2003-10-11 01:45:12 +08:00
|
|
|
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
|
2005-04-22 06:36:52 +08:00
|
|
|
//
|
2003-10-21 03:43:21 +08:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
2005-04-22 06:36:52 +08:00
|
|
|
//
|
2003-10-21 03:43:21 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
2005-04-22 06:36:52 +08:00
|
|
|
//
|
2002-12-24 08:01:05 +08:00
|
|
|
// This file defines the common interface used by the various execution engine
|
|
|
|
// subclasses.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2003-08-06 01:00:32 +08:00
|
|
|
#define DEBUG_TYPE "jit"
|
2002-12-24 08:01:05 +08:00
|
|
|
#include "llvm/Constants.h"
|
2003-10-17 05:18:05 +08:00
|
|
|
#include "llvm/DerivedTypes.h"
|
2002-12-24 08:01:05 +08:00
|
|
|
#include "llvm/Module.h"
|
2003-10-17 05:18:05 +08:00
|
|
|
#include "llvm/ModuleProvider.h"
|
2004-11-29 22:11:29 +08:00
|
|
|
#include "llvm/ADT/Statistic.h"
|
2003-10-17 05:18:05 +08:00
|
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
2003-09-06 04:08:15 +08:00
|
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
2004-09-02 06:55:40 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
2006-05-09 06:00:52 +08:00
|
|
|
#include "llvm/Support/MutexGuard.h"
|
2004-11-29 22:11:29 +08:00
|
|
|
#include "llvm/System/DynamicLibrary.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
2003-11-20 05:08:57 +08:00
|
|
|
using namespace llvm;
|
2002-12-24 08:01:05 +08:00
|
|
|
|
2006-12-20 06:43:32 +08:00
|
|
|
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
|
|
|
|
STATISTIC(NumGlobals , "Number of global vars initialized");
|
2002-12-24 08:01:05 +08:00
|
|
|
|
2006-03-22 14:07:50 +08:00
|
|
|
ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
|
|
|
|
ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
|
|
|
|
|
2006-08-16 09:24:12 +08:00
|
|
|
ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
|
2006-11-10 03:31:15 +08:00
|
|
|
LazyCompilationDisabled = false;
|
2006-08-16 09:24:12 +08:00
|
|
|
Modules.push_back(P);
|
2003-10-17 05:18:05 +08:00
|
|
|
assert(P && "ModuleProvider is null?");
|
|
|
|
}
|
|
|
|
|
2006-08-16 09:24:12 +08:00
|
|
|
ExecutionEngine::ExecutionEngine(Module *M) {
|
2006-11-10 03:31:15 +08:00
|
|
|
LazyCompilationDisabled = false;
|
2003-10-18 02:31:59 +08:00
|
|
|
assert(M && "Module is null?");
|
2006-08-16 09:24:12 +08:00
|
|
|
Modules.push_back(new ExistingModuleProvider(M));
|
2003-10-17 05:18:05 +08:00
|
|
|
}
|
|
|
|
|
2003-09-05 06:57:27 +08:00
|
|
|
ExecutionEngine::~ExecutionEngine() {
|
2006-08-16 09:24:12 +08:00
|
|
|
for (unsigned i = 0, e = Modules.size(); i != e; ++i)
|
|
|
|
delete Modules[i];
|
2003-09-05 06:57:27 +08:00
|
|
|
}
|
|
|
|
|
2006-08-16 09:24:12 +08:00
|
|
|
/// FindFunctionNamed - Search all of the active modules to find the one that
|
|
|
|
/// defines FnName. This is very slow operation and shouldn't be used for
|
|
|
|
/// general code.
|
|
|
|
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
|
|
|
|
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
|
2007-02-06 05:19:13 +08:00
|
|
|
if (Function *F = Modules[i]->getModule()->getFunction(FnName))
|
2006-08-16 09:24:12 +08:00
|
|
|
return F;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-05-09 06:00:52 +08:00
|
|
|
/// addGlobalMapping - Tell the execution engine that the specified global is
|
|
|
|
/// at the specified location. This is used internally as functions are JIT'd
|
|
|
|
/// and as global variables are laid out in memory. It can and should also be
|
|
|
|
/// used by clients of the EE that want to have an LLVM global overlay
|
|
|
|
/// existing data in memory.
|
|
|
|
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
|
|
MutexGuard locked(lock);
|
|
|
|
|
|
|
|
void *&CurVal = state.getGlobalAddressMap(locked)[GV];
|
|
|
|
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
|
|
|
|
CurVal = Addr;
|
|
|
|
|
|
|
|
// If we are using the reverse mapping, add it too
|
|
|
|
if (!state.getGlobalAddressReverseMap(locked).empty()) {
|
|
|
|
const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
|
|
|
|
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
|
|
|
|
V = GV;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// clearAllGlobalMappings - Clear all global mappings and start over again
|
|
|
|
/// use in dynamic compilation scenarios when you want to move globals
|
|
|
|
void ExecutionEngine::clearAllGlobalMappings() {
|
|
|
|
MutexGuard locked(lock);
|
|
|
|
|
|
|
|
state.getGlobalAddressMap(locked).clear();
|
|
|
|
state.getGlobalAddressReverseMap(locked).clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// updateGlobalMapping - Replace an existing mapping for GV with a new
|
|
|
|
/// address. This updates both maps as required. If "Addr" is null, the
|
|
|
|
/// entry for the global is removed from the mappings.
|
|
|
|
void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
|
|
|
|
MutexGuard locked(lock);
|
|
|
|
|
|
|
|
// Deleting from the mapping?
|
|
|
|
if (Addr == 0) {
|
|
|
|
state.getGlobalAddressMap(locked).erase(GV);
|
|
|
|
if (!state.getGlobalAddressReverseMap(locked).empty())
|
|
|
|
state.getGlobalAddressReverseMap(locked).erase(Addr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *&CurVal = state.getGlobalAddressMap(locked)[GV];
|
|
|
|
if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
|
|
|
|
state.getGlobalAddressReverseMap(locked).erase(CurVal);
|
|
|
|
CurVal = Addr;
|
|
|
|
|
|
|
|
// If we are using the reverse mapping, add it too
|
|
|
|
if (!state.getGlobalAddressReverseMap(locked).empty()) {
|
|
|
|
const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
|
|
|
|
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
|
|
|
|
V = GV;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getPointerToGlobalIfAvailable - This returns the address of the specified
|
|
|
|
/// global value if it is has already been codegen'd, otherwise it returns null.
