llvm-project/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2164 lines
87 KiB
C++
Raw Normal View History

//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
/// Return true if the value is cheaper to scalarize than it is to leave as a
/// vector operation. IsConstantExtractIndex indicates whether we are extracting
/// one known element from a vector constant.
///
/// FIXME: It's possible to create more instructions than previously existed.
static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
// If we can pick a scalar constant value out of a vector, that is free.
if (auto *C = dyn_cast<Constant>(V))
return IsConstantExtractIndex || C->getSplatValue();
// An insertelement to the same constant index as our extract will simplify
// to the scalar inserted element. An insertelement to a different constant
// index is irrelevant to our extract.
if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
return IsConstantExtractIndex;
if (match(V, m_OneUse(m_Load(m_Value()))))
return true;
Value *V0, *V1;
if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
if (cheapToScalarize(V0, IsConstantExtractIndex) ||
cheapToScalarize(V1, IsConstantExtractIndex))
return true;
CmpInst::Predicate UnusedPred;
if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
if (cheapToScalarize(V0, IsConstantExtractIndex) ||
cheapToScalarize(V1, IsConstantExtractIndex))
return true;
return false;
}
// If we have a PHI node with a vector type that is only used to feed
2013-08-29 06:17:26 +08:00
// itself and be an operand of extractelement at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type.
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
SmallVector<Instruction *, 2> Extracts;
// The users we want the PHI to have are:
// 1) The EI ExtractElement (we already know this)
// 2) Possibly more ExtractElements with the same index.
// 3) Another operand, which will feed back into the PHI.
Instruction *PHIUser = nullptr;
for (auto U : PN->users()) {
if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
if (EI.getIndexOperand() == EU->getIndexOperand())
Extracts.push_back(EU);
else
return nullptr;
} else if (!PHIUser) {
PHIUser = cast<Instruction>(U);
} else {
return nullptr;
}
}
if (!PHIUser)
return nullptr;
// Verify that this PHI user has one use, which is the PHI itself,
// and that it is a binary operation which is cheap to scalarize.
// otherwise return nullptr.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 11:16:01 +08:00
if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
!(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
return nullptr;
// Create a scalar PHI node that will replace the vector PHI node
// just before the current PHI node.
PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
// Scalarize each PHI operand.
for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
Value *PHIInVal = PN->getIncomingValue(i);
BasicBlock *inBB = PN->getIncomingBlock(i);
Value *Elt = EI.getIndexOperand();
// If the operand is the PHI induction variable:
if (PHIInVal == PHIUser) {
// Scalarize the binary operation. Its first operand is the
2014-07-08 06:13:58 +08:00
// scalar PHI, and the second operand is extracted from the other
// vector operand.
BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
Value *Op = InsertNewInstWith(
ExtractElementInst::Create(B0->getOperand(opId), Elt,
B0->getOperand(opId)->getName() + ".Elt"),
*B0);
Value *newPHIUser = InsertNewInstWith(
BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
scalarPHI, Op, B0), *B0);
scalarPHI->addIncoming(newPHIUser, inBB);
} else {
// Scalarize PHI input:
Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
// Insert the new instruction into the predecessor basic block.
Instruction *pos = dyn_cast<Instruction>(PHIInVal);
BasicBlock::iterator InsertPos;
if (pos && !isa<PHINode>(pos)) {
InsertPos = ++pos->getIterator();
} else {
InsertPos = inBB->getFirstInsertionPt();
}
InsertNewInstWith(newEI, *InsertPos);
scalarPHI->addIncoming(newEI, inBB);
}
}
for (auto E : Extracts)
replaceInstUsesWith(*E, scalarPHI);
return &EI;
}
static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
InstCombiner::BuilderTy &Builder,
bool IsBigEndian) {
Value *X;
uint64_t ExtIndexC;
if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
!X->getType()->isVectorTy() ||
!match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
return nullptr;
// If this extractelement is using a bitcast from a vector of the same number
// of elements, see if we can find the source element from the source vector:
// extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
Type *SrcTy = X->getType();
Type *DestTy = Ext.getType();
unsigned NumSrcElts = SrcTy->getVectorNumElements();
unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
if (NumSrcElts == NumElts)
if (Value *Elt = findScalarElement(X, ExtIndexC))
return new BitCastInst(Elt, DestTy);
// If the source elements are wider than the destination, try to shift and
// truncate a subset of scalar bits of an insert op.
if (NumSrcElts < NumElts) {
Value *Scalar;
uint64_t InsIndexC;
if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
m_ConstantInt(InsIndexC))))
return nullptr;
// The extract must be from the subset of vector elements that we inserted
// into. Example: if we inserted element 1 of a <2 x i64> and we are
// extracting an i16 (narrowing ratio = 4), then this extract must be from 1
// of elements 4-7 of the bitcasted vector.
unsigned NarrowingRatio = NumElts / NumSrcElts;
if (ExtIndexC / NarrowingRatio != InsIndexC)
return nullptr;
// We are extracting part of the original scalar. How that scalar is
// inserted into the vector depends on the endian-ness. Example:
// Vector Byte Elt Index: 0 1 2 3 4 5 6 7
// +--+--+--+--+--+--+--+--+
// inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
// extelt <4 x i16> V', 3: | |S2|S3|
// +--+--+--+--+--+--+--+--+
// If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
// If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
// In this example, we must right-shift little-endian. Big-endian is just a
// truncate.
unsigned Chunk = ExtIndexC % NarrowingRatio;
if (IsBigEndian)
Chunk = NarrowingRatio - 1 - Chunk;
// Bail out if this is an FP vector to FP vector sequence. That would take
// more instructions than we started with unless there is no shift, and it
// may not be handled as well in the backend.
bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
bool NeedDestBitcast = DestTy->isFloatingPointTy();
if (NeedSrcBitcast && NeedDestBitcast)
return nullptr;
unsigned SrcWidth = SrcTy->getScalarSizeInBits();
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
unsigned ShAmt = Chunk * DestWidth;
// TODO: This limitation is more strict than necessary. We could sum the
// number of new instructions and subtract the number eliminated to know if
// we can proceed.
