{20} = 0;
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rd;
let Inst{11-0} = label;
}
def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
Size4Bytes, IIC_iALUi, []>;
def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
(ins i32imm:$label, nohash_imm:$id, pred:$p),
Size4Bytes, IIC_iALUi, []>;
2009-06-23 13:25:29 +08:00
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
// ARMV4T and above
def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
"bx", "\tlr", [(ARMretflag)]>,
Requires<[IsARM, HasV4T]> {
let Inst{27-0} = 0b0001001011111111111100011110;
}
// ARMV4 only
2010-10-23 07:48:29 +08:00
def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
"mov", "\tpc, lr", [(ARMretflag)]>,
Requires<[IsARM, NoV4T]> {
let Inst{27-0} = 0b0001101000001111000000001110;
}
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
// ARMV4T and above
def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
[(brind GPR:$dst)]>,
Requires<[IsARM, HasV4T]> {
bits<4> dst;
let Inst{31-4} = 0b1110000100101111111111110001;
let Inst{3-0} = dst;
}
// ARMV4 only
// FIXME: We would really like to define this as a vanilla ARMPat like:
// ARMPat<(brind GPR:$dst), (MOVr PC, GPR:$dst)>
// With that, however, we can't set isBranch, isTerminator, etc..
def MOVPCRX : ARMPseudoInst<(outs), (ins GPR:$dst),
Size4Bytes, IIC_Br, [(brind GPR:$dst)]>,
Requires<[IsARM, NoV4T]>;
}
// All calls clobber the non-callee saved registers. SP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let isCall = 1,
// On non-Darwin platforms R9 is callee-saved.
Defs = [R0, R1, R2, R3, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR],
Uses = [SP] in {
def BL : ABXI<0b1011, (outs), (ins bltarget:$func, variable_ops),
IIC_Br, "bl\t$func",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsARM, IsNotDarwin]> {
let Inst{31-28} = 0b1110;
bits<24> func;
let Inst{23-0} = func;
}
def BL_pred : ABI<0b1011, (outs), (ins bltarget:$func, variable_ops),
IIC_Br, "bl", "\t$func",
[(ARMcall_pred tglobaladdr:$func)]>,
Requires<[IsARM, IsNotDarwin]> {
bits<24> func;
let Inst{23-0} = func;
}
// ARMv5T and above
def BLX : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm,
IIC_Br, "blx\t$func",
[(ARMcall GPR:$func)]>,
Requires<[IsARM, HasV5T, IsNotDarwin]> {
bits<4> func;
let Inst{31-4} = 0b1110000100101111111111110011;
let Inst{3-0} = func;
}
// ARMv4T
// Note: Restrict $func to the tGPR regclass to prevent it being in LR.
def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops),
Size8Bytes, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, HasV4T, IsNotDarwin]>;
// ARMv4
def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops),
Size8Bytes, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, NoV4T, IsNotDarwin]>;
}
let isCall = 1,
// On Darwin R9 is call-clobbered.
// R7 is marked as a use to prevent frame-pointer assignments from being
// moved above / below calls.
Defs = [R0, R1, R2, R3, R9, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR],
Uses = [R7, SP] in {
def BLr9 : ABXI<0b1011, (outs), (ins bltarget:$func, variable_ops),
IIC_Br, "bl\t$func",
[(ARMcall tglobaladdr:$func)]>, Requires<[IsARM, IsDarwin]> {
let Inst{31-28} = 0b1110;
bits<24> func;
let Inst{23-0} = func;
}
def BLr9_pred : ABI<0b1011, (outs), (ins bltarget:$func, variable_ops),
IIC_Br, "bl", "\t$func",
[(ARMcall_pred tglobaladdr:$func)]>,
Requires<[IsARM, IsDarwin]> {
bits<24> func;
let Inst{23-0} = func;
}
// ARMv5T and above
def BLXr9 : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm,
IIC_Br, "blx\t$func",
[(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T, IsDarwin]> {
bits<4> func;
let Inst{31-4} = 0b1110000100101111111111110011;
let Inst{3-0} = func;
}
// ARMv4T
// Note: Restrict $func to the tGPR regclass to prevent it being in LR.
def BXr9_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops),
Size8Bytes, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, HasV4T, IsDarwin]>;
// ARMv4
def BMOVPCRXr9_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops),
Size8Bytes, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
Requires<[IsARM, NoV4T, IsDarwin]>;
}
// Tail calls.
// FIXME: These should probably be xformed into the non-TC versions of the
// instructions as part of MC lowering.
// FIXME: These seem to be used for both Thumb and ARM instruction selection.
// Thumb should have its own version since the instruction is actually
// different, even though the mnemonic is the same.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
// Darwin versions.
let Defs = [R0, R1, R2, R3, R9, R12,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26,
D27, D28, D29, D30, D31, PC],
Uses = [SP] in {
def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst, variable_ops),
IIC_Br, []>, Requires<[IsDarwin]>;
def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst, variable_ops),
IIC_Br, []>, Requires<[IsDarwin]>;
def TAILJMPd : ABXI<0b1010, (outs), (ins brtarget:$dst, variable_ops),
IIC_Br, "b\t$dst @ TAILCALL",
[]>, Requires<[IsARM, IsDarwin]>;
def TAILJMPdt: ABXI<0b1010, (outs), (ins brtarget:$dst, variable_ops),
IIC_Br, "b.w\t$dst @ TAILCALL",
[]>, Requires<[IsThumb, IsDarwin]>;
def TAILJMPr : AXI<(outs), (ins tcGPR:$dst, variable_ops),
BrMiscFrm, IIC_Br, "bx\t$dst @ TAILCALL",
[]>, Requires<[IsDarwin]> {
bits<4> dst;
let Inst{31-4} = 0b1110000100101111111111110001;
let Inst{3-0} = dst;
}
}
// Non-Darwin versions (the difference is R9).
let Defs = [R0, R1, R2, R3, R12,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26,
D27, D28, D29, D30, D31, PC],
Uses = [SP] in {
def TCRETURNdiND : PseudoInst<(outs), (ins i32imm:$dst, variable_ops),
IIC_Br, []>, Requires<[IsNotDarwin]>;
def TCRETURNriND : PseudoInst<(outs), (ins tcGPR:$dst, variable_ops),
IIC_Br, []>, Requires<[IsNotDarwin]>;
def TAILJMPdND : ABXI<0b1010, (outs), (ins brtarget:$dst, variable_ops),
IIC_Br, "b\t$dst @ TAILCALL",
[]>, Requires<[IsARM, IsNotDarwin]>;
def TAILJMPdNDt : ABXI<0b1010, (outs), (ins brtarget:$dst, variable_ops),
IIC_Br, "b.w\t$dst @ TAILCALL",
[]>, Requires<[IsThumb, IsNotDarwin]>;
def TAILJMPrND : AXI<(outs), (ins tcGPR:$dst, variable_ops),
BrMiscFrm, IIC_Br, "bx\t$dst @ TAILCALL",
[]>, Requires<[IsNotDarwin]> {
bits<4> dst;
let Inst{31-4} = 0b1110000100101111111111110001;
let Inst{3-0} = dst;
}
}
}
let isBranch = 1, isTerminator = 1 in {
// B is "predicable" since it can be xformed into a Bcc.
let isBarrier = 1 in {
let isPredicable = 1 in
def B : ABXI<0b1010, (outs), (ins brtarget:$target), IIC_Br,
"b\t$target", [(br bb:$target)]> {
bits<24> target;
let Inst{31-28} = 0b1110;
let Inst{23-0} = target;
}
let isNotDuplicable = 1, isIndirectBranch = 1 in {
def BR_JTr : ARMPseudoInst<(outs),
(ins GPR:$target, i32imm:$jt, i32imm:$id),
SizeSpecial, IIC_Br,
[(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>;
// FIXME: This shouldn't use the generic "addrmode2," but rather be split
// into i12 and rs suffixed versions.
def BR_JTm : ARMPseudoInst<(outs),
(ins addrmode2:$target, i32imm:$jt, i32imm:$id),
SizeSpecial, IIC_Br,
[(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt,
imm:$id)]>;
def BR_JTadd : ARMPseudoInst<(outs),
(ins GPR:$target, GPR:$idx, i32imm:$jt, i32imm:$id),
SizeSpecial, IIC_Br,
[(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt,
imm:$id)]>;
} // isNotDuplicable = 1, isIndirectBranch = 1
} // isBarrier = 1
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
def Bcc : ABI<0b1010, (outs), (ins brtarget:$target),
IIC_Br, "b", "\t$target",
[/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]> {
bits<24> target;
let Inst{23-0} = target;
}
}
// Branch and Exchange Jazelle -- for disassembly only
def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0010;
//let Inst{19-8} = 0xfff;
let Inst{7-4} = 0b0010;
}
// Secure Monitor Call is a system instruction -- for disassembly only
def SMC : ABI<0b0001, (outs), (ins i32imm:$opt), NoItinerary, "smc", "\t$opt",
[/* For disassembly only; pattern left blank */]> {
bits<4> opt;
let Inst{23-4} = 0b01100000000000000111;
let Inst{3-0} = opt;
}
// Supervisor Call (Software Interrupt) -- for disassembly only
let isCall = 1, Uses = [SP] in {
def SVC : ABI<0b1111, (outs), (ins i32imm:$svc), IIC_Br, "svc", "\t$svc",
[/* For disassembly only; pattern left blank */]> {
bits<24> svc;
let Inst{23-0} = svc;
}
}
// Store Return State is a system instruction -- for disassembly only
let isCodeGenOnly = 1 in { // FIXME: This should not use submode!
def SRSW : ABXI<{1,0,0,?}, (outs), (ins ldstm_mode:$amode, i32imm:$mode),
NoItinerary, "srs${amode}\tsp!, $mode",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{22-20} = 0b110; // W = 1
}
def SRS : ABXI<{1,0,0,?}, (outs), (ins ldstm_mode:$amode, i32imm:$mode),
NoItinerary, "srs${amode}\tsp, $mode",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{22-20} = 0b100; // W = 0
}
// Return From Exception is a system instruction -- for disassembly only
def RFEW : ABXI<{1,0,0,?}, (outs), (ins ldstm_mode:$amode, GPR:$base),
NoItinerary, "rfe${amode}\t$base!",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{22-20} = 0b011; // W = 1
}
def RFE : ABXI<{1,0,0,?}, (outs), (ins ldstm_mode:$amode, GPR:$base),
NoItinerary, "rfe${amode}\t$base",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{22-20} = 0b001; // W = 0
}
} // isCodeGenOnly = 1
//===----------------------------------------------------------------------===//
// Load / store Instructions.