|
|
|
|
///
|
|
|
|
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
|
|
|
|
MutexGuard locked(lock);
|
|
|
|
|
|
|
|
std::map<const GlobalValue*, void*>::iterator I =
|
|
|
|
state.getGlobalAddressMap(locked).find(GV);
|
|
|
|
return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
|
|
|
|
}
|
|
|
|
|
2004-01-01 04:21:04 +08:00
|
|
|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
|
|
|
|
/// at the specified address.
|
|
|
|
///
|
|
|
|
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
|
2005-07-12 23:51:55 +08:00
|
|
|
MutexGuard locked(lock);
|
|
|
|
|
2004-01-01 04:21:04 +08:00
|
|
|
// If we haven't computed the reverse mapping yet, do so first.
|
2005-07-12 23:51:55 +08:00
|
|
|
if (state.getGlobalAddressReverseMap(locked).empty()) {
|
2006-05-09 06:00:52 +08:00
|
|
|
for (std::map<const GlobalValue*, void *>::iterator
|
|
|
|
I = state.getGlobalAddressMap(locked).begin(),
|
|
|
|
E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
|
|
|
|
state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
|
|
|
|
I->first));
|
2004-01-01 04:21:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
std::map<void *, const GlobalValue*>::iterator I =
|
2005-07-12 23:51:55 +08:00
|
|
|
state.getGlobalAddressReverseMap(locked).find(Addr);
|
|
|
|
return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
|
2004-01-01 04:21:04 +08:00
|
|
|
}
|
2003-12-26 14:50:30 +08:00
|
|
|
|
|
|
|
// CreateArgv - Turn a vector of strings into a nice argv style array of
|
|
|
|
// pointers to null terminated strings.
|
|
|
|
//
|
|
|
|
static void *CreateArgv(ExecutionEngine *EE,
|
|
|
|
const std::vector<std::string> &InputArgv) {
|
2006-05-03 09:29:57 +08:00
|
|
|
unsigned PtrSize = EE->getTargetData()->getPointerSize();
|
2003-12-26 14:50:30 +08:00
|
|
|
char *Result = new char[(InputArgv.size()+1)*PtrSize];
|
|
|
|
|
2006-11-28 07:54:50 +08:00
|
|
|
DOUT << "ARGV = " << (void*)Result << "\n";
|
2006-12-31 13:51:36 +08:00
|
|
|
const Type *SBytePtr = PointerType::get(Type::Int8Ty);
|
2003-12-26 14:50:30 +08:00
|
|
|
|
|
|
|
for (unsigned i = 0; i != InputArgv.size(); ++i) {
|
|
|
|
unsigned Size = InputArgv[i].size()+1;
|
|
|
|
char *Dest = new char[Size];
|
2006-11-28 07:54:50 +08:00
|
|
|
DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
|
2005-04-22 06:36:52 +08:00
|
|
|
|
2003-12-26 14:50:30 +08:00
|
|
|
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
|
|
|
|
Dest[Size-1] = 0;
|
2005-04-22 06:36:52 +08:00
|
|
|
|
2003-12-26 14:50:30 +08:00
|
|
|
// Endian safe: Result[i] = (PointerTy)Dest;
|
|
|
|
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
|
|
|
|
SBytePtr);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Null terminate it
|
|
|
|
EE->StoreValueToMemory(PTOGV(0),
|
|
|
|
(GenericValue*)(Result+InputArgv.size()*PtrSize),
|
|
|
|
SBytePtr);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2006-03-09 02:42:46 +08:00
|
|
|
|
|
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
2006-08-16 09:24:12 +08:00
|
|
|
/// the static constructors or destructors for a program, depending on the
|
2006-03-09 02:42:46 +08:00
|
|
|
/// value of isDtors.
|
|
|
|
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
|
|
|
|
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
|
|
|
|
|
2006-08-16 09:24:12 +08:00
|
|
|
// Execute global ctors/dtors for each module in the program.
|
|
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
|
|
GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
|
|
|
|
|
|
|
|
// If this global has internal linkage, or if it has a use, then it must be
|
|
|
|
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
|
|
|
|
// this is the case, don't execute any of the global ctors, __main will do
|
|
|
|
// it.
|
2007-01-31 04:08:39 +08:00
|
|
|
if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
|
2006-08-16 09:24:12 +08:00
|
|
|
|
|
|
|
// Should be an array of '{ int, void ()* }' structs. The first value is
|
|
|
|
// the init priority, which we ignore.
|
|
|
|
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
|
|
if (!InitList) continue;
|
|
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
|
|
|
|
if (ConstantStruct *CS =
|
|
|
|
dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
|
|
|
|
if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
|
2006-03-09 02:42:46 +08:00
|
|
|
|
2006-08-16 09:24:12 +08:00
|
|
|
Constant *FP = CS->getOperand(1);
|
|
|
|
if (FP->isNullValue())
|
|
|
|
break; // Found a null terminator, exit.
|
2006-03-09 02:42:46 +08:00
|
|
|
|
2006-08-16 09:24:12 +08:00
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
|
2006-11-27 09:05:10 +08:00
|
|
|
if (CE->isCast())
|
2006-08-16 09:24:12 +08:00
|
|
|
FP = CE->getOperand(0);
|
|
|
|
if (Function *F = dyn_cast<Function>(FP)) {
|
|
|
|
// Execute the ctor/dtor function!
|
|
|
|
runFunction(F, std::vector<GenericValue>());
|
|
|
|
}
|
2006-03-09 02:42:46 +08:00
|
|
|
}
|
2006-08-16 09:24:12 +08:00
|
|
|
}
|
2006-03-09 02:42:46 +08:00
|
|
|
}
|
|
|
|
|
2003-12-26 14:50:30 +08:00
|
|
|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
|
|
|
|
/// handle the common task of starting up main with the specified argc, argv,
|
|
|
|
/// and envp parameters.
|
|
|
|
int ExecutionEngine::runFunctionAsMain(Function *Fn,
|
|
|
|
const std::vector<std::string> &argv,
|
|
|
|
const char * const * envp) {
|
|
|
|
std::vector<GenericValue> GVArgs;
|
|
|
|
GenericValue GVArgc;
|
2006-12-31 13:51:36 +08:00
|
|
|
GVArgc.Int32Val = argv.size();
|
2004-08-16 09:05:35 +08:00
|
|
|
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
|
|
|
|
if (NumArgs) {
|
|
|
|
GVArgs.push_back(GVArgc); // Arg #0 = argc.