if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
if (NeedSrcBitcast || NeedDestBitcast)
return nullptr;
if (NeedSrcBitcast) {
Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
}
if (ShAmt) {
// Bail out if we could end with more instructions than we started with.
if (!Ext.getVectorOperand()->hasOneUse())
return nullptr;
Scalar = Builder.CreateLShr(Scalar, ShAmt);
}
if (NeedDestBitcast) {
Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
}
return new TruncInst(Scalar, DestTy);
}
return nullptr;
}
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Value *SrcVec = EI.getVectorOperand();
Value *Index = EI.getIndexOperand();
if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
SQ.getWithInstruction(&EI)))
return replaceInstUsesWith(EI, V);
// If extracting a specified index from the vector, see if we can recursively
// find a previously computed scalar that was inserted into the vector.
auto *IndexC = dyn_cast<ConstantInt>(Index);
if (IndexC) {
unsigned NumElts = EI.getVectorOperandType()->getNumElements();
// InstSimplify should handle cases where the index is invalid.
if (!IndexC->getValue().ule(NumElts))
return nullptr;
// This instruction only demands the single element from the input vector.
// If the input vector has a single use, simplify it based on this use
// property.
if (SrcVec->hasOneUse() && NumElts != 1) {
APInt UndefElts(NumElts, 0);
APInt DemandedElts(NumElts, 0);
DemandedElts.setBit(IndexC->getZExtValue());
if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
UndefElts)) {
EI.setOperand(0, V);
return &EI;
}
}
if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
return I;
// If there's a vector PHI feeding a scalar use through this extractelement
// instruction, try to scalarize the PHI.
if (auto *Phi = dyn_cast<PHINode>(SrcVec))
if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
return ScalarPHI;
}
BinaryOperator *BO;
if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
// extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
Value *E0 = Builder.CreateExtractElement(X, Index);
Value *E1 = Builder.CreateExtractElement(Y, Index);
return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
}
Value *X, *Y;
CmpInst::Predicate Pred;
if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
cheapToScalarize(SrcVec, IndexC)) {
// extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
Value *E0 = Builder.CreateExtractElement(X, Index);
Value *E1 = Builder.CreateExtractElement(Y, Index);
return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
}
if (auto *I = dyn_cast<Instruction>(SrcVec)) {
if (auto *IE = dyn_cast<InsertElementInst>(I)) {
// Extracting the inserted element?
if (IE->getOperand(2) == Index)
return replaceInstUsesWith(EI, IE->getOperand(1));
// If the inserted and extracted elements are constants, they must not
// be the same value, extract from the pre-inserted value instead.
if (isa<Constant>(IE->getOperand(2)) && IndexC) {
Worklist.AddValue(SrcVec);
EI.setOperand(0, IE->getOperand(0));
return &EI;
}
} else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
// If this is extracting an element from a shufflevector, figure out where
// it came from and extract from the appropriate input element instead.
if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
Value *Src;
unsigned LHSWidth =
SVI->getOperand(0)->getType()->getVectorNumElements();
if (SrcIdx < 0)
return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
if (SrcIdx < (int)LHSWidth)
Src = SVI->getOperand(0);
else {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
}
Type *Int32Ty = Type::getInt32Ty(EI.getContext());
return ExtractElementInst::Create(Src,
ConstantInt::get(Int32Ty,
SrcIdx, false));
}
} else if (auto *CI = dyn_cast<CastInst>(I)) {
// Canonicalize extractelement(cast) -> cast(extractelement).
// Bitcasts can change the number of vector elements, and they cost
// nothing.
if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
Worklist.AddValue(EE);
return CastInst::Create(CI->getOpcode(), EE, EI.getType());
}
}
}
return nullptr;
}
/// If V is a shuffle of values that ONLY returns elements from either LHS or
/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
SmallVectorImpl<Constant*> &Mask) {
assert(LHS->getType() == RHS->getType() &&
"Invalid CollectSingleShuffleElements");
unsigned NumElts = V->getType()->getVectorNumElements();
if (isa<UndefValue>(V)) {
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return true;
}
if (V == LHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
return true;
}
if (V == RHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
i+NumElts));
return true;
}
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
if (!isa<ConstantInt>(IdxOp))
return false;
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
2014-07-08 06:13:58 +08:00
// We can handle this if the vector we are inserting into is
// transitively ok.
if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted undef.
Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
return true;
}
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
if (isa<ConstantInt>(EI->getOperand(1))) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
// This must be extracting from either LHS or RHS.
if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
2014-07-08 06:13:58 +08:00
// We can handle this if the vector we are inserting into is
// transitively ok.
if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted value.
if (EI->getOperand(0) == LHS) {
Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
ExtractedIdx);
} else {
assert(EI->getOperand(0) == RHS);
Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
ExtractedIdx + NumLHSElts);
}
return true;
}
}
}
}
}
return false;
}
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
/// If we have insertion into a vector that is wider than the vector that we
/// are extracting from, try to widen the source vector to allow a single
/// shufflevector to replace one or more insert/extract pairs.
static void replaceExtractElements(InsertElementInst *InsElt,
ExtractElementInst *ExtElt,
InstCombiner &IC) {
VectorType *InsVecType = InsElt->getType();
VectorType *ExtVecType = ExtElt->getVectorOperandType();
unsigned NumInsElts = InsVecType->getVectorNumElements();
unsigned NumExtElts = ExtVecType->getVectorNumElements();
// The inserted-to vector must be wider than the extracted-from vector.
if (InsVecType->getElementType() != ExtVecType->getElementType() ||
NumExtElts >= NumInsElts)
return;
// Create a shuffle mask to widen the extended-from vector using undefined
// values. The mask selects all of the values of the original vector followed
// by as many undefined values as needed to create a vector of the same length
// as the inserted-to vector.