//
// Load
defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si,
UnOpFrag<(load node:$Src)>>;
defm LDRB : AI_ldr1<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
UnOpFrag<(zextloadi8 node:$Src)>>;
defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si,
BinOpFrag<(store node:$LHS, node:$RHS)>>;
defm STRB : AI_str1<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1,
isReMaterializable = 1 in
def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
[]> {
bits<4> Rt;
bits<17> addr;
let Inst{23} = addr{12}; // U (add = ('U' == 1))
let Inst{19-16} = 0b1111;
let Inst{15-12} = Rt;
let Inst{11-0} = addr{11-0}; // imm12
}
// Loads with zero extension
def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
[(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
// Loads with sign extension
def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
[(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1,
isCodeGenOnly = 1 in { // $dst2 doesn't exist in asmstring?
// FIXME: $dst2 isn't in the asm string as it's implied by $Rd (dst2 = Rd+1)
// how to represent that such that tblgen is happy and we don't
// mark this codegen only?
// Load doubleword
def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rd, GPR:$dst2),
(ins addrmode3:$addr), LdMiscFrm,
IIC_iLoad_d_r, "ldrd", "\t$Rd, $addr",
[]>, Requires<[IsARM, HasV5TE]>;
}
// Indexed loads
multiclass AI2_ldridx<bit isByte, string opc, InstrItinClass itin> {
def _PRE : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addrmode2:$addr), IndexModePre, LdFrm, itin,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
// {17-14} Rn
// {13} 1 == Rm, 0 == imm12
// {12} isAdd
// {11-0} imm12/Rm
bits<18> addr;
let Inst{25} = addr{13};
let Inst{23} = addr{12};
let Inst{19-16} = addr{17-14};
let Inst{11-0} = addr{11-0};
}
def _POST : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins GPR:$Rn, am2offset:$offset),
IndexModePost, LdFrm, itin,
opc, "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb", []> {
// {13} 1 == Rm, 0 == imm12
// {12} isAdd
// {11-0} imm12/Rm
bits<14> offset;
bits<4> Rn;
let Inst{25} = offset{13};
let Inst{23} = offset{12};
let Inst{19-16} = Rn;
let Inst{11-0} = offset{11-0};
}
}
let mayLoad = 1, neverHasSideEffects = 1 in {
defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_ru>;
defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_ru>;
}
multiclass AI3_ldridx<bits<4> op, bit op20, string opc, InstrItinClass itin> {
def _PRE : AI3ldstidx<op, op20, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
(ins addrmode3:$addr), IndexModePre,
LdMiscFrm, itin,
opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
bits<14> addr;
let Inst{23} = addr{8}; // U bit
let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
let Inst{19-16} = addr{12-9}; // Rn
let Inst{11-8} = addr{7-4}; // imm7_4/zero
let Inst{3-0} = addr{3-0}; // imm3_0/Rm
}
def _POST : AI3ldstidx<op, op20, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
(ins GPR:$Rn, am3offset:$offset), IndexModePost,
LdMiscFrm, itin,
opc, "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb", []> {
bits<10> offset;
bits<4> Rn;
let Inst{23} = offset{8}; // U bit
let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
let Inst{19-16} = Rn;
let Inst{11-8} = offset{7-4}; // imm7_4/zero
let Inst{3-0} = offset{3-0}; // imm3_0/Rm
}
}
let mayLoad = 1, neverHasSideEffects = 1 in {
defm LDRH : AI3_ldridx<0b1011, 1, "ldrh", IIC_iLoad_bh_ru>;
defm LDRSH : AI3_ldridx<0b1111, 1, "ldrsh", IIC_iLoad_bh_ru>;
defm LDRSB : AI3_ldridx<0b1101, 1, "ldrsb", IIC_iLoad_bh_ru>;
let hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
defm LDRD : AI3_ldridx<0b1101, 0, "ldrd", IIC_iLoad_d_ru>;
} // mayLoad = 1, neverHasSideEffects = 1
// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT are for disassembly only.
let mayLoad = 1, neverHasSideEffects = 1 in {
def LDRT : AI2ldstidx<1, 0, 0, (outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, am2offset:$offset), IndexModeNone,
LdFrm, IIC_iLoad_ru,
"ldrt", "\t$dst, [$base], $offset", "$base = $base_wb", []> {
let Inst{21} = 1; // overwrite
}
def LDRBT : AI2ldstidx<1, 1, 0, (outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, am2offset:$offset), IndexModeNone,
LdFrm, IIC_iLoad_bh_ru,
"ldrbt", "\t$dst, [$base], $offset", "$base = $base_wb", []> {
let Inst{21} = 1; // overwrite
}
def LDRSBT : AI3ldstidx<0b1101, 1, 1, 0, (outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, am3offset:$offset), IndexModePost,
LdMiscFrm, IIC_iLoad_bh_ru,
"ldrsbt", "\t$dst, [$base], $offset", "$base = $base_wb", []> {
let Inst{21} = 1; // overwrite
}
def LDRHT : AI3ldstidx<0b1011, 1, 1, 0, (outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, am3offset:$offset), IndexModePost,
LdMiscFrm, IIC_iLoad_bh_ru,
"ldrht", "\t$dst, [$base], $offset", "$base = $base_wb", []> {
let Inst{21} = 1; // overwrite
}
def LDRSHT : AI3ldstidx<0b1111, 1, 1, 0, (outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, am3offset:$offset), IndexModePost,
LdMiscFrm, IIC_iLoad_bh_ru,
"ldrsht", "\t$dst, [$base], $offset", "$base = $base_wb", []> {
let Inst{21} = 1; // overwrite
}
}
// Store
// Stores with truncate
def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
[(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
// Store doubleword
let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1,
isCodeGenOnly = 1 in // $src2 doesn't exist in asm string
def STRD : AI3str<0b1111, (outs), (ins GPR:$src1, GPR:$src2, addrmode3:$addr),
StMiscFrm, IIC_iStore_d_r,
"strd", "\t$src1, $addr", []>, Requires<[IsARM, HasV5TE]>;
// Indexed stores
def STR_PRE : AI2stridx<0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset:$offset),
IndexModePre, StFrm, IIC_iStore_ru,
"str", "\t$Rt, [$Rn, $offset]!", "$Rn = $Rn_wb",
[(set GPR:$Rn_wb,
(pre_store GPR:$Rt, GPR:$Rn, am2offset:$offset))]>;
def STR_POST : AI2stridx<0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset:$offset),
IndexModePost, StFrm, IIC_iStore_ru,
"str", "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb",
[(set GPR:$Rn_wb,
(post_store GPR:$Rt, GPR:$Rn, am2offset:$offset))]>;
def STRB_PRE : AI2stridx<1, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset:$offset),
IndexModePre, StFrm, IIC_iStore_bh_ru,
"strb", "\t$Rt, [$Rn, $offset]!", "$Rn = $Rn_wb",
[(set GPR:$Rn_wb, (pre_truncsti8 GPR:$Rt,
GPR:$Rn, am2offset:$offset))]>;
def STRB_POST: AI2stridx<1, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset:$offset),
IndexModePost, StFrm, IIC_iStore_bh_ru,
"strb", "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb",
[(set GPR:$Rn_wb, (post_truncsti8 GPR:$Rt,
GPR:$Rn, am2offset:$offset))]>;
def STRH_PRE : AI3stridx<0b1011, 0, 1, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am3offset:$offset),
IndexModePre, StMiscFrm, IIC_iStore_ru,
"strh", "\t$Rt, [$Rn, $offset]!", "$Rn = $Rn_wb",
[(set GPR:$Rn_wb,
(pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
def STRH_POST: AI3stridx<0b1011, 0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am3offset:$offset),
IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
"strh", "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb",
[(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
GPR:$Rn, am3offset:$offset))]>;
// For disassembly only
def STRD_PRE : AI3stdpr<(outs GPR:$base_wb),
(ins GPR:$src1, GPR:$src2, GPR:$base, am3offset:$offset),
StMiscFrm, IIC_iStore_d_ru,
"strd", "\t$src1, $src2, [$base, $offset]!",
"$base = $base_wb", []>;
// For disassembly only
def STRD_POST: AI3stdpo<(outs GPR:$base_wb),
(ins GPR:$src1, GPR:$src2, GPR:$base, am3offset:$offset),
StMiscFrm, IIC_iStore_d_ru,
"strd", "\t$src1, $src2, [$base], $offset",
"$base = $base_wb", []>;
// STRT, STRBT, and STRHT are for disassembly only.