|
|
|
|
if (NumArgs > 1) {
|
|
|
|
GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
|
|
|
|
assert(((char **)GVTOP(GVArgs[1]))[0] &&
|
|
|
|
"argv[0] was null after CreateArgv");
|
|
|
|
if (NumArgs > 2) {
|
|
|
|
std::vector<std::string> EnvVars;
|
|
|
|
for (unsigned i = 0; envp[i]; ++i)
|
|
|
|
EnvVars.push_back(envp[i]);
|
|
|
|
GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2006-12-31 13:51:36 +08:00
|
|
|
return runFunction(Fn, GVArgs).Int32Val;
|
2003-12-26 14:50:30 +08:00
|
|
|
}
|
|
|
|
|
2003-10-17 05:18:05 +08:00
|
|
|
/// If possible, create a JIT, unless the caller specifically requests an
|
|
|
|
/// Interpreter or there's an error. If even an Interpreter cannot be created,
|
2005-04-22 06:36:52 +08:00
|
|
|
/// NULL is returned.
|
2003-10-11 01:45:12 +08:00
|
|
|
///
|
2005-04-22 06:36:52 +08:00
|
|
|
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
|
2006-03-23 13:22:51 +08:00
|
|
|
bool ForceInterpreter) {
|
2003-09-04 04:34:19 +08:00
|
|
|
ExecutionEngine *EE = 0;
|
|
|
|
|
2003-12-28 17:44:37 +08:00
|
|
|
// Unless the interpreter was explicitly selected, try making a JIT.
|
2006-03-22 14:07:50 +08:00
|
|
|
if (!ForceInterpreter && JITCtor)
|
2006-03-23 13:22:51 +08:00
|
|
|
EE = JITCtor(MP);
|
2003-09-04 04:34:19 +08:00
|
|
|
|
|
|
|
// If we can't make a JIT, make an interpreter instead.
|
2006-03-22 14:07:50 +08:00
|
|
|
if (EE == 0 && InterpCtor)
|
2006-03-23 13:22:51 +08:00
|
|
|
EE = InterpCtor(MP);
|
2003-12-28 17:44:37 +08:00
|
|
|
|
2006-03-23 13:22:51 +08:00
|
|
|
if (EE) {
|
2005-04-22 06:36:52 +08:00
|
|
|
// Make sure we can resolve symbols in the program as well. The zero arg
|
2004-11-29 22:11:29 +08:00
|
|
|
// to the function tells DynamicLibrary to load the program, not a library.
|
2006-05-15 03:01:55 +08:00
|
|
|
try {
|
|
|
|
sys::DynamicLibrary::LoadLibraryPermanently(0);
|
|
|
|
} catch (...) {
|
|
|
|
}
|
2006-03-23 13:22:51 +08:00
|
|
|
}
|
2004-11-29 22:11:29 +08:00
|
|
|
|
2003-09-04 04:34:19 +08:00
|
|
|
return EE;
|
|
|
|
}
|
|
|
|
|
2003-10-11 01:45:12 +08:00
|
|
|
/// getPointerToGlobal - This returns the address of the specified global
|
|
|
|
/// value. This may involve code generation if it's a function.
|
|
|
|
///
|
2002-12-24 08:01:05 +08:00
|
|
|
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
|
2003-08-14 02:16:14 +08:00
|
|
|
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
|
2002-12-24 08:01:05 +08:00
|
|
|
return getPointerToFunction(F);
|
|
|
|
|
2005-07-12 23:51:55 +08:00
|
|
|
MutexGuard locked(lock);
|
2006-02-07 13:11:57 +08:00
|
|
|
void *p = state.getGlobalAddressMap(locked)[GV];
|
|
|
|
if (p)
|
|
|
|
return p;
|
|
|
|
|
|
|
|
// Global variable might have been added since interpreter started.
|
|
|
|
if (GlobalVariable *GVar =
|
|
|
|
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
|
|
|
|
EmitGlobalVariable(GVar);
|
|
|
|
else
|
2007-02-14 14:20:04 +08:00
|
|
|
assert(0 && "Global hasn't had an address allocated yet!");
|
2005-07-12 23:51:55 +08:00
|
|
|
return state.getGlobalAddressMap(locked)[GV];
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|
|
|
|
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
/// This macro is used to handle a variety of situations involing integer
|
|
|
|
/// values where the action should be done to one of the GenericValue members.
|
|
|
|
/// THEINTTY is a const Type * for the integer type. ACTION1 comes before
|
|
|
|
/// the GenericValue, ACTION2 comes after.
|
|
|
|
#define DO_FOR_INTEGER(THEINTTY, ACTION) \
|
|
|
|
{ \
|
|
|
|
unsigned BitWidth = cast<IntegerType>(THEINTTY)->getBitWidth(); \
|
|
|
|
if (BitWidth == 1) {\
|
|
|
|
ACTION(Int1Val); \
|
|
|
|
} else if (BitWidth <= 8) {\
|
|
|
|
ACTION(Int8Val); \
|
|
|
|
} else if (BitWidth <= 16) {\
|
|
|
|
ACTION(Int16Val); \
|
|
|
|
} else if (BitWidth <= 32) { \
|
|
|
|
ACTION(Int32Val); \
|
|
|
|
} else if (BitWidth <= 64) { \
|
|
|
|
ACTION(Int64Val); \
|
|
|
|
} else {\
|
|
|
|
assert(0 && "Not implemented: integer types > 64 bits"); \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
2006-11-27 09:05:10 +08:00
|
|
|
/// This function converts a Constant* into a GenericValue. The interesting
|
|
|
|
/// part is if C is a ConstantExpr.
|
|
|
|
/// @brief Get a GenericValue for a Constnat*
|
2002-12-24 08:01:05 +08:00
|
|
|
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
|
2006-11-27 09:05:10 +08:00
|
|
|
// Declare the result as garbage.
|
2002-12-24 08:01:05 +08:00
|
|
|
GenericValue Result;
|
2006-11-27 09:05:10 +08:00
|
|
|
|
|
|
|
// If its undefined, return the garbage.