SmallVector<Constant *, 16> ExtendMask;
IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
for (unsigned i = 0; i < NumExtElts; ++i)
ExtendMask.push_back(ConstantInt::get(IntType, i));
for (unsigned i = NumExtElts; i < NumInsElts; ++i)
ExtendMask.push_back(UndefValue::get(IntType));
Value *ExtVecOp = ExtElt->getVectorOperand();
auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
? ExtVecOpInst->getParent()
: ExtElt->getParent();
// TODO: This restriction matches the basic block check below when creating
// new extractelement instructions. If that limitation is removed, this one
// could also be removed. But for now, we just bail out to ensure that we
// will replace the extractelement instruction that is feeding our
// insertelement instruction. This allows the insertelement to then be
// replaced by a shufflevector. If the insertelement is not replaced, we can
// induce infinite looping because there's an optimization for extractelement
// that will delete our widening shuffle. This would trigger another attempt
// here to create that shuffle, and we spin forever.
if (InsertionBlock != InsElt->getParent())
return;
// TODO: This restriction matches the check in visitInsertElementInst() and
// prevents an infinite loop caused by not turning the extract/insert pair
// into a shuffle. We really should not need either check, but we're lacking
// folds for shufflevectors because we're afraid to generate shuffle masks
// that the backend can't handle.
if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
return;
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
ConstantVector::get(ExtendMask));
// Insert the new shuffle after the vector operand of the extract is defined
// (as long as it's not a PHI) or at the start of the basic block of the
// extract, so any subsequent extracts in the same basic block can use it.
// TODO: Insert before the earliest ExtractElementInst that is replaced.
if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
WideVec->insertAfter(ExtVecOpInst);
else
IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
// Replace extracts from the original narrow vector with extracts from the new
// wide vector.
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
for (User *U : ExtVecOp->users()) {
ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
if (!OldExt || OldExt->getParent() != WideVec->getParent())
continue;
auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
NewExt->insertAfter(OldExt);
IC.replaceInstUsesWith(*OldExt, NewExt);
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
}
}
/// We are building a shuffle to create V, which is a sequence of insertelement,
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
2014-07-08 06:13:58 +08:00
/// not rely on the second vector source. Return a std::pair containing the
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
/// parameter as required.
///
/// Note: we intentionally don't try to fold earlier shuffles since they have
/// often been chosen carefully to be efficiently implementable on the target.
using ShuffleOps = std::pair<Value *, Value *>;
static ShuffleOps collectShuffleElements(Value *V,
SmallVectorImpl<Constant *> &Mask,
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
Value *PermittedRHS,
InstCombiner &IC) {
assert(V->getType()->isVectorTy() && "Invalid shuffle!");
unsigned NumElts = V->getType()->getVectorNumElements();
if (isa<UndefValue>(V)) {
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return std::make_pair(
PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
}
if (isa<ConstantAggregateZero>(V)) {
Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
return std::make_pair(V, nullptr);
}
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
// Either the extracted from or inserted into vector must be RHSVec,
// otherwise we'd end up with a shuffle of three inputs.
if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
Value *RHS = EI->getOperand(0);
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
2014-04-28 12:05:08 +08:00
assert(LR.second == nullptr || LR.second == RHS);
if (LR.first->getType() != RHS->getType()) {
[InstCombine] transform more extract/insert pairs into shuffles (PR2109) This is an extension of the shuffle combining from r203229: http://reviews.llvm.org/rL203229 The idea is to widen a short input vector with undef elements so the existing shuffle transform for extract/insert can kick in. The motivation is to finally solve PR2109: https://llvm.org/bugs/show_bug.cgi?id=2109 For that example, the IR becomes: %1 = bitcast <2 x i32>* %P to <2 x float>* %ld1 = load <2 x float>, <2 x float>* %1, align 8 %2 = shufflevector <2 x float> %ld1, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef> %i2 = shufflevector <4 x float> %A, <4 x float> %2, <4 x i32> <i32 0, i32 1, i32 4, i32 5> ret <4 x float> %i2 And x86 SSE output improves from: movq (%rdi), %xmm1 ## xmm1 = mem[0],zero movdqa %xmm1, %xmm2 shufps $229, %xmm2, %xmm2 ## xmm2 = xmm2[1,1,2,3] shufps $48, %xmm0, %xmm1 ## xmm1 = xmm1[0,0],xmm0[3,0] shufps $132, %xmm1, %xmm0 ## xmm0 = xmm0[0,1],xmm1[0,2] shufps $32, %xmm0, %xmm2 ## xmm2 = xmm2[0,0],xmm0[2,0] shufps $36, %xmm2, %xmm0 ## xmm0 = xmm0[0,1],xmm2[2,0] retq To the almost optimal: movhpd (%rdi), %xmm0 Note: There's a tension in the existing transform related to generating arbitrary shufflevector masks. We avoid that in other places in InstCombine because we're scared that codegen can't handle strange masks, but it looks like we're ok with producing those here. I purposely chose weird insert/extract indexes for the regression tests to see the effect in these cases. For PowerPC+Altivec, AArch64, and X86+SSE/AVX, I think the codegen is equal or better for these examples. Differential Revision: http://reviews.llvm.org/D15096 llvm-svn: 256394
2015-12-25 05:17:56 +08:00
// Although we are giving up for now, see if we can create extracts
// that match the inserts for another round of combining.
replaceExtractElements(IEI, EI, IC);
// We tried our best, but we can't find anything compatible with RHS
// further up the chain. Return a trivial shuffle.
for (unsigned i = 0; i < NumElts; ++i)
Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
return std::make_pair(V, nullptr);
}
unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
NumLHSElts+ExtractedIdx);
return std::make_pair(LR.first, RHS);
}
if (VecOp == PermittedRHS) {
// We've gone as far as we can: anything on the other side of the
// extractelement will already have been converted into a shuffle.
unsigned NumLHSElts =
EI->getOperand(0)->getType()->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(
Type::getInt32Ty(V->getContext()),
i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
return std::make_pair(EI->getOperand(0), PermittedRHS);
}
// If this insertelement is a chain that comes from exactly these two
// vectors, return the vector and the effective shuffle.
if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
Mask))
return std::make_pair(EI->getOperand(0), PermittedRHS);
}
}
}
// Otherwise, we can't do anything fancy. Return an identity vector.
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
return std::make_pair(V, nullptr);
}
/// Try to find redundant insertvalue instructions, like the following ones:
/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
/// Here the second instruction inserts values at the same indices, as the
/// first one, making the first one redundant.