def STRT : AI2stridx<0, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn,am2offset:$offset),
IndexModeNone, StFrm, IIC_iStore_ru,
"strt", "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb",
[/* For disassembly only; pattern left blank */]> {
let Inst{21} = 1; // overwrite
}
def STRBT : AI2stridx<1, 0, (outs GPR:$Rn_wb),
(ins GPR:$Rt, GPR:$Rn, am2offset:$offset),
IndexModeNone, StFrm, IIC_iStore_bh_ru,
"strbt", "\t$Rt, [$Rn], $offset", "$Rn = $Rn_wb",
[/* For disassembly only; pattern left blank */]> {
let Inst{21} = 1; // overwrite
}
def STRHT: AI3sthpo<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base,am3offset:$offset),
StMiscFrm, IIC_iStore_bh_ru,
"strht", "\t$src, [$base], $offset", "$base = $base_wb",
[/* For disassembly only; pattern left blank */]> {
let Inst{21} = 1; // overwrite
}
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
multiclass arm_ldst_mult<string asm, bit L_bit, Format f,
InstrItinClass itin, InstrItinClass itin_upd> {
def IA :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def IA_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
def DA :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "da${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b00; // Decrement After
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DA_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "da${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b00; // Decrement After
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
def DB :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "db${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def DB_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b10; // Decrement Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
def IB :
AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeNone, f, itin,
!strconcat(asm, "ib${p}\t$Rn, $regs"), "", []> {
let Inst{24-23} = 0b11; // Increment Before
let Inst{21} = 0; // No writeback
let Inst{20} = L_bit;
}
def IB_UPD :
AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
IndexModeUpd, f, itin_upd,
!strconcat(asm, "ib${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
let Inst{24-23} = 0b11; // Increment Before
let Inst{21} = 1; // Writeback
let Inst{20} = L_bit;
}
}
let neverHasSideEffects = 1 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm LDM : arm_ldst_mult<"ldm", 1, LdStMulFrm, IIC_iLoad_m, IIC_iLoad_mu>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm STM : arm_ldst_mult<"stm", 0, LdStMulFrm, IIC_iStore_m, IIC_iStore_mu>;
} // neverHasSideEffects
// Load / Store Multiple Mnemnoic Aliases
def : MnemonicAlias<"ldm", "ldmia">;
def : MnemonicAlias<"stm", "stmia">;
// FIXME: remove when we have a way to marking a MI with these properties.
// FIXME: Should pc be an implicit operand like PICADD, etc?
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
2010-12-01 03:25:56 +08:00
// FIXME: Should be a pseudo-instruction.
def LDMIA_RET : AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
reglist:$regs, variable_ops),
IndexModeUpd, LdStMulFrm, IIC_iLoad_mBr,
"ldmia${p}\t$Rn!, $regs",
"$Rn = $wb", []> {
let Inst{24-23} = 0b01; // Increment After
let Inst{21} = 1; // Writeback
let Inst{20} = 1; // Load
}
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let neverHasSideEffects = 1 in
def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
"mov", "\t$Rd, $Rm", []>, UnaryDP {
bits<4> Rd;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
}
// A version for the smaller set of tail call registers.
let neverHasSideEffects = 1 in
2010-10-23 07:48:29 +08:00
def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP {
bits<4> Rd;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
}
def MOVs : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg:$src),
DPSoRegFrm, IIC_iMOVsr,
"mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg:$src)]>,
UnaryDP {
bits<4> Rd;
bits<12> src;
let Inst{15-12} = Rd;
let Inst{11-0} = src;
let Inst{25} = 0;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, IIC_iMOVi,
"mov", "\t$Rd, $imm", [(set GPR:$Rd, so_imm:$imm)]>, UnaryDP {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = 0b0000;
let Inst{11-0} = imm;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins movt_imm:$imm),
DPFrm, IIC_iMOVi,
"movw", "\t$Rd, $imm",
[(set GPR:$Rd, imm0_65535:$imm)]>,
Requires<[IsARM, HasV6T2]>, UnaryDP {
bits<4> Rd;
bits<16> imm;
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
let Inst{19-16} = imm{15-12};
let Inst{20} = 0;
let Inst{25} = 1;
}
let Constraints = "$src = $Rd" in
def MOVTi16 : AI1<0b1010, (outs GPR:$Rd), (ins GPR:$src, movt_imm:$imm),
DPFrm, IIC_iMOVi,
"movt", "\t$Rd, $imm",
[(set GPR:$Rd,
(or (and GPR:$src, 0xffff),
lo16AllZero:$imm))]>, UnaryDP,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<16> imm;
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
let Inst{19-16} = imm{15-12};
let Inst{20} = 0;
let Inst{25} = 1;
}
def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
Requires<[IsARM, HasV6T2]>;
2009-09-02 02:32:09 +08:00
let Uses = [CPSR] in
def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
[(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
Requires<[IsARM]>;
// These aren't really mov instructions, but we have to define them this way
// due to flag operands.
let Defs = [CPSR] in {
def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
[(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
Requires<[IsARM]>;
def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
[(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
Requires<[IsARM]>;
}
//===----------------------------------------------------------------------===//
// Extend Instructions.
//
// Sign extenders
2006-12-12 08:37:38 +08:00
defm SXTB : AI_ext_rrot<0b01101010,
"sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
defm SXTH : AI_ext_rrot<0b01101011,
"sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
defm SXTAB : AI_exta_rrot<0b01101010,
"sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
defm SXTAH : AI_exta_rrot<0b01101011,
"sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
// For disassembly only
defm SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">;
// For disassembly only
defm SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
// Zero extenders
let AddedComplexity = 16 in {
defm UXTB : AI_ext_rrot<0b01101110,
"uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>;
defm UXTH : AI_ext_rrot<0b01101111,
"uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
defm UXTB16 : AI_ext_rrot<0b01101100,
"uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
2006-09-12 03:24:19 +08:00
// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
// The transformation should probably be done as a combiner action
// instead so we can include a check for masking back in the upper
// eight bits of the source into the lower eight bits of the result.
//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
// (UXTB16r_rot GPR:$Src, 24)>;
def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
(UXTB16r_rot GPR:$Src, 8)>;
defm UXTAB : AI_exta_rrot<0b01101110, "uxtab",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
defm UXTAH : AI_exta_rrot<0b01101111, "uxtah",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
}
// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
// For disassembly only
defm UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
def SBFX : I<(outs GPR:$Rd),
(ins GPR:$Rn, imm0_31:$lsb, imm0_31_m1:$width),
AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iUNAsi,
"sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<5> lsb;
bits<5> width;
let Inst{27-21} = 0b0111101;
let Inst{6-4} = 0b101;
let Inst{20-16} = width;
let Inst{15-12} = Rd;
let Inst{11-7} = lsb;
let Inst{3-0} = Rn;
}
def UBFX : I<(outs GPR:$Rd),
(ins GPR:$Rn, imm0_31:$lsb, imm0_31_m1:$width),
AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iUNAsi,
"ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<5> lsb;
bits<5> width;
let Inst{27-21} = 0b0111111;
let Inst{6-4} = 0b101;
let Inst{20-16} = width;
let Inst{15-12} = Rd;
let Inst{11-7} = lsb;
let Inst{3-0} = Rn;
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
defm ADD : AsI1_bin_irs<0b0100, "add",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(add node:$LHS, node:$RHS)>, 1>;
defm SUB : AsI1_bin_irs<0b0010, "sub",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(sub node:$LHS, node:$RHS)>>;
// ADD and SUB with 's' bit set.
defm ADDS : AI1_bin_s_irs<0b0100, "adds",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(addc node:$LHS, node:$RHS)>, 1>;
defm SUBS : AI1_bin_s_irs<0b0010, "subs",
IIC_iALUi, IIC_iALUr, IIC_iALUsr,
BinOpFrag<(subc node:$LHS, node:$RHS)>>;
defm ADC : AI1_adde_sube_irs<0b0101, "adc",
BinOpFrag<(adde_dead_carry node:$LHS, node:$RHS)>, 1>;
defm SBC : AI1_adde_sube_irs<0b0110, "sbc",
BinOpFrag<(sube_dead_carry node:$LHS, node:$RHS)>>;
defm ADCS : AI1_adde_sube_s_irs<0b0101, "adcs",
BinOpFrag<(adde_live_carry node:$LHS, node:$RHS)>, 1>;
defm SBCS : AI1_adde_sube_s_irs<0b0110, "sbcs",
BinOpFrag<(sube_live_carry node:$LHS, node:$RHS) >>;
def RSBri : AsI1<0b0011, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
IIC_iALUi, "rsb", "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (sub so_imm:$imm, GPR:$Rn))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
// The reg/reg form is only defined for the disassembler; for codegen it is
// equivalent to SUBrr.
def RSBrr : AsI1<0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
IIC_iALUr, "rsb", "\t$Rd, $Rn, $Rm",
2010-08-06 03:00:21 +08:00
[/* For disassembly only; pattern left blank */]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def RSBrs : AsI1<0b0011, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift),
DPSoRegFrm, IIC_iALUsr, "rsb", "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (sub so_reg:$shift, GPR:$Rn))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{11-0} = shift;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
// RSB with 's' bit set.
let Defs = [CPSR] in {
def RSBSri : AI1<0b0011, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm,
IIC_iALUi, "rsbs", "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (subc so_imm:$imm, GPR:$Rn))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def RSBSrs : AI1<0b0011, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift),
DPSoRegFrm, IIC_iALUsr, "rsbs", "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (subc so_reg:$shift, GPR:$Rn))]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{11-0} = shift;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
}
let Uses = [CPSR] in {
def RSCri : AsI1<0b0111, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
DPFrm, IIC_iALUi, "rsc", "\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (sube_dead_carry so_imm:$imm, GPR:$Rn))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
// The reg/reg form is only defined for the disassembler; for codegen it is
// equivalent to SUBrr.