|
2004-10-26 13:35:14 +08:00
|
|
|
if (isa<UndefValue>(C)) return Result;
|
2003-04-24 03:01:49 +08:00
|
|
|
|
2006-11-27 09:05:10 +08:00
|
|
|
// If the value is a ConstantExpr
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
2003-04-24 03:01:49 +08:00
|
|
|
switch (CE->getOpcode()) {
|
|
|
|
case Instruction::GetElementPtr: {
|
2006-11-27 09:05:10 +08:00
|
|
|
// Compute the index
|
2003-05-15 01:51:49 +08:00
|
|
|
Result = getConstantValue(CE->getOperand(0));
|
2007-02-11 04:35:22 +08:00
|
|
|
SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
|
2003-04-24 03:01:49 +08:00
|
|
|
uint64_t Offset =
|
2007-02-11 04:35:22 +08:00
|
|
|
TD->getIndexedOffset(CE->getOperand(0)->getType(),
|
|
|
|
&Indices[0], Indices.size());
|
2005-04-22 06:36:52 +08:00
|
|
|
|
2006-05-03 09:29:57 +08:00
|
|
|
if (getTargetData()->getPointerSize() == 4)
|
2006-12-31 13:51:36 +08:00
|
|
|
Result.Int32Val += Offset;
|
2005-10-24 07:54:56 +08:00
|
|
|
else
|
2006-12-31 13:51:36 +08:00
|
|
|
Result.Int64Val += Offset;
|
2003-04-24 03:01:49 +08:00
|
|
|
return Result;
|
|
|
|
}
|
2006-11-27 09:05:10 +08:00
|
|
|
case Instruction::Trunc:
|
|
|
|
case Instruction::ZExt:
|
|
|
|
case Instruction::SExt:
|
|
|
|
case Instruction::FPTrunc:
|
|
|
|
case Instruction::FPExt:
|
|
|
|
case Instruction::UIToFP:
|
|
|
|
case Instruction::SIToFP:
|
|
|
|
case Instruction::FPToUI:
|
|
|
|
case Instruction::FPToSI:
|
|
|
|
break;
|
|
|
|
case Instruction::PtrToInt: {
|
|
|
|
Constant *Op = CE->getOperand(0);
|
|
|
|
GenericValue GV = getConstantValue(Op);
|
|
|
|
return GV;
|
|
|
|
}
|
|
|
|
case Instruction::BitCast: {
|
|
|
|
// Bit casts are no-ops but we can only return the GV of the operand if
|
|
|
|
// they are the same basic type (pointer->pointer, packed->packed, etc.)
|
2003-05-15 01:51:49 +08:00
|
|
|
Constant *Op = CE->getOperand(0);
|
2004-03-16 16:38:56 +08:00
|
|
|
GenericValue GV = getConstantValue(Op);
|
2004-06-18 02:19:28 +08:00
|
|
|
if (Op->getType()->getTypeID() == C->getType()->getTypeID())
|
2004-03-16 16:38:56 +08:00
|
|
|
return GV;
|
2006-11-27 09:05:10 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::IntToPtr: {
|
|
|
|
// IntToPtr casts are just so special. Cast to intptr_t first.
|
|
|
|
Constant *Op = CE->getOperand(0);
|
|
|
|
GenericValue GV = getConstantValue(Op);
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
#define INT_TO_PTR_ACTION(FIELD) \
|
|
|
|
return PTOGV((void*)(uintptr_t)GV.FIELD)
|
|
|
|
DO_FOR_INTEGER(Op->getType(), INT_TO_PTR_ACTION)
|
|
|
|
#undef INT_TO_PTR_ACTION
|
2003-05-15 01:51:49 +08:00
|
|
|
break;
|
2003-04-24 03:01:49 +08:00
|
|
|
}
|
2003-05-15 01:51:49 +08:00
|
|
|
case Instruction::Add:
|
2004-07-11 16:01:11 +08:00
|
|
|
switch (CE->getOperand(0)->getType()->getTypeID()) {
|
|
|
|
default: assert(0 && "Bad add type!"); abort();
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::IntegerTyID:
|
|
|
|
#define ADD_ACTION(FIELD) \
|
|
|
|
Result.FIELD = getConstantValue(CE->getOperand(0)).FIELD + \
|
|
|
|
getConstantValue(CE->getOperand(1)).FIELD;
|
|
|
|
DO_FOR_INTEGER(CE->getOperand(0)->getType(),ADD_ACTION);
|
|
|
|
#undef ADD_ACTION
|
2004-07-11 16:01:11 +08:00
|
|
|
break;
|
|
|
|
case Type::FloatTyID:
|
|
|
|
Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
|
|
|
|
getConstantValue(CE->getOperand(1)).FloatVal;
|
|
|
|
break;
|
|
|
|
case Type::DoubleTyID:
|
|
|
|
Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
|
|
|
|
getConstantValue(CE->getOperand(1)).DoubleVal;
|
|
|
|
break;
|
|
|
|
}
|
2003-05-15 01:51:49 +08:00
|
|
|
return Result;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
|
2003-05-15 01:51:49 +08:00
|
|
|
abort();
|
|
|
|
}
|
2005-04-22 06:36:52 +08:00
|
|
|
|
2004-06-18 02:19:28 +08:00
|
|
|
switch (C->getType()->getTypeID()) {
|
2006-10-20 15:07:24 +08:00
|
|
|
#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \
|
|
|
|
case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break
|
2006-12-31 13:51:36 +08:00
|
|
|
GET_CONST_VAL(Float , float , ConstantFP, getValue);
|
|
|
|
GET_CONST_VAL(Double, double , ConstantFP, getValue);
|
2002-12-24 08:01:05 +08:00
|
|
|
#undef GET_CONST_VAL
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::IntegerTyID: {
|
|
|
|
unsigned BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
|
|
|
|
if (BitWidth == 1)
|
|
|
|
Result.Int1Val = (bool)cast<ConstantInt>(C)->getZExtValue();
|
|
|
|
else if (BitWidth <= 8)
|
|
|
|
Result.Int8Val = (uint8_t )cast<ConstantInt>(C)->getZExtValue();
|
|
|
|
else if (BitWidth <= 16)
|
|
|
|
Result.Int16Val = (uint16_t )cast<ConstantInt>(C)->getZExtValue();
|
|
|
|
else if (BitWidth <= 32)
|
|
|
|
Result.Int32Val = (uint32_t )cast<ConstantInt>(C)->getZExtValue();
|
|
|
|
else if (BitWidth <= 64)
|
|
|
|
Result.Int64Val = (uint64_t )cast<ConstantInt>(C)->getZExtValue();
|
|
|
|
else
|
2007-03-03 14:18:03 +08:00
|
|
|
Result.APIntVal = const_cast<APInt*>(&cast<ConstantInt>(C)->getValue());
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2002-12-24 08:01:05 +08:00
|
|
|
case Type::PointerTyID:
|
2004-07-18 08:41:27 +08:00
|
|
|
if (isa<ConstantPointerNull>(C))
|
2002-12-24 08:01:05 +08:00
|
|
|
Result.PointerVal = 0;
|
2004-07-18 08:41:27 +08:00
|
|
|
else if (const Function *F = dyn_cast<Function>(C))
|
|
|
|
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
|
|
|
|
else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
|
|
|
|
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
|
|
|
|
else
|
2002-12-24 08:01:05 +08:00
|
|
|
assert(0 && "Unknown constant pointer type!");
|
|
|
|
break;
|
|
|
|
default:
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
|
2003-04-24 03:01:49 +08:00
|
|
|
abort();
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2006-04-23 02:53:45 +08:00
|
|
|
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
|
|
|
|
/// is the address of the memory at which to store Val, cast to GenericValue *.