/// It should be transformed to:
/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
bool IsRedundant = false;
ArrayRef<unsigned int> FirstIndices = I.getIndices();
// If there is a chain of insertvalue instructions (each of them except the
// last one has only one use and it's another insertvalue insn from this
// chain), check if any of the 'children' uses the same indices as the first
// instruction. In this case, the first one is redundant.
Value *V = &I;
unsigned Depth = 0;
while (V->hasOneUse() && Depth < 10) {
User *U = V->user_back();
auto UserInsInst = dyn_cast<InsertValueInst>(U);
if (!UserInsInst || U->getOperand(0) != V)
break;
if (UserInsInst->getIndices() == FirstIndices) {
IsRedundant = true;
break;
}
V = UserInsInst;
Depth++;
}
if (IsRedundant)
return replaceInstUsesWith(I, I.getOperand(0));
return nullptr;
}
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
// A vector select does not change the size of the operands.
if (MaskSize != VecSize)
return false;
// Each mask element must be undefined or choose a vector element from one of
// the source operands without crossing vector lanes.
for (int i = 0; i != MaskSize; ++i) {
int Elt = Shuf.getMaskValue(i);
if (Elt != -1 && Elt != i && Elt != i + VecSize)
return false;
}
return true;
}
/// Turn a chain of inserts that splats a value into an insert + shuffle:
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
/// shufflevector(insertelt(X, %k, 0), undef, zero)
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
// We are interested in the last insert in a chain. So if this insert has a
// single user and that user is an insert, bail.
if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
return nullptr;
auto *VecTy = cast<VectorType>(InsElt.getType());
unsigned NumElements = VecTy->getNumElements();
// Do not try to do this for a one-element vector, since that's a nop,
// and will cause an inf-loop.
if (NumElements == 1)
return nullptr;
Value *SplatVal = InsElt.getOperand(1);
InsertElementInst *CurrIE = &InsElt;
SmallVector<bool, 16> ElementPresent(NumElements, false);
InsertElementInst *FirstIE = nullptr;
// Walk the chain backwards, keeping track of which indices we inserted into,
// until we hit something that isn't an insert of the splatted value.
while (CurrIE) {
auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
if (!Idx || CurrIE->getOperand(1) != SplatVal)
return nullptr;
auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
// Check none of the intermediate steps have any additional uses, except
// for the root insertelement instruction, which can be re-used, if it
// inserts at position 0.
if (CurrIE != &InsElt &&
(!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
return nullptr;
ElementPresent[Idx->getZExtValue()] = true;
FirstIE = CurrIE;
CurrIE = NextIE;
}
// If this is just a single insertelement (not a sequence), we are done.
if (FirstIE == &InsElt)
return nullptr;
// If we are not inserting into an undef vector, make sure we've seen an
// insert into every element.
// TODO: If the base vector is not undef, it might be better to create a splat
// and then a select-shuffle (blend) with the base vector.
if (!isa<UndefValue>(FirstIE->getOperand(0)))
if (any_of(ElementPresent, [](bool Present) { return !Present; }))
return nullptr;
// Create the insert + shuffle.
Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
UndefValue *UndefVec = UndefValue::get(VecTy);
Constant *Zero = ConstantInt::get(Int32Ty, 0);
if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
// Splat from element 0, but replace absent elements with undef in the mask.
SmallVector<Constant *, 16> Mask(NumElements, Zero);
for (unsigned i = 0; i != NumElements; ++i)
if (!ElementPresent[i])
Mask[i] = UndefValue::get(Int32Ty);
return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
}
/// Try to fold an insert element into an existing splat shuffle by changing
/// the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
// Check if the vector operand of this insert is a canonical splat shuffle.
auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
if (!Shuf || !Shuf->isZeroEltSplat())
return nullptr;
// Check for a constant insertion index.
uint64_t IdxC;
if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
return nullptr;
// Check if the splat shuffle's input is the same as this insert's scalar op.
Value *X = InsElt.getOperand(1);
Value *Op0 = Shuf->getOperand(0);
if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
return nullptr;
// Replace the shuffle mask element at the index of this insert with a zero.
// For example:
// inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
// --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
Constant *Zero = ConstantInt::getNullValue(I32Ty);
for (unsigned i = 0; i != NumMaskElts; ++i)
NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
Constant *NewMask = ConstantVector::get(NewMaskVec);
return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
}
/// Try to fold an extract+insert element into an existing identity shuffle by
/// changing the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
// Check if the vector operand of this insert is an identity shuffle.
auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
!(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
return nullptr;
// Check for a constant insertion index.
uint64_t IdxC;
if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
return nullptr;
// Check if this insert's scalar op is extracted from the identity shuffle's
// input vector.
Value *Scalar = InsElt.getOperand(1);
Value *X = Shuf->getOperand(0);
if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
return nullptr;
// Replace the shuffle mask element at the index of this extract+insert with
// that same index value.
// For example:
// inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
Constant *OldMask = Shuf->getMask();
for (unsigned i = 0; i != NumMaskElts; ++i) {
if (i != IdxC) {
// All mask elements besides the inserted element remain the same.
NewMaskVec[i] = OldMask->getAggregateElement(i);
} else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
// If the mask element was already set, there's nothing to do
// (demanded elements analysis may unset it later).
return nullptr;
} else {
assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
"Unexpected shuffle mask element for identity shuffle");
NewMaskVec[i] = NewMaskEltC;
}
}
Constant *NewMask = ConstantVector::get(NewMaskVec);
return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
}
/// If we have an insertelement instruction feeding into another insertelement
/// and the 2nd is inserting a constant into the vector, canonicalize that
/// constant insertion before the insertion of a variable:
///
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
///
/// This has the potential of eliminating the 2nd insertelement instruction
/// via constant folding of the scalar constant into a vector constant.
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
InstCombiner::BuilderTy &Builder) {
auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
if (!InsElt1 || !InsElt1->hasOneUse())
return nullptr;
Value *X, *Y;
Constant *ScalarC;
ConstantInt *IdxC1, *IdxC2;
if (match(InsElt1->getOperand(0), m_Value(X)) &&
match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
}
return nullptr;
}
/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
/// --> shufflevector X, CVec', Mask'
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
// Bail out if the parent has more than one use. In that case, we'd be
// replacing the insertelt with a shuffle, and that's not a clear win.
if (!Inst || !Inst->hasOneUse())
return nullptr;
if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
// The shuffle must have a constant vector operand. The insertelt must have
// a constant scalar being inserted at a constant position in the vector.