def RSCrr : AsI1<0b0111, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
DPFrm, IIC_iALUr, "rsc", "\t$Rd, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{11-4} = 0b00000000;
let Inst{25} = 0;
let Inst{3-0} = Rm;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
def RSCrs : AsI1<0b0111, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift),
DPSoRegFrm, IIC_iALUsr, "rsc", "\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (sube_dead_carry so_reg:$shift, GPR:$Rn))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{11-0} = shift;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
}
// FIXME: Allow these to be predicated.
let Defs = [CPSR], Uses = [CPSR] in {
def RSCSri : AXI1<0b0111, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm),
DPFrm, IIC_iALUi, "rscs\t$Rd, $Rn, $imm",
[(set GPR:$Rd, (sube_dead_carry so_imm:$imm, GPR:$Rn))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 1;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
let Inst{11-0} = imm;
}
def RSCSrs : AXI1<0b0111, (outs GPR:$Rd), (ins GPR:$Rn, so_reg:$shift),
DPSoRegFrm, IIC_iALUsr, "rscs\t$Rd, $Rn, $shift",
[(set GPR:$Rd, (sube_dead_carry so_reg:$shift, GPR:$Rn))]>,
Requires<[IsARM]> {
bits<4> Rd;
bits<4> Rn;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 1;
let Inst{11-0} = shift;
let Inst{15-12} = Rd;
let Inst{19-16} = Rn;
}
}
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
// The assume-no-carry-in form uses the negation of the input since add/sub
// assume opposite meanings of the carry flag (i.e., carry == !borrow).
// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
// details.
def : ARMPat<(add GPR:$src, so_imm_neg:$imm),
(SUBri GPR:$src, so_imm_neg:$imm)>;
def : ARMPat<(addc GPR:$src, so_imm_neg:$imm),
(SUBSri GPR:$src, so_imm_neg:$imm)>;
// The with-carry-in form matches bitwise not instead of the negation.
// Effectively, the inverse interpretation of the carry flag already accounts
// for part of the negation.
def : ARMPat<(adde GPR:$src, so_imm_not:$imm),
(SBCri GPR:$src, so_imm_not:$imm)>;
2006-10-11 00:33:47 +08:00
// Note: These are implemented in C++ code, because they have to generate
// ADD/SUBrs instructions, which use a complex pattern that a xform function
// cannot produce.
// (mul X, 2^n+1) -> (add (X << n), X)
// (mul X, 2^n-1) -> (rsb X, (X << n))
2006-10-17 21:13:23 +08:00
// ARM Arithmetic Instruction -- for disassembly only
// GPR:$dst = GPR:$a op GPR:$b
class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
list<dag> pattern = [/* For disassembly only; pattern left blank */]>
: AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iALUr,
opc, "\t$Rd, $Rn, $Rm", pattern> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{27-20} = op27_20;
let Inst{11-4} = op11_4;
let Inst{19-16} = Rn;
let Inst{15-12} = Rd;
let Inst{3-0} = Rm;
}
// Saturating add/subtract -- for disassembly only
def QADD : AAI<0b00010000, 0b00000101, "qadd",
[(set GPR:$Rd, (int_arm_qadd GPR:$Rn, GPR:$Rm))]>;
def QSUB : AAI<0b00010010, 0b00000101, "qsub",
[(set GPR:$Rd, (int_arm_qsub GPR:$Rn, GPR:$Rm))]>;
def QDADD : AAI<0b00010100, 0b00000101, "qdadd">;
def QDSUB : AAI<0b00010110, 0b00000101, "qdsub">;
def QADD16 : AAI<0b01100010, 0b11110001, "qadd16">;
def QADD8 : AAI<0b01100010, 0b11111001, "qadd8">;
def QASX : AAI<0b01100010, 0b11110011, "qasx">;
def QSAX : AAI<0b01100010, 0b11110101, "qsax">;
def QSUB16 : AAI<0b01100010, 0b11110111, "qsub16">;
def QSUB8 : AAI<0b01100010, 0b11111111, "qsub8">;
def UQADD16 : AAI<0b01100110, 0b11110001, "uqadd16">;
def UQADD8 : AAI<0b01100110, 0b11111001, "uqadd8">;
def UQASX : AAI<0b01100110, 0b11110011, "uqasx">;
def UQSAX : AAI<0b01100110, 0b11110101, "uqsax">;
def UQSUB16 : AAI<0b01100110, 0b11110111, "uqsub16">;
def UQSUB8 : AAI<0b01100110, 0b11111111, "uqsub8">;
// Signed/Unsigned add/subtract -- for disassembly only
def SASX : AAI<0b01100001, 0b11110011, "sasx">;
def SADD16 : AAI<0b01100001, 0b11110001, "sadd16">;
def SADD8 : AAI<0b01100001, 0b11111001, "sadd8">;
def SSAX : AAI<0b01100001, 0b11110101, "ssax">;
def SSUB16 : AAI<0b01100001, 0b11110111, "ssub16">;
def SSUB8 : AAI<0b01100001, 0b11111111, "ssub8">;
def UASX : AAI<0b01100101, 0b11110011, "uasx">;
def UADD16 : AAI<0b01100101, 0b11110001, "uadd16">;
def UADD8 : AAI<0b01100101, 0b11111001, "uadd8">;
def USAX : AAI<0b01100101, 0b11110101, "usax">;
def USUB16 : AAI<0b01100101, 0b11110111, "usub16">;
def USUB8 : AAI<0b01100101, 0b11111111, "usub8">;
// Signed/Unsigned halving add/subtract -- for disassembly only
def SHASX : AAI<0b01100011, 0b11110011, "shasx">;
def SHADD16 : AAI<0b01100011, 0b11110001, "shadd16">;
def SHADD8 : AAI<0b01100011, 0b11111001, "shadd8">;
def SHSAX : AAI<0b01100011, 0b11110101, "shsax">;
def SHSUB16 : AAI<0b01100011, 0b11110111, "shsub16">;
def SHSUB8 : AAI<0b01100011, 0b11111111, "shsub8">;
def UHASX : AAI<0b01100111, 0b11110011, "uhasx">;
def UHADD16 : AAI<0b01100111, 0b11110001, "uhadd16">;
def UHADD8 : AAI<0b01100111, 0b11111001, "uhadd8">;
def UHSAX : AAI<0b01100111, 0b11110101, "uhsax">;
def UHSUB16 : AAI<0b01100111, 0b11110111, "uhsub16">;
def UHSUB8 : AAI<0b01100111, 0b11111111, "uhsub8">;
// Unsigned Sum of Absolute Differences [and Accumulate] -- for disassembly only
def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
MulFrm /* for convenience */, NoItinerary, "usad8",
"\t$Rd, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
let Inst{27-20} = 0b01111000;
let Inst{15-12} = 0b1111;
let Inst{7-4} = 0b0001;
let Inst{19-16} = Rd;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
MulFrm /* for convenience */, NoItinerary, "usada8",
"\t$Rd, $Rn, $Rm, $Ra", []>,
Requires<[IsARM, HasV6]> {
bits<4> Rd;
bits<4> Rn;
bits<4> Rm;
bits<4> Ra;
let Inst{27-20} = 0b01111000;
let Inst{7-4} = 0b0001;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// Signed/Unsigned saturate -- for disassembly only
def SSAT : AI<(outs GPR:$Rd), (ins i32imm:$sat_imm, GPR:$a, shift_imm:$sh),
SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $a$sh",
[/* For disassembly only; pattern left blank */]> {
bits<4> Rd;
bits<5> sat_imm;
bits<4> Rn;
bits<8> sh;
let Inst{27-21} = 0b0110101;
let Inst{5-4} = 0b01;
let Inst{20-16} = sat_imm;
let Inst{15-12} = Rd;
let Inst{11-7} = sh{7-3};
let Inst{6} = sh{0};
let Inst{3-0} = Rn;
}
def SSAT16 : AI<(outs GPR:$Rd), (ins i32imm:$sat_imm, GPR:$Rn), SatFrm,
NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn",
[/* For disassembly only; pattern left blank */]> {
bits<4> Rd;
bits<4> sat_imm;
bits<4> Rn;
let Inst{27-20} = 0b01101010;
let Inst{11-4} = 0b11110011;
let Inst{15-12} = Rd;
let Inst{19-16} = sat_imm;
let Inst{3-0} = Rn;
}
def USAT : AI<(outs GPR:$Rd), (ins i32imm:$sat_imm, GPR:$a, shift_imm:$sh),
SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $a$sh",
[/* For disassembly only; pattern left blank */]> {
bits<4> Rd;
bits<5> sat_imm;
bits<4> Rn;
bits<8> sh;
let Inst{27-21} = 0b0110111;
let Inst{5-4} = 0b01;
let Inst{15-12} = Rd;
let Inst{11-7} = sh{7-3};
let Inst{6} = sh{0};
let Inst{20-16} = sat_imm;
let Inst{3-0} = Rn;
}
def USAT16 : AI<(outs GPR:$Rd), (ins i32imm:$sat_imm, GPR:$a), SatFrm,
NoItinerary, "usat16", "\t$Rd, $sat_imm, $a",
[/* For disassembly only; pattern left blank */]> {
bits<4> Rd;
bits<4> sat_imm;
bits<4> Rn;
let Inst{27-20} = 0b01101110;
let Inst{11-4} = 0b11110011;
let Inst{15-12} = Rd;
let Inst{19-16} = sat_imm;
let Inst{3-0} = Rn;
}
2006-10-17 21:13:23 +08:00
def : ARMV6Pat<(int_arm_ssat GPR:$a, imm:$pos), (SSAT imm:$pos, GPR:$a, 0)>;
def : ARMV6Pat<(int_arm_usat GPR:$a, imm:$pos), (USAT imm:$pos, GPR:$a, 0)>;
//===----------------------------------------------------------------------===//
// Bitwise Instructions.