|
|
|
|
/// It is not a pointer to a GenericValue containing the address at which to
|
|
|
|
/// store Val.
|
2003-10-11 01:45:12 +08:00
|
|
|
///
|
2002-12-24 08:01:05 +08:00
|
|
|
void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
|
2003-10-11 01:45:12 +08:00
|
|
|
const Type *Ty) {
|
2006-05-03 09:29:57 +08:00
|
|
|
if (getTargetData()->isLittleEndian()) {
|
2004-06-18 02:19:28 +08:00
|
|
|
switch (Ty->getTypeID()) {
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::IntegerTyID: {
|
|
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
2007-01-20 05:13:56 +08:00
|
|
|
uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask();
|
2007-01-18 09:24:02 +08:00
|
|
|
GenericValue TmpVal = Val;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
if (BitWidth <= 8)
|
2007-01-18 09:24:02 +08:00
|
|
|
Ptr->Untyped[0] = Val.Int8Val & BitMask;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
else if (BitWidth <= 16) {
|
2007-01-18 09:24:02 +08:00
|
|
|
TmpVal.Int16Val &= BitMask;
|
|
|
|
Ptr->Untyped[0] = TmpVal.Int16Val & 255;
|
|
|
|
Ptr->Untyped[1] = (TmpVal.Int16Val >> 8) & 255;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
} else if (BitWidth <= 32) {
|
2007-01-18 09:24:02 +08:00
|
|
|
TmpVal.Int32Val &= BitMask;
|
|
|
|
Ptr->Untyped[0] = TmpVal.Int32Val & 255;
|
|
|
|
Ptr->Untyped[1] = (TmpVal.Int32Val >> 8) & 255;
|
|
|
|
Ptr->Untyped[2] = (TmpVal.Int32Val >> 16) & 255;
|
|
|
|
Ptr->Untyped[3] = (TmpVal.Int32Val >> 24) & 255;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
} else if (BitWidth <= 64) {
|
2007-01-18 09:24:02 +08:00
|
|
|
TmpVal.Int64Val &= BitMask;
|
|
|
|
Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val );
|
|
|
|
Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 8);
|
|
|
|
Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 16);
|
|
|
|
Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 24);
|
|
|
|
Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 32);
|
|
|
|
Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 40);
|
|
|
|
Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 48);
|
|
|
|
Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val >> 56);
|
2007-03-03 14:18:03 +08:00
|
|
|
} else {
|
|
|
|
uint64_t *Dest = (uint64_t*)Ptr;
|
|
|
|
const uint64_t *Src = Val.APIntVal->getRawData();
|
|
|
|
for (uint32_t i = 0; i < Val.APIntVal->getNumWords(); ++i)
|
|
|
|
Dest[i] = Src[i];
|
|
|
|
}
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
Store4BytesLittleEndian:
|
2002-12-24 08:01:05 +08:00
|
|
|
case Type::FloatTyID:
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
Ptr->Untyped[0] = Val.Int32Val & 255;
|
|
|
|
Ptr->Untyped[1] = (Val.Int32Val >> 8) & 255;
|
|
|
|
Ptr->Untyped[2] = (Val.Int32Val >> 16) & 255;
|
|
|
|
Ptr->Untyped[3] = (Val.Int32Val >> 24) & 255;
|
|
|
|
break;
|
|
|
|
case Type::PointerTyID:
|
|
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
|
|
goto Store4BytesLittleEndian;
|
|
|
|
/* FALL THROUGH */
|
2002-12-24 08:01:05 +08:00
|
|
|
case Type::DoubleTyID:
|
2006-12-31 13:51:36 +08:00
|
|
|
Ptr->Untyped[0] = (unsigned char)(Val.Int64Val );
|
|
|
|
Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 8);
|
|
|
|
Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 16);
|
|
|
|
Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 24);
|
|
|
|
Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 32);
|
|
|
|
Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 40);
|
|
|
|
Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 48);
|
|
|
|
Ptr->Untyped[7] = (unsigned char)(Val.Int64Val >> 56);
|
2005-01-09 04:13:19 +08:00
|
|
|
break;
|
2002-12-24 08:01:05 +08:00
|
|
|
default:
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "Cannot store value of type " << *Ty << "!\n";
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|
|
|
|
} else {
|
2004-06-18 02:19:28 +08:00
|
|
|
switch (Ty->getTypeID()) {
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::IntegerTyID: {
|
|
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
2007-01-20 05:13:56 +08:00
|
|
|
uint64_t BitMask = cast<IntegerType>(Ty)->getBitMask();
|
2007-01-18 09:24:02 +08:00
|
|
|
GenericValue TmpVal = Val;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
if (BitWidth <= 8)
|
2007-01-18 09:24:02 +08:00
|
|
|
Ptr->Untyped[0] = Val.Int8Val & BitMask;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
else if (BitWidth <= 16) {
|
2007-01-18 09:24:02 +08:00
|
|
|
TmpVal.Int16Val &= BitMask;
|
|
|
|
Ptr->Untyped[1] = TmpVal.Int16Val & 255;
|
|
|
|
Ptr->Untyped[0] = (TmpVal.Int16Val >> 8) & 255;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
} else if (BitWidth <= 32) {
|
2007-01-18 09:24:02 +08:00
|
|
|
TmpVal.Int32Val &= BitMask;
|
|
|
|
Ptr->Untyped[3] = TmpVal.Int32Val & 255;
|
|
|
|
Ptr->Untyped[2] = (TmpVal.Int32Val >> 8) & 255;
|
|
|
|
Ptr->Untyped[1] = (TmpVal.Int32Val >> 16) & 255;
|
|
|
|
Ptr->Untyped[0] = (TmpVal.Int32Val >> 24) & 255;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
} else if (BitWidth <= 64) {
|
2007-01-18 09:24:02 +08:00
|
|
|
TmpVal.Int64Val &= BitMask;
|
|
|
|
Ptr->Untyped[7] = (unsigned char)(TmpVal.Int64Val );
|
|
|
|
Ptr->Untyped[6] = (unsigned char)(TmpVal.Int64Val >> 8);
|
|
|
|
Ptr->Untyped[5] = (unsigned char)(TmpVal.Int64Val >> 16);
|
|
|
|
Ptr->Untyped[4] = (unsigned char)(TmpVal.Int64Val >> 24);
|
|
|
|
Ptr->Untyped[3] = (unsigned char)(TmpVal.Int64Val >> 32);