Constant *ShufConstVec, *InsEltScalar;
uint64_t InsEltIndex;
if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
!match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
!match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
return nullptr;
// Adding an element to an arbitrary shuffle could be expensive, but a
// shuffle that selects elements from vectors without crossing lanes is
// assumed cheap.
// If we're just adding a constant into that shuffle, it will still be
// cheap.
if (!isShuffleEquivalentToSelect(*Shuf))
return nullptr;
// From the above 'select' check, we know that the mask has the same number
// of elements as the vector input operands. We also know that each constant
// input element is used in its lane and can not be used more than once by
// the shuffle. Therefore, replace the constant in the shuffle's constant
// vector with the insertelt constant. Replace the constant in the shuffle's
// mask vector with the insertelt index plus the length of the vector
// (because the constant vector operand of a shuffle is always the 2nd
// operand).
Constant *Mask = Shuf->getMask();
unsigned NumElts = Mask->getType()->getVectorNumElements();
SmallVector<Constant *, 16> NewShufElts(NumElts);
SmallVector<Constant *, 16> NewMaskElts(NumElts);
for (unsigned I = 0; I != NumElts; ++I) {
if (I == InsEltIndex) {
NewShufElts[I] = InsEltScalar;
Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
} else {
// Copy over the existing values.
NewShufElts[I] = ShufConstVec->getAggregateElement(I);
NewMaskElts[I] = Mask->getAggregateElement(I);
}
}
// Create new operands for a shuffle that includes the constant of the
// original insertelt. The old shuffle will be dead now.
return new ShuffleVectorInst(Shuf->getOperand(0),
ConstantVector::get(NewShufElts),
ConstantVector::get(NewMaskElts));
} else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
// Transform sequences of insertelements ops with constant data/indexes into
// a single shuffle op.
unsigned NumElts = InsElt.getType()->getNumElements();
uint64_t InsertIdx[2];
Constant *Val[2];
if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
!match(InsElt.getOperand(1), m_Constant(Val[0])) ||
!match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
!match(IEI->getOperand(1), m_Constant(Val[1])))
return nullptr;
SmallVector<Constant *, 16> Values(NumElts);
SmallVector<Constant *, 16> Mask(NumElts);
auto ValI = std::begin(Val);
// Generate new constant vector and mask.
// We have 2 values/masks from the insertelements instructions. Insert them
// into new value/mask vectors.
for (uint64_t I : InsertIdx) {
if (!Values[I]) {
assert(!Mask[I]);
Values[I] = *ValI;
Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
NumElts + I);
}
++ValI;
}
// Remaining values are filled with 'undef' values.
for (unsigned I = 0; I < NumElts; ++I) {
if (!Values[I]) {
assert(!Mask[I]);
Values[I] = UndefValue::get(InsElt.getType()->getElementType());
Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
}
}
// Create new operands for a shuffle that includes the constant of the
// original insertelt.
return new ShuffleVectorInst(IEI->getOperand(0),
ConstantVector::get(Values),
ConstantVector::get(Mask));
}
return nullptr;
}
Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
Value *VecOp = IE.getOperand(0);
Value *ScalarOp = IE.getOperand(1);
Value *IdxOp = IE.getOperand(2);
if (auto *V = SimplifyInsertElementInst(
VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
return replaceInstUsesWith(IE, V);
// If the vector and scalar are both bitcast from the same element type, do
// the insert in that source type followed by bitcast.
Value *VecSrc, *ScalarSrc;
if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
(VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
// inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
// bitcast (inselt VecSrc, ScalarSrc, IdxOp)
Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
return new BitCastInst(NewInsElt, IE.getType());
}
// If the inserted element was extracted from some other vector and both
// indexes are valid constants, try to turn this into a shuffle.
uint64_t InsertedIdx, ExtractedIdx;
Value *ExtVecOp;
if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
m_ConstantInt(ExtractedIdx))) &&
ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
// TODO: Looking at the user(s) to determine if this insert is a
// fold-to-shuffle opportunity does not match the usual instcombine
// constraints. We should decide if the transform is worthy based only
// on this instruction and its operands, but that may not work currently.
//
// Here, we are trying to avoid creating shuffles before reaching
// the end of a chain of extract-insert pairs. This is complicated because
// we do not generally form arbitrary shuffle masks in instcombine
// (because those may codegen poorly), but collectShuffleElements() does
// exactly that.
//
// The rules for determining what is an acceptable target-independent
// shuffle mask are fuzzy because they evolve based on the backend's
// capabilities and real-world impact.
auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
if (!Insert.hasOneUse())
return true;
auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
if (!InsertUser)
return true;
return false;
};
// Try to form a shuffle from a chain of extract-insert ops.
if (isShuffleRootCandidate(IE)) {
SmallVector<Constant*, 16> Mask;
ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
// The proposed shuffle may be trivial, in which case we shouldn't
// perform the combine.
if (LR.first != &IE && LR.second != &IE) {
// We now have a shuffle of LHS, RHS, Mask.
if (LR.second == nullptr)
LR.second = UndefValue::get(LR.first->getType());
return new ShuffleVectorInst(LR.first, LR.second,
ConstantVector::get(Mask));
}
}
}
unsigned VWidth = VecOp->getType()->getVectorNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
if (V != &IE)
return replaceInstUsesWith(IE, V);
return &IE;
}
if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
return Shuf;
if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
return NewInsElt;
if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
return Broadcast;
if (Instruction *Splat = foldInsEltIntoSplat(IE))
return Splat;
if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
return IdentityShuf;
return nullptr;
}
/// Return true if we can evaluate the specified expression tree if the vector
/// elements were shuffled in a different order.
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
unsigned Depth = 5) {
// We can always reorder the elements of a constant.
if (isa<Constant>(V))
return true;
// We won't reorder vector arguments. No IPO here.