//
defm AND : AsI1_bin_irs<0b0000, "and",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
defm ORR : AsI1_bin_irs<0b1100, "orr",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
defm EOR : AsI1_bin_irs<0b0001, "eor",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
defm BIC : AsI1_bin_irs<0b1110, "bic",
IIC_iBITi, IIC_iBITr, IIC_iBITsr,
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iUNAsi,
"bfc", "\t$Rd, $imm", "$src = $Rd",
[(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
2009-07-07 06:23:46 +08:00
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<10> imm;
2009-07-07 06:23:46 +08:00
let Inst{27-21} = 0b0111110;
let Inst{6-0} = 0b0011111;
let Inst{15-12} = Rd;
let Inst{11-7} = imm{4-0}; // lsb
let Inst{20-16} = imm{9-5}; // width
2009-07-07 06:23:46 +08:00
}
// A8.6.18 BFI - Bitfield insert (Encoding A1)
def BFI : I<(outs GPR:$Rd), (ins GPR:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
AddrMode1, Size4Bytes, IndexModeNone, DPFrm, IIC_iUNAsi,
"bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
[(set GPR:$Rd, (ARMbfi GPR:$src, GPR:$Rn,
bf_inv_mask_imm:$imm))]>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rn;
bits<10> imm;
let Inst{27-21} = 0b0111110;
let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15
let Inst{15-12} = Rd;
let Inst{11-7} = imm{4-0}; // lsb
let Inst{20-16} = imm{9-5}; // width
let Inst{3-0} = Rn;
}
def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
"mvn", "\t$Rd, $Rm",
[(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP {
bits<4> Rd;
bits<4> Rm;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{11-4} = 0b00000000;
let Inst{15-12} = Rd;
let Inst{3-0} = Rm;
}
def MVNs : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg:$shift), DPSoRegFrm,
IIC_iMVNsr, "mvn", "\t$Rd, $shift",
[(set GPR:$Rd, (not so_reg:$shift))]>, UnaryDP {
bits<4> Rd;
bits<12> shift;
let Inst{25} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-0} = shift;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm,
IIC_iMVNi, "mvn", "\t$Rd, $imm",
[(set GPR:$Rd, so_imm_not:$imm)]>,UnaryDP {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
def : ARMPat<(and GPR:$src, so_imm_not:$imm),
(BICri GPR:$src, so_imm_not:$imm)>;
//===----------------------------------------------------------------------===//
// Multiply Instructions.
//
class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = Rd;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
let isCommutable = 1 in
def MUL : AsMul1I32<0b0000000, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (mul GPR:$Rn, GPR:$Rm))]>;
def MLA : AsMul1I32<0b0000001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add (mul GPR:$Rn, GPR:$Rm), GPR:$Ra))]> {
bits<4> Ra;
let Inst{15-12} = Ra;
}
def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
Requires<[IsARM, HasV6T2]> {
bits<4> Rd;
bits<4> Rm;
bits<4> Rn;
bits<4> Ra;
let Inst{19-16} = Rd;
let Inst{15-12} = Ra;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
// Extra precision multiplies with low / high results
let neverHasSideEffects = 1 in {
let isCommutable = 1 in {
def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
"smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>;
def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
"umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>;
}
// Multiply + accumulate
def SMLAL : AsMul1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMAC64,
"smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>;
def UMLAL : AsMul1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMAC64,
"umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>;
def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), IIC_iMAC64,
"umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
Requires<[IsARM, HasV6]> {
bits<4> RdLo;
bits<4> RdHi;
bits<4> Rm;
bits<4> Rn;
let Inst{19-16} = RdLo;
let Inst{15-12} = RdHi;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
} // neverHasSideEffects
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
Requires<[IsARM, HasV6]> {
let Inst{15-12} = 0b1111;
}
def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]> {
let Inst{15-12} = 0b1111;
}
def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
Requires<[IsARM, HasV6]>;
def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]>;
def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (sub GPR:$Ra, (mulhs GPR:$Rn, GPR:$Rm)))]>,
Requires<[IsARM, HasV6]>;
def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV6]>;
multiclass AI_smul<string opc, PatFrag opnode> {
def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16),
(sext_inreg GPR:$Rm, i16)))]>,
Requires<[IsARM, HasV5TE]>;
def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16),
(sra GPR:$Rm, (i32 16))))]>,
Requires<[IsARM, HasV5TE]>;
def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)),
(sext_inreg GPR:$Rm, i16)))]>,
Requires<[IsARM, HasV5TE]>;
def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)),
(sra GPR:$Rm, (i32 16))))]>,
Requires<[IsARM, HasV5TE]>;
def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (sra (opnode GPR:$Rn,
(sext_inreg GPR:$Rm, i16)), (i32 16)))]>,
Requires<[IsARM, HasV5TE]>;
def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
[(set GPR:$Rd, (sra (opnode GPR:$Rn,
(sra GPR:$Rm, (i32 16))), (i32 16)))]>,
Requires<[IsARM, HasV5TE]>;
}
multiclass AI_smla<string opc, PatFrag opnode> {
def BB : AMulxyIa<0b0001000, 0b00, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add GPR:$Ra,
(opnode (sext_inreg GPR:$Rn, i16),
(sext_inreg GPR:$Rm, i16))))]>,
Requires<[IsARM, HasV5TE]>;
def BT : AMulxyIa<0b0001000, 0b10, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add GPR:$Ra, (opnode (sext_inreg GPR:$Rn, i16),
(sra GPR:$Rm, (i32 16)))))]>,
Requires<[IsARM, HasV5TE]>;
def TB : AMulxyIa<0b0001000, 0b01, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add GPR:$Ra, (opnode (sra GPR:$Rn, (i32 16)),
(sext_inreg GPR:$Rm, i16))))]>,
Requires<[IsARM, HasV5TE]>;
def TT : AMulxyIa<0b0001000, 0b11, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add GPR:$Ra, (opnode (sra GPR:$Rn, (i32 16)),
(sra GPR:$Rm, (i32 16)))))]>,
Requires<[IsARM, HasV5TE]>;
def WB : AMulxyIa<0b0001001, 0b00, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add GPR:$Ra, (sra (opnode GPR:$Rn,
(sext_inreg GPR:$Rm, i16)), (i32 16))))]>,
Requires<[IsARM, HasV5TE]>;
def WT : AMulxyIa<0b0001001, 0b10, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
[(set GPR:$Rd, (add GPR:$Ra, (sra (opnode GPR:$Rn,
(sra GPR:$Rm, (i32 16))), (i32 16))))]>,
Requires<[IsARM, HasV5TE]>;
}
defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
// Halfword multiply accumulate long: SMLAL<x><y> -- for disassembly only
def SMLALBB : AMulxyI64<0b0001010, 0b00, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm),
IIC_iMAC64, "smlalbb", "\t$RdLo, $RdHi, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV5TE]>;
def SMLALBT : AMulxyI64<0b0001010, 0b10, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm),
IIC_iMAC64, "smlalbt", "\t$RdLo, $RdHi, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV5TE]>;
def SMLALTB : AMulxyI64<0b0001010, 0b01, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm),
IIC_iMAC64, "smlaltb", "\t$RdLo, $RdHi, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV5TE]>;
def SMLALTT : AMulxyI64<0b0001010, 0b11, (outs GPR:$RdLo, GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm),
IIC_iMAC64, "smlaltt", "\t$RdLo, $RdHi, $Rn, $Rm",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV5TE]>;
// Helper class for AI_smld -- for disassembly only
class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AI<oops, iops, MulFrm, itin, opc, asm, []>, Requires<[IsARM, HasV6]> {
bits<4> Rn;
bits<4> Rm;
let Inst{4} = 1;
let Inst{5} = swap;
let Inst{6} = sub;
let Inst{7} = 0;
let Inst{21-20} = 0b00;
let Inst{22} = long;
let Inst{27-23} = 0b01110;
let Inst{11-8} = Rm;
let Inst{3-0} = Rn;
}
class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> Rd;
let Inst{15-12} = 0b1111;
let Inst{19-16} = Rd;
}
class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> Ra;
let Inst{15-12} = Ra;
}
class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
InstrItinClass itin, string opc, string asm>
: AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
bits<4> RdLo;
bits<4> RdHi;
let Inst{19-16} = RdHi;
let Inst{15-12} = RdLo;
}
multiclass AI_smld<bit sub, string opc> {
def D : AMulDualIa<0, sub, 0, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">;
def DX: AMulDualIa<0, sub, 1, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">;
def LD: AMulDualI64<1, sub, 0, (outs GPR:$RdLo,GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), NoItinerary,
!strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">;
def LDX : AMulDualI64<1, sub, 1, (outs GPR:$RdLo,GPR:$RdHi),
(ins GPR:$Rn, GPR:$Rm), NoItinerary,
!strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">;
}
defm SMLA : AI_smld<0, "smla">;
defm SMLS : AI_smld<1, "smls">;
multiclass AI_sdml<bit sub, string opc> {
def D : AMulDualI<0, sub, 0, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">;
def DX : AMulDualI<0, sub, 1, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">;
}
defm SMUA : AI_sdml<0, "smua">;
defm SMUS : AI_sdml<1, "smus">;
//===----------------------------------------------------------------------===//
// Misc. Arithmetic Instructions.