|
|
|
|
Ptr->Untyped[2] = (unsigned char)(TmpVal.Int64Val >> 40);
|
|
|
|
Ptr->Untyped[1] = (unsigned char)(TmpVal.Int64Val >> 48);
|
|
|
|
Ptr->Untyped[0] = (unsigned char)(TmpVal.Int64Val >> 56);
|
2007-03-03 14:18:03 +08:00
|
|
|
} else {
|
|
|
|
uint64_t *Dest = (uint64_t*)Ptr;
|
|
|
|
const uint64_t *Src = Val.APIntVal->getRawData();
|
|
|
|
for (uint32_t i = 0; i < Val.APIntVal->getNumWords(); ++i)
|
|
|
|
Dest[i] = Src[i];
|
|
|
|
}
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
break;
|
|
|
|
}
|
2003-04-24 04:41:01 +08:00
|
|
|
Store4BytesBigEndian:
|
2002-12-24 08:01:05 +08:00
|
|
|
case Type::FloatTyID:
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
Ptr->Untyped[3] = Val.Int32Val & 255;
|
|
|
|
Ptr->Untyped[2] = (Val.Int32Val >> 8) & 255;
|
|
|
|
Ptr->Untyped[1] = (Val.Int32Val >> 16) & 255;
|
|
|
|
Ptr->Untyped[0] = (Val.Int32Val >> 24) & 255;
|
|
|
|
break;
|
|
|
|
case Type::PointerTyID:
|
|
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
|
|
goto Store4BytesBigEndian;
|
|
|
|
/* FALL THROUGH */
|
2002-12-24 08:01:05 +08:00
|
|
|
case Type::DoubleTyID:
|
2006-12-31 13:51:36 +08:00
|
|
|
Ptr->Untyped[7] = (unsigned char)(Val.Int64Val );
|
|
|
|
Ptr->Untyped[6] = (unsigned char)(Val.Int64Val >> 8);
|
|
|
|
Ptr->Untyped[5] = (unsigned char)(Val.Int64Val >> 16);
|
|
|
|
Ptr->Untyped[4] = (unsigned char)(Val.Int64Val >> 24);
|
|
|
|
Ptr->Untyped[3] = (unsigned char)(Val.Int64Val >> 32);
|
|
|
|
Ptr->Untyped[2] = (unsigned char)(Val.Int64Val >> 40);
|
|
|
|
Ptr->Untyped[1] = (unsigned char)(Val.Int64Val >> 48);
|
|
|
|
Ptr->Untyped[0] = (unsigned char)(Val.Int64Val >> 56);
|
2005-01-09 04:13:19 +08:00
|
|
|
break;
|
2002-12-24 08:01:05 +08:00
|
|
|
default:
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "Cannot store value of type " << *Ty << "!\n";
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2003-10-11 01:45:12 +08:00
|
|
|
/// FIXME: document
|
|
|
|
///
|
2003-05-09 00:52:16 +08:00
|
|
|
GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
|
|
|
|
const Type *Ty) {
|
|
|
|
GenericValue Result;
|
2006-05-03 09:29:57 +08:00
|
|
|
if (getTargetData()->isLittleEndian()) {
|
2004-06-18 02:19:28 +08:00
|
|
|
switch (Ty->getTypeID()) {
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::IntegerTyID: {
|
|
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
|
|
|
if (BitWidth <= 8)
|
|
|
|
Result.Int8Val = Ptr->Untyped[0];
|
|
|
|
else if (BitWidth <= 16) {
|
|
|
|
Result.Int16Val = (unsigned)Ptr->Untyped[0] |
|
|
|
|
((unsigned)Ptr->Untyped[1] << 8);
|
|
|
|
} else if (BitWidth <= 32) {
|
|
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[0] |
|
|
|
|
((unsigned)Ptr->Untyped[1] << 8) |
|
|
|
|
((unsigned)Ptr->Untyped[2] << 16) |
|
|
|
|
((unsigned)Ptr->Untyped[3] << 24);
|
|
|
|
} else if (BitWidth <= 64) {
|
|
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[0] |
|
|
|
|
((uint64_t)Ptr->Untyped[1] << 8) |
|
|
|
|
((uint64_t)Ptr->Untyped[2] << 16) |
|
|
|
|
((uint64_t)Ptr->Untyped[3] << 24) |
|
|
|
|
((uint64_t)Ptr->Untyped[4] << 32) |
|
|
|
|
((uint64_t)Ptr->Untyped[5] << 40) |
|
|
|
|
((uint64_t)Ptr->Untyped[6] << 48) |
|
|
|
|
((uint64_t)Ptr->Untyped[7] << 56);
|
|
|
|
} else
|
2007-03-03 14:18:03 +08:00
|
|
|
Result.APIntVal = new APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr);
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
break;
|
|
|
|
}
|
2005-04-22 06:36:52 +08:00
|
|
|
Load4BytesLittleEndian:
|
2003-05-09 00:52:16 +08:00
|
|
|
case Type::FloatTyID:
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[0] |
|
|
|
|
((unsigned)Ptr->Untyped[1] << 8) |
|
|
|
|
((unsigned)Ptr->Untyped[2] << 16) |
|
|
|
|
((unsigned)Ptr->Untyped[3] << 24);
|
|
|
|
break;
|
|
|
|
case Type::PointerTyID:
|
|
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
|
|
goto Load4BytesLittleEndian;
|
|
|
|
/* FALL THROUGH */
|
2003-05-09 00:52:16 +08:00
|
|
|
case Type::DoubleTyID:
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[0] |
|
|
|
|
((uint64_t)Ptr->Untyped[1] << 8) |
|
|
|
|
((uint64_t)Ptr->Untyped[2] << 16) |
|
|
|
|
((uint64_t)Ptr->Untyped[3] << 24) |
|
|
|
|
((uint64_t)Ptr->Untyped[4] << 32) |
|
|
|
|
((uint64_t)Ptr->Untyped[5] << 40) |
|
|
|
|
((uint64_t)Ptr->Untyped[6] << 48) |
|
|
|
|
((uint64_t)Ptr->Untyped[7] << 56);
|
|
|
|
break;
|
2003-05-09 00:52:16 +08:00
|
|
|
default:
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "Cannot load value of type " << *Ty << "!\n";
|
2003-05-09 00:52:16 +08:00
|
|
|
abort();
|
|
|
|
}
|
|
|
|
} else {
|
2004-06-18 02:19:28 +08:00
|
|
|
switch (Ty->getTypeID()) {
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::IntegerTyID: {
|
2007-03-03 14:18:03 +08:00
|
|
|
uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
if (BitWidth <= 8)
|
|
|
|
Result.Int8Val = Ptr->Untyped[0];
|
|
|
|
else if (BitWidth <= 16) {
|
|
|
|
Result.Int16Val = (unsigned)Ptr->Untyped[1] |
|
|
|
|
((unsigned)Ptr->Untyped[0] << 8);
|
|
|
|
} else if (BitWidth <= 32) {
|
|
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[3] |
|
|
|
|
((unsigned)Ptr->Untyped[2] << 8) |
|
|
|
|
((unsigned)Ptr->Untyped[1] << 16) |
|
|
|
|
((unsigned)Ptr->Untyped[0] << 24);
|
|
|
|
} else if (BitWidth <= 64) {
|
|
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[7] |
|
|
|
|
((uint64_t)Ptr->Untyped[6] << 8) |
|
|
|
|
((uint64_t)Ptr->Untyped[5] << 16) |
|
|
|
|
((uint64_t)Ptr->Untyped[4] << 24) |
|
|
|
|