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// Two users may expect different orders of the elements. Don't try it.
if (!I->hasOneUse())
return false;
if (Depth == 0) return false;
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::GetElementPtr: {
// Bail out if we would create longer vector ops. We could allow creating
// longer vector ops, but that may result in more expensive codegen. We
// would also need to limit the transform to avoid undefined behavior for
// integer div/rem.
Type *ITy = I->getType();
if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
return false;
for (Value *Operand : I->operands()) {
if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
return false;
}
return true;
}
case Instruction::InsertElement: {
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
if (!CI) return false;
int ElementNumber = CI->getLimitedValue();
// Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
// can't put an element into multiple indices.
bool SeenOnce = false;
for (int i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] == ElementNumber) {
if (SeenOnce)
return false;
SeenOnce = true;
}
}
return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
}
}
return false;
}
/// Rebuild a new instruction just like 'I' but with the new operands given.
/// In the event of type mismatch, the type of the operands is correct.
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
// We don't want to use the IRBuilder here because we want the replacement
// instructions to appear next to 'I', not the builder's insertion point.
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
BinaryOperator *BO = cast<BinaryOperator>(I);
assert(NewOps.size() == 2 && "binary operator with #ops != 2");
BinaryOperator *New =
BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
NewOps[0], NewOps[1], "", BO);
if (isa<OverflowingBinaryOperator>(BO)) {
New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
New->setHasNoSignedWrap(BO->hasNoSignedWrap());
}
if (isa<PossiblyExactOperator>(BO)) {
New->setIsExact(BO->isExact());
}
if (isa<FPMathOperator>(BO))
New->copyFastMathFlags(I);
return New;
}
case Instruction::ICmp:
assert(NewOps.size() == 2 && "icmp with #ops != 2");
return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
NewOps[0], NewOps[1]);
case Instruction::FCmp:
assert(NewOps.size() == 2 && "fcmp with #ops != 2");
return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
NewOps[0], NewOps[1]);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt: {
// It's possible that the mask has a different number of elements from
// the original cast. We recompute the destination type to match the mask.
Type *DestTy =
VectorType::get(I->getType()->getScalarType(),
NewOps[0]->getType()->getVectorNumElements());
assert(NewOps.size() == 1 && "cast with #ops != 1");
return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
"", I);
}
case Instruction::GetElementPtr: {
Value *Ptr = NewOps[0];
ArrayRef<Value*> Idx = NewOps.slice(1);
GetElementPtrInst *GEP = GetElementPtrInst::Create(
cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
return GEP;
}
}
llvm_unreachable("failed to rebuild vector instructions");
}
static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
// Mask.size() does not need to be equal to the number of vector elements.
assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
Type *EltTy = V->getType()->getScalarType();
Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
if (isa<UndefValue>(V))
return UndefValue::get(VectorType::get(EltTy, Mask.size()));
if (isa<ConstantAggregateZero>(V))
return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
if (Constant *C = dyn_cast<Constant>(V)) {
SmallVector<Constant *, 16> MaskValues;
for (int i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] == -1)
MaskValues.push_back(UndefValue::get(I32Ty));
else
MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
}
return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
ConstantVector::get(MaskValues));
}
Instruction *I = cast<Instruction>(V);
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::Select:
case Instruction::GetElementPtr: {
SmallVector<Value*, 8> NewOps;
bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
Value *V;
// Recursively call evaluateInDifferentElementOrder on vector arguments
// as well. E.g. GetElementPtr may have scalar operands even if the
// return value is a vector, so we need to examine the operand type.
if (I->getOperand(i)->getType()->isVectorTy())
V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
else
V = I->getOperand(i);
NewOps.push_back(V);
NeedsRebuild |= (V != I->getOperand(i));
}
if (NeedsRebuild) {
return buildNew(I, NewOps);
}
return I;
}
case Instruction::InsertElement: {
int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
// The insertelement was inserting at Element. Figure out which element
// that becomes after shuffling. The answer is guaranteed to be unique
// by CanEvaluateShuffled.
bool Found = false;
int Index = 0;
for (int e = Mask.size(); Index != e; ++Index) {
if (Mask[Index] == Element) {
Found = true;
break;
}
}
// If element is not in Mask, no need to handle the operand 1 (element to
// be inserted). Just evaluate values in operand 0 according to Mask.
if (!Found)
return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
return InsertElementInst::Create(V, I->getOperand(1),
ConstantInt::get(I32Ty, Index), "", I);
}
}
llvm_unreachable("failed to reorder elements of vector instruction!");
}
static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
bool &isLHSID, bool &isRHSID) {
isLHSID = isRHSID = true;
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] < 0) continue; // Ignore undef values.
// Is this an identity shuffle of the LHS value?
isLHSID &= (Mask[i] == (int)i);
// Is this an identity shuffle of the RHS value?
isRHSID &= (Mask[i]-e == i);
}
}
// Returns true if the shuffle is extracting a contiguous range of values from
// LHS, for example:
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
// Shuffles to: |EE|FF|GG|HH|
// +--+--+--+--+
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
SmallVector<int, 16> &Mask) {
unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
unsigned MaskElems = Mask.size();
unsigned BegIdx = Mask.front();
unsigned EndIdx = Mask.back();
if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
return false;
for (unsigned I = 0; I != MaskElems; ++I)
if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
return false;
return true;
}
/// These are the ingredients in an alternate form binary operator as described
/// below.
struct BinopElts {
BinaryOperator::BinaryOps Opcode;
Value *Op0;
Value *Op1;
BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
Value *V0 = nullptr, Value *V1 = nullptr) :
Opcode(Opc), Op0(V0), Op1(V1) {}
operator bool() const { return Opcode != 0; }
};
/// Binops may be transformed into binops with different opcodes and operands.
/// Reverse the usual canonicalization to enable folds with the non-canonical
/// form of the binop. If a transform is possible, return the elements of the
/// new binop. If not, return invalid elements.
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
Type *Ty = BO->getType();
switch (BO->getOpcode()) {
case Instruction::Shl: {
// shl X, C --> mul X, (1 << C)
Constant *C;
if (match(BO1, m_Constant(C))) {
Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
return { Instruction::Mul, BO0, ShlOne };
}
break;
}
case Instruction::Or: {
// or X, C --> add X, C (when X and C have no common bits set)
const APInt *C;
if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
return { Instruction::Add, BO0, BO1 };
break;
}
default:
break;
}
return {};
}
static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
// Are we shuffling together some value and that same value after it has been
// modified by a binop with a constant?