//
def CLZ : AMiscA1I<0b000010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "clz", "\t$Rd, $Rm",
[(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>;
def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rbit", "\t$Rd, $Rm",
[(set GPR:$Rd, (ARMrbit GPR:$Rm))]>,
Requires<[IsARM, HasV6T2]>;
def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rev", "\t$Rd, $Rm",
[(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>;
def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "rev16", "\t$Rd, $Rm",
[(set GPR:$Rd,
(or (and (srl GPR:$Rm, (i32 8)), 0xFF),
(or (and (shl GPR:$Rm, (i32 8)), 0xFF00),
(or (and (srl GPR:$Rm, (i32 8)), 0xFF0000),
(and (shl GPR:$Rm, (i32 8)), 0xFF000000)))))]>,
Requires<[IsARM, HasV6]>;
def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
IIC_iUNAr, "revsh", "\t$Rd, $Rm",
[(set GPR:$Rd,
(sext_inreg
(or (srl (and GPR:$Rm, 0xFF00), (i32 8)),
(shl GPR:$Rm, (i32 8))), i16))]>,
Requires<[IsARM, HasV6]>;
def lsl_shift_imm : SDNodeXForm<imm, [{
unsigned Sh = ARM_AM::getSORegOpc(ARM_AM::lsl, N->getZExtValue());
return CurDAG->getTargetConstant(Sh, MVT::i32);
}]>;
def lsl_amt : PatLeaf<(i32 imm), [{
return (N->getZExtValue() < 32);
}], lsl_shift_imm>;
def PKHBT : APKHI<0b01101000, 0, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, shift_imm:$sh),
IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
[(set GPR:$Rd, (or (and GPR:$Rn, 0xFFFF),
(and (shl GPR:$Rm, lsl_amt:$sh),
0xFFFF0000)))]>,
Requires<[IsARM, HasV6]>;
// Alternate cases for PKHBT where identities eliminate some nodes.
def : ARMV6Pat<(or (and GPR:$Rn, 0xFFFF), (and GPR:$Rm, 0xFFFF0000)),
(PKHBT GPR:$Rn, GPR:$Rm, 0)>;
def : ARMV6Pat<(or (and GPR:$Rn, 0xFFFF), (shl GPR:$Rm, imm16_31:$sh)),
(PKHBT GPR:$Rn, GPR:$Rm, (lsl_shift_imm imm16_31:$sh))>;
def asr_shift_imm : SDNodeXForm<imm, [{
unsigned Sh = ARM_AM::getSORegOpc(ARM_AM::asr, N->getZExtValue());
return CurDAG->getTargetConstant(Sh, MVT::i32);
}]>;
def asr_amt : PatLeaf<(i32 imm), [{
return (N->getZExtValue() <= 32);
}], asr_shift_imm>;
// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
// will match the pattern below.
def PKHTB : APKHI<0b01101000, 1, (outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm, shift_imm:$sh),
IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
[(set GPR:$Rd, (or (and GPR:$Rn, 0xFFFF0000),
(and (sra GPR:$Rm, asr_amt:$sh),
0xFFFF)))]>,
Requires<[IsARM, HasV6]>;
// Alternate cases for PKHTB where identities eliminate some nodes. Note that
// a shift amount of 0 is *not legal* here, it is PKHBT instead.
def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, imm16_31:$sh)),
(PKHTB GPR:$src1, GPR:$src2, (asr_shift_imm imm16_31:$sh))>;
def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000),
(and (srl GPR:$src2, imm1_15:$sh), 0xFFFF)),
(PKHTB GPR:$src1, GPR:$src2, (asr_shift_imm imm1_15:$sh))>;
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
defm CMP : AI1_cmp_irs<0b1010, "cmp",
IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr,
BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
// ARMcmpZ can re-use the above instruction definitions.
def : ARMPat<(ARMcmpZ GPR:$src, so_imm:$imm),
(CMPri GPR:$src, so_imm:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
(CMPrr GPR:$src, GPR:$rhs)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_reg:$rhs),
(CMPrs GPR:$src, so_reg:$rhs)>;
// FIXME: We have to be careful when using the CMN instruction and comparison
// with 0. One would expect these two pieces of code should give identical
// results:
//
// rsbs r1, r1, 0
// cmp r0, r1
// mov r0, #0
// it ls
// mov r0, #1
//
// and:
2010-10-23 07:48:29 +08:00
//
// cmn r0, r1
// mov r0, #0
// it ls
// mov r0, #1
//
// However, the CMN gives the *opposite* result when r1 is 0. This is because
// the carry flag is set in the CMP case but not in the CMN case. In short, the
// CMP instruction doesn't perform a truncate of the (logical) NOT of 0 plus the
// value of r0 and the carry bit (because the "carry bit" parameter to
// AddWithCarry is defined as 1 in this case, the carry flag will always be set
// when r0 >= 0). The CMN instruction doesn't perform a NOT of 0 so there is
// never a "carry" when this AddWithCarry is performed (because the "carry bit"
// parameter to AddWithCarry is defined as 0).
//
// When x is 0 and unsigned:
//
// x = 0
// ~x = 0xFFFF FFFF
// ~x + 1 = 0x1 0000 0000
// (-x = 0) != (0x1 0000 0000 = ~x + 1)
//
// Therefore, we should disable CMN when comparing against zero, until we can
// limit when the CMN instruction is used (when we know that the RHS is not 0 or
// when it's a comparison which doesn't look at the 'carry' flag).
//
// (See the ARM docs for the "AddWithCarry" pseudo-code.)
//
// This is related to <rdar://problem/7569620>.
//
//defm CMN : AI1_cmp_irs<0b1011, "cmn",
// BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>;
// Note that TST/TEQ don't set all the same flags that CMP does!
defm TST : AI1_cmp_irs<0b1000, "tst",
IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1>;
defm TEQ : AI1_cmp_irs<0b1001, "teq",
IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
defm CMNz : AI1_cmp_irs<0b1011, "cmn",
IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr,
BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>;
//def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm),
// (CMNri GPR:$src, so_imm_neg:$imm)>;
def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm),
(CMNzri GPR:$src, so_imm_neg:$imm)>;
// Pseudo i64 compares for some floating point compares.
let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
Defs = [CPSR] in {
def BCCi64 : PseudoInst<(outs),
2010-08-18 02:39:16 +08:00
(ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
IIC_Br,
[(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>;
def BCCZi64 : PseudoInst<(outs),
(ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
[(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>;
} // usesCustomInserter
// Conditional moves
// FIXME: should be able to write a pattern for ARMcmov, but can't use
// a two-value operand where a dag node expects two operands. :(
// FIXME: These should all be pseudo-instructions that get expanded to
// the normal MOV instructions. That would fix the dependency on
// special casing them in tblgen.
let neverHasSideEffects = 1 in {
def MOVCCr : AI1<0b1101, (outs GPR:$Rd), (ins GPR:$false, GPR:$Rm), DPFrm,
IIC_iCMOVr, "mov", "\t$Rd, $Rm",
[/*(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $Rd">, UnaryDP {
bits<4> Rd;
bits<4> Rm;
let Inst{25} = 0;
let Inst{20} = 0;
let Inst{15-12} = Rd;
let Inst{11-4} = 0b00000000;
let Inst{3-0} = Rm;
}
def MOVCCs : AI1<0b1101, (outs GPR:$Rd),
(ins GPR:$false, so_reg:$shift), DPSoRegFrm, IIC_iCMOVsr,
"mov", "\t$Rd, $shift",
[/*(set GPR:$Rd, (ARMcmov GPR:$false, so_reg:$shift, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $Rd">, UnaryDP {
bits<4> Rd;
bits<12> shift;
let Inst{25} = 0;
let Inst{20} = 0;
let Inst{19-16} = 0;
let Inst{15-12} = Rd;
let Inst{11-0} = shift;
}
let isMoveImm = 1 in
def MOVCCi16 : AI1<0b1000, (outs GPR:$Rd), (ins GPR:$false, movt_imm:$imm),
DPFrm, IIC_iMOVi,
"movw", "\t$Rd, $imm",
[]>,
RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
UnaryDP {
bits<4> Rd;
bits<16> imm;
let Inst{25} = 1;
let Inst{20} = 0;
let Inst{19-16} = imm{15-12};
let Inst{15-12} = Rd;
let Inst{11-0} = imm{11-0};
}
let isMoveImm = 1 in
def MOVCCi : AI1<0b1101, (outs GPR:$Rd),
(ins GPR:$false, so_imm:$imm), DPFrm, IIC_iCMOVi,
"mov", "\t$Rd, $imm",
[/*(set GPR:$Rd, (ARMcmov GPR:$false, so_imm:$imm, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $Rd">, UnaryDP {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
// Two instruction predicate mov immediate.