((uint64_t)Ptr->Untyped[3] << 32) |
|
|
|
|
((uint64_t)Ptr->Untyped[2] << 40) |
|
|
|
|
((uint64_t)Ptr->Untyped[1] << 48) |
|
|
|
|
((uint64_t)Ptr->Untyped[0] << 56);
|
|
|
|
} else
|
2007-03-03 14:18:03 +08:00
|
|
|
Result.APIntVal = new APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr);
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
break;
|
|
|
|
}
|
2003-05-09 00:52:16 +08:00
|
|
|
Load4BytesBigEndian:
|
|
|
|
case Type::FloatTyID:
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
Result.Int32Val = (unsigned)Ptr->Untyped[3] |
|
|
|
|
((unsigned)Ptr->Untyped[2] << 8) |
|
|
|
|
((unsigned)Ptr->Untyped[1] << 16) |
|
|
|
|
((unsigned)Ptr->Untyped[0] << 24);
|
2003-05-09 00:52:16 +08:00
|
|
|
break;
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
case Type::PointerTyID:
|
|
|
|
if (getTargetData()->getPointerSize() == 4)
|
|
|
|
goto Load4BytesBigEndian;
|
|
|
|
/* FALL THROUGH */
|
2003-05-09 00:52:16 +08:00
|
|
|
case Type::DoubleTyID:
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
Result.Int64Val = (uint64_t)Ptr->Untyped[7] |
|
|
|
|
((uint64_t)Ptr->Untyped[6] << 8) |
|
|
|
|
((uint64_t)Ptr->Untyped[5] << 16) |
|
|
|
|
((uint64_t)Ptr->Untyped[4] << 24) |
|
|
|
|
((uint64_t)Ptr->Untyped[3] << 32) |
|
|
|
|
((uint64_t)Ptr->Untyped[2] << 40) |
|
|
|
|
((uint64_t)Ptr->Untyped[1] << 48) |
|
|
|
|
((uint64_t)Ptr->Untyped[0] << 56);
|
|
|
|
break;
|
2003-05-09 00:52:16 +08:00
|
|
|
default:
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "Cannot load value of type " << *Ty << "!\n";
|
2003-05-09 00:52:16 +08:00
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2002-12-24 08:01:05 +08:00
|
|
|
// InitializeMemory - Recursive function to apply a Constant value into the
|
|
|
|
// specified memory location...
|
|
|
|
//
|
|
|
|
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
|
2004-10-17 02:19:26 +08:00
|
|
|
if (isa<UndefValue>(Init)) {
|
|
|
|
return;
|
2007-02-15 10:26:10 +08:00
|
|
|
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
|
2006-01-21 02:18:40 +08:00
|
|
|
unsigned ElementSize =
|
2006-05-03 09:29:57 +08:00
|
|
|
getTargetData()->getTypeSize(CP->getType()->getElementType());
|
2006-01-21 02:18:40 +08:00
|
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
|
|
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
|
|
|
|
return;
|
2004-10-17 02:19:26 +08:00
|
|
|
} else if (Init->getType()->isFirstClassType()) {
|
2002-12-24 08:01:05 +08:00
|
|
|
GenericValue Val = getConstantValue(Init);
|
|
|
|
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
|
|
|
|
return;
|
2004-02-15 13:54:06 +08:00
|
|
|
} else if (isa<ConstantAggregateZero>(Init)) {
|
2006-05-03 09:29:57 +08:00
|
|
|
memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
|
2004-02-15 13:54:06 +08:00
|
|
|
return;
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|
|
|
|
|
2004-06-18 02:19:28 +08:00
|
|
|
switch (Init->getType()->getTypeID()) {
|
2002-12-24 08:01:05 +08:00
|
|
|
case Type::ArrayTyID: {
|
|
|
|
const ConstantArray *CPA = cast<ConstantArray>(Init);
|
2005-04-22 06:36:52 +08:00
|
|
|
unsigned ElementSize =
|
2006-05-03 09:29:57 +08:00
|
|
|
getTargetData()->getTypeSize(CPA->getType()->getElementType());
|
2004-08-04 16:44:43 +08:00
|
|
|
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
|
|
|
|
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
|
2002-12-24 08:01:05 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Type::StructTyID: {
|
|
|
|
const ConstantStruct *CPS = cast<ConstantStruct>(Init);
|
|
|
|
const StructLayout *SL =
|
2006-05-03 09:29:57 +08:00
|
|
|
getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
|
2004-08-04 16:44:43 +08:00
|
|
|
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
|
2007-02-11 03:55:17 +08:00
|
|
|
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
|
2002-12-24 08:01:05 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "Bad Type: " << *Init->getType() << "\n";
|
2002-12-24 08:01:05 +08:00
|
|
|
assert(0 && "Unknown constant type to initialize memory with!");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// EmitGlobals - Emit all of the global variables to memory, storing their
|
|
|
|
/// addresses into GlobalAddress. This must make sure to copy the contents of
|
|
|
|
/// their initializers into the memory.
|
|
|
|
///
|
|
|
|
void ExecutionEngine::emitGlobals() {
|
2006-05-03 09:29:57 +08:00
|
|
|
const TargetData *TD = getTargetData();
|
2005-04-22 06:36:52 +08:00
|
|
|
|
2002-12-24 08:01:05 +08:00
|
|
|
// Loop over all of the global variables in the program, allocating the memory
|
2006-08-16 09:24:12 +08:00
|
|
|
// to hold them. If there is more than one module, do a prepass over globals
|
|
|
|
// to figure out how the different modules should link together.
|
|
|
|
//
|
|
|
|
std::map<std::pair<std::string, const Type*>,
|
|
|
|
const GlobalValue*> LinkedGlobalsMap;
|
|
|
|
|
|
|
|
if (Modules.size() != 1) {
|
|
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
|
|
Module &M = *Modules[m]->getModule();
|
|
|
|
for (Module::const_global_iterator I = M.global_begin(),
|
|
|
|
E = M.global_end(); I != E; ++I) {
|
|
|
|
const GlobalValue *GV = I;
|
2007-01-31 04:08:39 +08:00
|
|
|
if (GV->hasInternalLinkage() || GV->isDeclaration() ||
|
2006-08-16 09:24:12 +08:00
|
|
|
GV->hasAppendingLinkage() || !GV->hasName())
|
|
|
|
continue;// Ignore external globals and globals with internal linkage.