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
Constant *C;
bool Op0IsBinop;
if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
Op0IsBinop = true;
else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
Op0IsBinop = false;
else
return nullptr;
// The identity constant for a binop leaves a variable operand unchanged. For
// a vector, this is a splat of something like 0, -1, or 1.
// If there's no identity constant for this binop, we're done.
auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
if (!IdC)
return nullptr;
// Shuffle identity constants into the lanes that return the original value.
// Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
// Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
// The existing binop constant vector remains in the same operand position.
Constant *Mask = Shuf.getMask();
Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
ConstantExpr::getShuffleVector(IdC, C, Mask);
bool MightCreatePoisonOrUB =
Mask->containsUndefElement() &&
(Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
if (MightCreatePoisonOrUB)
NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
// shuf (bop X, C), X, M --> bop X, C'
// shuf X, (bop X, C), M --> bop X, C'
Value *X = Op0IsBinop ? Op1 : Op0;
Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
NewBO->copyIRFlags(BO);
// An undef shuffle mask element may propagate as an undef constant element in
// the new binop. That would produce poison where the original code might not.
// If we already made a safe constant, then there's no danger.
if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
NewBO->dropPoisonGeneratingFlags();
return NewBO;
}
/// If we have an insert of a scalar to a non-zero element of an undefined
/// vector and then shuffle that value, that's the same as inserting to the zero
/// element and shuffling. Splatting from the zero element is recognized as the
/// canonical form of splat.
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
InstCombiner::BuilderTy &Builder) {
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
Constant *Mask = Shuf.getMask();
Value *X;
uint64_t IndexC;
// Match a shuffle that is a splat to a non-zero element.
if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
m_ConstantInt(IndexC)))) ||
!match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
return nullptr;
// Insert into element 0 of an undef vector.
UndefValue *UndefVec = UndefValue::get(Shuf.getType());
Constant *Zero = Builder.getInt32(0);
Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
// Splat from element 0. Any mask element that is undefined remains undefined.
// For example:
// shuf (inselt undef, X, 2), undef, <2,2,undef>
// --> shuf (inselt undef, X, 0), undef, <0,0,undef>
unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
for (unsigned i = 0; i != NumMaskElts; ++i)
if (isa<UndefValue>(Mask->getAggregateElement(i)))
NewMask[i] = Mask->getAggregateElement(i);
return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
}
/// Try to fold shuffles that are the equivalent of a vector select.
static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
InstCombiner::BuilderTy &Builder,
const DataLayout &DL) {
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
if (!Shuf.isSelect())
return nullptr;
// Canonicalize to choose from operand 0 first.
unsigned NumElts = Shuf.getType()->getVectorNumElements();
if (Shuf.getMaskValue(0) >= (int)NumElts) {
// TODO: Can we assert that both operands of a shuffle-select are not undef
// (otherwise, it would have been folded by instsimplify?
Shuf.commute();
return &Shuf;
}
if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
return I;
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
BinaryOperator *B0, *B1;
if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
!match(Shuf.getOperand(1), m_BinOp(B1)))
return nullptr;
Value *X, *Y;
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
Constant *C0, *C1;
bool ConstantsAreOp1;
if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
ConstantsAreOp1 = true;
else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
ConstantsAreOp1 = false;
else
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
return nullptr;
// We need matching binops to fold the lanes together.
BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
bool DropNSW = false;
if (ConstantsAreOp1 && Opc0 != Opc1) {
// TODO: We drop "nsw" if shift is converted into multiply because it may
// not be correct when the shift amount is BitWidth - 1. We could examine
// each vector element to determine if it is safe to keep that flag.
if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
DropNSW = true;
if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
Opc0 = AltB0.Opcode;
C0 = cast<Constant>(AltB0.Op1);
} else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
Opc1 = AltB1.Opcode;
C1 = cast<Constant>(AltB1.Op1);
}
}
if (Opc0 != Opc1)
return nullptr;
// The opcodes must be the same. Use a new name to make that clear.
BinaryOperator::BinaryOps BOpc = Opc0;
// Select the constant elements needed for the single binop.
Constant *Mask = Shuf.getMask();
Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
// We are moving a binop after a shuffle. When a shuffle has an undefined
// mask element, the result is undefined, but it is not poison or undefined
// behavior. That is not necessarily true for div/rem/shift.
bool MightCreatePoisonOrUB =
Mask->containsUndefElement() &&
(Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
if (MightCreatePoisonOrUB)
NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
Value *V;
if (X == Y) {
// Remove a binop and the shuffle by rearranging the constant:
// shuffle (op V, C0), (op V, C1), M --> op V, C'
// shuffle (op C0, V), (op C1, V), M --> op C', V
V = X;
} else {
// If there are 2 different variable operands, we must create a new shuffle
// (select) first, so check uses to ensure that we don't end up with more
// instructions than we started with.
if (!B0->hasOneUse() && !B1->hasOneUse())
return nullptr;
// If we use the original shuffle mask and op1 is *variable*, we would be
// putting an undef into operand 1 of div/rem/shift. This is either UB or
// poison. We do not have to guard against UB when *constants* are op1
// because safe constants guarantee that we do not overflow sdiv/srem (and
// there's no danger for other opcodes).
// TODO: To allow this case, create a new shuffle mask with no undefs.
if (MightCreatePoisonOrUB && !ConstantsAreOp1)
return nullptr;
// Note: In general, we do not create new shuffles in InstCombine because we
// do not know if a target can lower an arbitrary shuffle optimally. In this
// case, the shuffle uses the existing mask, so there is no additional risk.
// Select the variable vectors first, then perform the binop:
// shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
// shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
V = Builder.CreateShuffleVector(X, Y, Mask);
}
Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
BinaryOperator::Create(BOpc, NewC, V);
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
// Flags are intersected from the 2 source binops. But there are 2 exceptions:
// 1. If we changed an opcode, poison conditions might have changed.
// 2. If the shuffle had undef mask elements, the new binop might have undefs
// where the original code did not. But if we already made a safe constant,
// then there's no danger.