let isMoveImm = 1 in
def MOVCCi32imm : PseudoInst<(outs GPR:$Rd),
(ins GPR:$false, i32imm:$src, pred:$p),
IIC_iCMOVix2, []>, RegConstraint<"$false = $Rd">;
let isMoveImm = 1 in
def MVNCCi : AI1<0b1111, (outs GPR:$Rd),
(ins GPR:$false, so_imm:$imm), DPFrm, IIC_iCMOVi,
"mvn", "\t$Rd, $imm",
[/*(set GPR:$Rd, (ARMcmov GPR:$false, so_imm_not:$imm, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $Rd">, UnaryDP {
bits<4> Rd;
bits<12> imm;
let Inst{25} = 1;
let Inst{20} = 0;
let Inst{19-16} = 0b0000;
let Inst{15-12} = Rd;
let Inst{11-0} = imm;
}
} // neverHasSideEffects
//===----------------------------------------------------------------------===//
// Atomic operations intrinsics
//
def memb_opt : Operand<i32> {
let PrintMethod = "printMemBOption";
}
// memory barriers protect the atomic sequences
let hasSideEffects = 1 in {
def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
"dmb", "\t$opt", [(ARMMemBarrier (i32 imm:$opt))]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff05;
let Inst{3-0} = opt;
}
def DMB_MCR : AInoP<(outs), (ins GPR:$zero), MiscFrm, NoItinerary,
"mcr", "\tp15, 0, $zero, c7, c10, 5",
[(ARMMemBarrierMCR GPR:$zero)]>,
Requires<[IsARM, HasV6]> {
// FIXME: add encoding
}
}
def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
"dsb", "\t$opt",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasDB]> {
bits<4> opt;
let Inst{31-4} = 0xf57ff04;
let Inst{3-0} = opt;
}
// ISB has only full system option -- for disassembly only
def ISB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "isb", "", []>,
Requires<[IsARM, HasDB]> {
let Inst{31-4} = 0xf57ff06;
let Inst{3-0} = 0b1111;
}
2009-12-12 02:52:41 +08:00
let usesCustomInserter = 1 in {
let Uses = [CPSR] in {
def ATOMIC_LOAD_ADD_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_add_8 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_SUB_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_sub_8 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_AND_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_and_8 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_OR_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_or_8 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_XOR_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_xor_8 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_NAND_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_nand_8 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_ADD_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_add_16 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_SUB_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_sub_16 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_AND_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_and_16 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_OR_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_or_16 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_XOR_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_xor_16 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_NAND_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_nand_16 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_ADD_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_add_32 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_SUB_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_sub_32 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_AND_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_and_32 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_OR_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_or_32 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_XOR_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_xor_32 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_LOAD_NAND_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary,
[(set GPR:$dst, (atomic_load_nand_32 GPR:$ptr, GPR:$incr))]>;
def ATOMIC_SWAP_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary,
[(set GPR:$dst, (atomic_swap_8 GPR:$ptr, GPR:$new))]>;
def ATOMIC_SWAP_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary,
[(set GPR:$dst, (atomic_swap_16 GPR:$ptr, GPR:$new))]>;
def ATOMIC_SWAP_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary,
[(set GPR:$dst, (atomic_swap_32 GPR:$ptr, GPR:$new))]>;
def ATOMIC_CMP_SWAP_I8 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary,
[(set GPR:$dst, (atomic_cmp_swap_8 GPR:$ptr, GPR:$old, GPR:$new))]>;
def ATOMIC_CMP_SWAP_I16 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary,
[(set GPR:$dst, (atomic_cmp_swap_16 GPR:$ptr, GPR:$old, GPR:$new))]>;
def ATOMIC_CMP_SWAP_I32 : PseudoInst<
(outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary,
[(set GPR:$dst, (atomic_cmp_swap_32 GPR:$ptr, GPR:$old, GPR:$new))]>;
}
}
let mayLoad = 1 in {
def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins GPR:$Rn), NoItinerary,
"ldrexb", "\t$Rt, [$Rn]",
[]>;
def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins GPR:$Rn), NoItinerary,
"ldrexh", "\t$Rt, [$Rn]",
[]>;
def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins GPR:$Rn), NoItinerary,
"ldrex", "\t$Rt, [$Rn]",
[]>;
def LDREXD : AIldrex<0b01, (outs GPR:$Rt, GPR:$Rt2), (ins GPR:$Rn),
NoItinerary,
"ldrexd", "\t$Rt, $Rt2, [$Rn]",
[]>;
}
let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
def STREXB : AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$src, GPR:$Rn),
NoItinerary,
"strexb", "\t$Rd, $src, [$Rn]",
[]>;
def STREXH : AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, GPR:$Rn),
NoItinerary,
"strexh", "\t$Rd, $Rt, [$Rn]",
[]>;
def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, GPR:$Rn),
NoItinerary,
"strex", "\t$Rd, $Rt, [$Rn]",
[]>;
def STREXD : AIstrex<0b01, (outs GPR:$Rd),
(ins GPR:$Rt, GPR:$Rt2, GPR:$Rn),
NoItinerary,
"strexd", "\t$Rd, $Rt, $Rt2, [$Rn]",
[]>;
}
// Clear-Exclusive is for disassembly only.
def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
[/* For disassembly only; pattern left blank */]>,
Requires<[IsARM, HasV7]> {
let Inst{31-0} = 0b11110101011111111111000000011111;
}
// SWP/SWPB are deprecated in V6/V7 and for disassembly only.
let mayLoad = 1 in {
def SWP : AIswp<0, (outs GPR:$Rt), (ins GPR:$Rt2, GPR:$Rn), "swp",
[/* For disassembly only; pattern left blank */]>;
def SWPB : AIswp<1, (outs GPR:$Rt), (ins GPR:$Rt2, GPR:$Rn), "swpb",
[/* For disassembly only; pattern left blank */]>;
}
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
// This is a pseudo inst so that we can get the encoding right,
// complete with fixup for the aeabi_read_tp function.
let isCall = 1,
Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
def TPsoft : PseudoInst<(outs), (ins), IIC_Br,
[(set R0, ARMthread_pointer)]>;
}
//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
// eh_sjlj_setjmp() is an instruction sequence to store the return
// address and save #0 in R0 for the non-longjmp case.
// Since by its nature we may be coming from some other function to get
// here, and we're using the stack frame for the containing function to
// save/restore registers, we can't keep anything live in regs across
// the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
// when we get here from a longjmp(). We force everthing out of registers
// except for our own input by listing the relevant registers in Defs. By
// doing so, we also cause the prologue/epilogue code to actively preserve
// all of the callee-saved resgisters, which is exactly what we want.
// A constant value is passed in $val, and we use the location as a scratch.
//
// These are pseudo-instructions and are lowered to individual MC-insts, so
// no encoding information is necessary.
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, D0,
D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30,
D31 ], hasSideEffects = 1, isBarrier = 1 in {
def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
NoItinerary,
[(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
Requires<[IsARM, HasVFP2]>;
}
let Defs =
[ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR ],
hasSideEffects = 1, isBarrier = 1 in {
def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
NoItinerary,
[(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
Requires<[IsARM, NoVFP]>;
}
// FIXME: Non-Darwin version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
Defs = [ R7, LR, SP ] in {
def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
NoItinerary,
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
Requires<[IsARM, IsDarwin]>;
}
// eh.sjlj.dispatchsetup pseudo-instruction.
2010-10-30 04:21:49 +08:00
// This pseudo is used for ARM, Thumb1 and Thumb2. Any differences are
// handled when the pseudo is expanded (which happens before any passes
// that need the instruction size).
let isBarrier = 1, hasSideEffects = 1 in
def Int_eh_sjlj_dispatchsetup :
PseudoInst<(outs), (ins GPR:$src), NoItinerary,
[(ARMeh_sjlj_dispatchsetup GPR:$src)]>,
Requires<[IsDarwin]>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// Large immediate handling.
2006-10-11 03:35:01 +08:00
// 32-bit immediate using two piece so_imms or movw + movt.
// This is a single pseudo instruction, the benefit is that it can be remat'd
// as a single unit instead of having to handle reg inputs.
// FIXME: Remove this when we can do generalized remat.
let isReMaterializable = 1, isMoveImm = 1 in
def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
[(set GPR:$dst, (arm_i32imm:$src))]>,
Requires<[IsARM]>;
// ConstantPool, GlobalAddress, and JumpTable
def : ARMPat<(ARMWrapper tglobaladdr :$dst), (LEApcrel tglobaladdr :$dst)>,
Requires<[IsARM, DontUseMovt]>;
def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>;
def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
Requires<[IsARM, UseMovt]>;
def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(LEApcrelJT tjumptable:$dst, imm:$id)>;
// TODO: add,sub,and, 3-instr forms?
2006-10-07 22:03:39 +08:00
// Tail calls
def : ARMPat<(ARMtcret tcGPR:$dst),
(TCRETURNri tcGPR:$dst)>, Requires<[IsDarwin]>;
def : ARMPat<(ARMtcret (i32 tglobaladdr:$dst)),
(TCRETURNdi texternalsym:$dst)>, Requires<[IsDarwin]>;
def : ARMPat<(ARMtcret (i32 texternalsym:$dst)),
(TCRETURNdi texternalsym:$dst)>, Requires<[IsDarwin]>;
def : ARMPat<(ARMtcret tcGPR:$dst),
(TCRETURNriND tcGPR:$dst)>, Requires<[IsNotDarwin]>;
def : ARMPat<(ARMtcret (i32 tglobaladdr:$dst)),
(TCRETURNdiND texternalsym:$dst)>, Requires<[IsNotDarwin]>;
def : ARMPat<(ARMtcret (i32 texternalsym:$dst)),
(TCRETURNdiND texternalsym:$dst)>, Requires<[IsNotDarwin]>;
// Direct calls
def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>,
Requires<[IsARM, IsNotDarwin]>;
def : ARMPat<(ARMcall texternalsym:$func), (BLr9 texternalsym:$func)>,
Requires<[IsARM, IsDarwin]>;
2006-10-17 21:36:07 +08:00
// zextload i1 -> zextload i8
def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
2006-10-17 21:36:07 +08:00
// extload -> zextload
def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>;
def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
// smul* and smla*
def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16))),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra GPR:$b, (i32 16))),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16))),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))),
(i32 16)),
(SMULWB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), (i32 16)),
(SMULWB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16)))),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul sext_16_node:$a, sext_16_node:$b)),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, (i32 16)), (i32 16)),
(sra GPR:$b, (i32 16)))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul sext_16_node:$a, (sra GPR:$b, (i32 16)))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra GPR:$a, (i32 16)),
(sra (shl GPR:$b, (i32 16)), (i32 16)))),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra GPR:$a, (i32 16)), sext_16_node:$b)),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))),
(i32 16))),
(SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(sra (mul GPR:$a, sext_16_node:$b), (i32 16))),
(SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
//===----------------------------------------------------------------------===//
// Thumb Support
//
include "ARMInstrThumb.td"
//===----------------------------------------------------------------------===//
// Thumb2 Support
//
include "ARMInstrThumb2.td"
//===----------------------------------------------------------------------===//
// Floating Point Support
//
include "ARMInstrVFP.td"
//===----------------------------------------------------------------------===//
// Advanced SIMD (NEON) Support
//
include "ARMInstrNEON.td"
//===----------------------------------------------------------------------===//
// Coprocessor Instructions. For disassembly only.