|
|
|
|
|
|
|
|
const GlobalValue *&GVEntry =
|
|
|
|
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
|
|
|
|
|
|
|
|
// If this is the first time we've seen this global, it is the canonical
|
|
|
|
// version.
|
|
|
|
if (!GVEntry) {
|
|
|
|
GVEntry = GV;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the existing global is strong, never replace it.
|
2006-09-15 02:23:27 +08:00
|
|
|
if (GVEntry->hasExternalLinkage() ||
|
|
|
|
GVEntry->hasDLLImportLinkage() ||
|
|
|
|
GVEntry->hasDLLExportLinkage())
|
2006-08-16 09:24:12 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
|
|
|
|
// symbol.
|
2006-12-01 08:25:12 +08:00
|
|
|
if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
|
2006-08-16 09:24:12 +08:00
|
|
|
GVEntry = GV;
|
2003-04-24 03:01:49 +08:00
|
|
|
}
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|
2006-08-16 09:24:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<const GlobalValue*> NonCanonicalGlobals;
|
|
|
|
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
|
|
|
|
Module &M = *Modules[m]->getModule();
|
|
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
|
|
I != E; ++I) {
|
|
|
|
// In the multi-module case, see what this global maps to.
|
|
|
|
if (!LinkedGlobalsMap.empty()) {
|
|
|
|
if (const GlobalValue *GVEntry =
|
|
|
|
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
|
|
|
|
// If something else is the canonical global, ignore this one.
|
|
|
|
if (GVEntry != &*I) {
|
|
|
|
NonCanonicalGlobals.push_back(I);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-01-31 04:08:39 +08:00
|
|
|
if (!I->isDeclaration()) {
|
2006-08-16 09:24:12 +08:00
|
|
|
// Get the type of the global.
|
|
|
|
const Type *Ty = I->getType()->getElementType();
|
|
|
|
|
|
|
|
// Allocate some memory for it!
|
|
|
|
unsigned Size = TD->getTypeSize(Ty);
|
|
|
|
addGlobalMapping(I, new char[Size]);
|
|
|
|
} else {
|
|
|
|
// External variable reference. Try to use the dynamic loader to
|
|
|
|
// get a pointer to it.
|
|
|
|
if (void *SymAddr =
|
|
|
|
sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
|
|
|
|
addGlobalMapping(I, SymAddr);
|
|
|
|
else {
|
2006-12-07 09:30:32 +08:00
|
|
|
cerr << "Could not resolve external global address: "
|
|
|
|
<< I->getName() << "\n";
|
2006-08-16 09:24:12 +08:00
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are multiple modules, map the non-canonical globals to their
|
|
|
|
// canonical location.
|
|
|
|
if (!NonCanonicalGlobals.empty()) {
|
|
|
|
for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
|
|
|
|
const GlobalValue *GV = NonCanonicalGlobals[i];
|
|
|
|
const GlobalValue *CGV =
|
|
|
|
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
|
|
|
|
void *Ptr = getPointerToGlobalIfAvailable(CGV);
|
|
|
|
assert(Ptr && "Canonical global wasn't codegen'd!");
|
|
|
|
addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
For PR1064:
Implement the arbitrary bit-width integer feature. The feature allows
integers of any bitwidth (up to 64) to be defined instead of just 1, 8,
16, 32, and 64 bit integers.
This change does several things:
1. Introduces a new Derived Type, IntegerType, to represent the number of
bits in an integer. The Type classes SubclassData field is used to
store the number of bits. This allows 2^23 bits in an integer type.
2. Removes the five integer Type::TypeID values for the 1, 8, 16, 32 and
64-bit integers. These are replaced with just IntegerType which is not
a primitive any more.
3. Adjust the rest of LLVM to account for this change.
Note that while this incremental change lays the foundation for arbitrary
bit-width integers, LLVM has not yet been converted to actually deal with
them in any significant way. Most optimization passes, for example, will
still only deal with the byte-width integer types. Future increments
will rectify this situation.
llvm-svn: 33113
2007-01-12 15:05:14 +08:00
|
|
|
// Now that all of the globals are set up in memory, loop through them all
|
|
|
|
// and initialize their contents.
|
2006-08-16 09:24:12 +08:00
|
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
|
|
I != E; ++I) {
|
2007-01-31 04:08:39 +08:00
|
|
|
if (!I->isDeclaration()) {
|
2006-08-16 09:24:12 +08:00
|
|
|
if (!LinkedGlobalsMap.empty()) {
|
|
|
|
if (const GlobalValue *GVEntry =
|
|
|
|
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
|
|
|
|
if (GVEntry != &*I) // Not the canonical variable.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
EmitGlobalVariable(I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2003-12-20 10:45:37 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// EmitGlobalVariable - This method emits the specified global variable to the
|
|
|
|
// address specified in GlobalAddresses, or allocates new memory if it's not
|
|
|
|
// already in the map.
|
2003-12-20 11:36:47 +08:00
|
|
|
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
|
2004-01-01 04:21:04 +08:00
|
|
|
void *GA = getPointerToGlobalIfAvailable(GV);
|
2006-11-28 07:54:50 +08:00
|
|
|
DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
|
2004-02-09 03:33:23 +08:00
|
|
|
|
2003-12-20 11:36:47 +08:00
|
|
|
const Type *ElTy = GV->getType()->getElementType();
|
2006-05-03 09:29:57 +08:00
|
|
|
size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
|
2003-12-20 10:45:37 +08:00
|
|
|
if (GA == 0) {
|
|
|
|
// If it's not already specified, allocate memory for the global.
|
2004-11-19 16:44:07 +08:00
|
|
|
GA = new char[GVSize];
|
2004-01-01 04:21:04 +08:00
|
|
|
addGlobalMapping(GV, GA);
|
2003-12-20 10:45:37 +08:00
|
|
|
}
|
2003-12-20 11:36:47 +08:00
|
|
|
|
2003-12-20 10:45:37 +08:00
|
|
|
InitializeMemory(GV->getInitializer(), GA);
|
2005-01-09 04:13:19 +08:00
|
|
|
NumInitBytes += (unsigned)GVSize;
|
2003-12-20 10:45:37 +08:00
|
|
|
++NumGlobals;
|
2002-12-24 08:01:05 +08:00
|
|
|
}
|