//
def CDP : ABI<0b1110, (outs), (ins nohash_imm:$cop, i32imm:$opc1,
nohash_imm:$CRd, nohash_imm:$CRn, nohash_imm:$CRm, i32imm:$opc2),
NoItinerary, "cdp", "\tp$cop, $opc1, cr$CRd, cr$CRn, cr$CRm, $opc2",
[/* For disassembly only; pattern left blank */]> {
let Inst{4} = 0;
}
def CDP2 : ABXI<0b1110, (outs), (ins nohash_imm:$cop, i32imm:$opc1,
nohash_imm:$CRd, nohash_imm:$CRn, nohash_imm:$CRm, i32imm:$opc2),
NoItinerary, "cdp2\tp$cop, $opc1, cr$CRd, cr$CRn, cr$CRm, $opc2",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{4} = 0;
}
class ACI<dag oops, dag iops, string opc, string asm>
: I<oops, iops, AddrModeNone, Size4Bytes, IndexModeNone, BrFrm, NoItinerary,
opc, asm, "", [/* For disassembly only; pattern left blank */]> {
let Inst{27-25} = 0b110;
}
multiclass LdStCop<bits<4> op31_28, bit load, string opc> {
def _OFFSET : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, addrmode2:$addr),
opc, "\tp$cop, cr$CRd, $addr"> {
let Inst{31-28} = op31_28;
let Inst{24} = 1; // P = 1
let Inst{21} = 0; // W = 0
let Inst{22} = 0; // D = 0
let Inst{20} = load;
}
def _PRE : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, addrmode2:$addr),
opc, "\tp$cop, cr$CRd, $addr!"> {
let Inst{31-28} = op31_28;
let Inst{24} = 1; // P = 1
let Inst{21} = 1; // W = 1
let Inst{22} = 0; // D = 0
let Inst{20} = load;
}
def _POST : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, GPR:$base, am2offset:$offset),
opc, "\tp$cop, cr$CRd, [$base], $offset"> {
let Inst{31-28} = op31_28;
let Inst{24} = 0; // P = 0
let Inst{21} = 1; // W = 1
let Inst{22} = 0; // D = 0
let Inst{20} = load;
}
def _OPTION : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, GPR:$base, i32imm:$option),
opc, "\tp$cop, cr$CRd, [$base], $option"> {
let Inst{31-28} = op31_28;
let Inst{24} = 0; // P = 0
let Inst{23} = 1; // U = 1
let Inst{21} = 0; // W = 0
let Inst{22} = 0; // D = 0
let Inst{20} = load;
}
def L_OFFSET : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, addrmode2:$addr),
!strconcat(opc, "l"), "\tp$cop, cr$CRd, $addr"> {
let Inst{31-28} = op31_28;
let Inst{24} = 1; // P = 1
let Inst{21} = 0; // W = 0
let Inst{22} = 1; // D = 1
let Inst{20} = load;
}
def L_PRE : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, addrmode2:$addr),
!strconcat(opc, "l"), "\tp$cop, cr$CRd, $addr!"> {
let Inst{31-28} = op31_28;
let Inst{24} = 1; // P = 1
let Inst{21} = 1; // W = 1
let Inst{22} = 1; // D = 1
let Inst{20} = load;
}
def L_POST : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, GPR:$base, am2offset:$offset),
!strconcat(opc, "l"), "\tp$cop, cr$CRd, [$base], $offset"> {
let Inst{31-28} = op31_28;
let Inst{24} = 0; // P = 0
let Inst{21} = 1; // W = 1
let Inst{22} = 1; // D = 1
let Inst{20} = load;
}
def L_OPTION : ACI<(outs),
(ins nohash_imm:$cop, nohash_imm:$CRd, GPR:$base, nohash_imm:$option),
!strconcat(opc, "l"), "\tp$cop, cr$CRd, [$base], $option"> {
let Inst{31-28} = op31_28;
let Inst{24} = 0; // P = 0
let Inst{23} = 1; // U = 1
let Inst{21} = 0; // W = 0
let Inst{22} = 1; // D = 1
let Inst{20} = load;
}
}
defm LDC : LdStCop<{?,?,?,?}, 1, "ldc">;
defm LDC2 : LdStCop<0b1111, 1, "ldc2">;
defm STC : LdStCop<{?,?,?,?}, 0, "stc">;
defm STC2 : LdStCop<0b1111, 0, "stc2">;
def MCR : ABI<0b1110, (outs), (ins nohash_imm:$cop, i32imm:$opc1,
GPR:$Rt, nohash_imm:$CRn, nohash_imm:$CRm, i32imm:$opc2),
NoItinerary, "mcr", "\tp$cop, $opc1, $Rt, cr$CRn, cr$CRm, $opc2",
[/* For disassembly only; pattern left blank */]> {
let Inst{20} = 0;
let Inst{4} = 1;
}
def MCR2 : ABXI<0b1110, (outs), (ins nohash_imm:$cop, i32imm:$opc1,
GPR:$Rt, nohash_imm:$CRn, nohash_imm:$CRm, i32imm:$opc2),
NoItinerary, "mcr2\tp$cop, $opc1, $Rt, cr$CRn, cr$CRm, $opc2",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{20} = 0;
let Inst{4} = 1;
}
def MRC : ABI<0b1110, (outs), (ins nohash_imm:$cop, i32imm:$opc1,
GPR:$Rt, nohash_imm:$CRn, nohash_imm:$CRm, i32imm:$opc2),
NoItinerary, "mrc", "\tp$cop, $opc1, $Rt, cr$CRn, cr$CRm, $opc2",
[/* For disassembly only; pattern left blank */]> {
let Inst{20} = 1;
let Inst{4} = 1;
}
def MRC2 : ABXI<0b1110, (outs), (ins nohash_imm:$cop, i32imm:$opc1,
GPR:$Rt, nohash_imm:$CRn, nohash_imm:$CRm, i32imm:$opc2),
NoItinerary, "mrc2\tp$cop, $opc1, $Rt, cr$CRn, cr$CRm, $opc2",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{20} = 1;
let Inst{4} = 1;
}
def MCRR : ABI<0b1100, (outs), (ins nohash_imm:$cop, i32imm:$opc,
GPR:$Rt, GPR:$Rt2, nohash_imm:$CRm),
NoItinerary, "mcrr", "\tp$cop, $opc, $Rt, $Rt2, cr$CRm",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0100;
}
def MCRR2 : ABXI<0b1100, (outs), (ins nohash_imm:$cop, i32imm:$opc,
GPR:$Rt, GPR:$Rt2, nohash_imm:$CRm),
NoItinerary, "mcrr2\tp$cop, $opc, $Rt, $Rt2, cr$CRm",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{23-20} = 0b0100;
}
def MRRC : ABI<0b1100, (outs), (ins nohash_imm:$cop, i32imm:$opc,
GPR:$Rt, GPR:$Rt2, nohash_imm:$CRm),
NoItinerary, "mrrc", "\tp$cop, $opc, $Rt, $Rt2, cr$CRm",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0101;
}
def MRRC2 : ABXI<0b1100, (outs), (ins nohash_imm:$cop, i32imm:$opc,
GPR:$Rt, GPR:$Rt2, nohash_imm:$CRm),
NoItinerary, "mrrc2\tp$cop, $opc, $Rt, $Rt2, cr$CRm",
[/* For disassembly only; pattern left blank */]> {
let Inst{31-28} = 0b1111;
let Inst{23-20} = 0b0101;
}
//===----------------------------------------------------------------------===//
// Move between special register and ARM core register -- for disassembly only
//
def MRS : ABI<0b0001,(outs GPR:$dst),(ins), NoItinerary, "mrs", "\t$dst, cpsr",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0000;
let Inst{7-4} = 0b0000;
}
def MRSsys : ABI<0b0001,(outs GPR:$dst),(ins), NoItinerary,"mrs","\t$dst, spsr",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0100;
let Inst{7-4} = 0b0000;
}
def MSR : ABI<0b0001, (outs), (ins GPR:$src, msr_mask:$mask), NoItinerary,
"msr", "\tcpsr$mask, $src",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0010;
let Inst{7-4} = 0b0000;
}
def MSRi : ABI<0b0011, (outs), (ins so_imm:$a, msr_mask:$mask), NoItinerary,
"msr", "\tcpsr$mask, $a",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0010;
let Inst{7-4} = 0b0000;
}
def MSRsys : ABI<0b0001, (outs), (ins GPR:$src, msr_mask:$mask), NoItinerary,
"msr", "\tspsr$mask, $src",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0110;
let Inst{7-4} = 0b0000;
}
def MSRsysi : ABI<0b0011, (outs), (ins so_imm:$a, msr_mask:$mask), NoItinerary,
"msr", "\tspsr$mask, $a",
[/* For disassembly only; pattern left blank */]> {
let Inst{23-20} = 0b0110;
let Inst{7-4} = 0b0000;
}