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
NewBO->copyIRFlags(B0);
NewBO->andIRFlags(B1);
if (DropNSW)
NewBO->setHasNoSignedWrap(false);
if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
NewBO->dropPoisonGeneratingFlags();
[InstCombine] fold vector select of binops with constant ops to 1 binop (PR37806) This is the simplest case from PR37806: https://bugs.llvm.org/show_bug.cgi?id=37806 If we have a common variable operand used in a pair of binops with vector constants that are vector selected together, then we can constant shuffle the constant vectors to eliminate the shuffle instruction. This has some tricky parts that are hopefully addressed in the tests and their respective comments: 1. If the shuffle mask contains an undef element, then that lane of the result is undef: http://llvm.org/docs/LangRef.html#shufflevector-instruction Therefore, we can replace the constant in that lane with an undef value except for div/rem. With div/rem, an undef in the divisor would cause the whole op to be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'. 2. Intersect the wrapping and FMF of the original binops for the new binop. There should be no extra poison or fast-math potential in the new binop that wasn't possible in the original code. 3. Disregard other uses. Given that we're eliminating uses (shortening the dependency chain), I think that's always the right IR canonicalization. But I purposely chose the udiv test to demonstrate the scenario where both intermediate values have other uses because that seems likely worse for codegen with an expensive math op. This seems like a very rare possibility to me, so I don't think it requires a backend patch first. Differential Revision: https://reviews.llvm.org/D48401 llvm-svn: 335283
2018-06-22 04:15:09 +08:00
return NewBO;
}
/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
/// narrowing (concatenating with undef and extracting back to the original
/// length). This allows replacing the wide select with a narrow select.
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
InstCombiner::BuilderTy &Builder) {
// This must be a narrowing identity shuffle. It extracts the 1st N elements
// of the 1st vector operand of a shuffle.
if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
return nullptr;
// The vector being shuffled must be a vector select that we can eliminate.
// TODO: The one-use requirement could be eased if X and/or Y are constants.
Value *Cond, *X, *Y;
if (!match(Shuf.getOperand(0),
m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
return nullptr;
// We need a narrow condition value. It must be extended with undef elements
// and have the same number of elements as this shuffle.
unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
Value *NarrowCond;
if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
m_Constant()))) ||
NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
!cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
return nullptr;
// shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
// sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
Value *Undef = UndefValue::get(X->getType());
Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
}
/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
return nullptr;
Value *X, *Y;
Constant *Mask;
if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
return nullptr;
// Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
// then combining may result in worse codegen.
if (!Op0->hasOneUse())
return nullptr;
// We are extracting a subvector from a shuffle. Remove excess elements from
// the 1st shuffle mask to eliminate the extract.
//
// This transform is conservatively limited to identity extracts because we do
// not allow arbitrary shuffle mask creation as a target-independent transform
// (because we can't guarantee that will lower efficiently).
//
// If the extracting shuffle has an undef mask element, it transfers to the
// new shuffle mask. Otherwise, copy the original mask element. Example:
// shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
// shuf X, Y, <C0, undef, C2, undef>
unsigned NumElts = Shuf.getType()->getVectorNumElements();
SmallVector<Constant *, 16> NewMask(NumElts);
assert(NumElts < Mask->getType()->getVectorNumElements() &&
"Identity with extract must have less elements than its inputs");
for (unsigned i = 0; i != NumElts; ++i) {
Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
Constant *MaskElt = Mask->getAggregateElement(i);
NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
}
return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}
/// Try to replace a shuffle with an insertelement.
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
SmallVector<int, 16> Mask = Shuf.getShuffleMask();
// The shuffle must not change vector sizes.
// TODO: This restriction could be removed if the insert has only one use
// (because the transform would require a new length-changing shuffle).
int NumElts = Mask.size();
if (NumElts != (int)(V0->getType()->getVectorNumElements()))
return nullptr;
// shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
// We need an insertelement with a constant index.
if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
m_ConstantInt(IndexC))))
return false;
// Test the shuffle mask to see if it splices the inserted scalar into the
// operand 1 vector of the shuffle.
int NewInsIndex = -1;
for (int i = 0; i != NumElts; ++i) {
// Ignore undef mask elements.
if (Mask[i] == -1)
continue;
// The shuffle takes elements of operand 1 without lane changes.
if (Mask[i] == NumElts + i)
continue;
// The shuffle must choose the inserted scalar exactly once.
if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
return false;
// The shuffle is placing the inserted scalar into element i.
NewInsIndex = i;
}
assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
// Index is updated to the potentially translated insertion lane.
IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
return true;
};
// If the shuffle is unnecessary, insert the scalar operand directly into
// operand 1 of the shuffle. Example:
// shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
Value *Scalar;
ConstantInt *IndexC;
if (isShufflingScalarIntoOp1(Scalar, IndexC))
return InsertElementInst::Create(V1, Scalar, IndexC);
// Try again after commuting shuffle. Example:
// shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
// shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
std::swap(V0, V1);
ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
if (isShufflingScalarIntoOp1(Scalar, IndexC))
return InsertElementInst::Create(V1, Scalar, IndexC);
return nullptr;
}
static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
// Match the operands as identity with padding (also known as concatenation
// with undef) shuffles of the same source type. The backend is expected to
// recreate these concatenations from a shuffle of narrow operands.
auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
!Shuffle1 || !Shuffle1->isIdentityWithPadding())
return nullptr;
// We limit this transform to power-of-2 types because we expect that the
// backend can convert the simplified IR patterns to identical nodes as the
// original IR.
// TODO: If we can verify the same behavior for arbitrary types, the
// power-of-2 checks can be removed.
Value *X = Shuffle0->getOperand(0);
Value *Y = Shuffle1->getOperand(0);
if (X->getType() != Y->getType() ||
!isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
!isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
!isPowerOf2_32(X->getType()->getVectorNumElements()) ||
isa<UndefValue>(X) || isa<UndefValue>(Y))
return nullptr;
assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
isa<UndefValue>(Shuffle1->getOperand(1)) &&
"Unexpected operand for identity shuffle");
// This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
// operands directly by adjusting the shuffle mask to account for the narrower
// types:
// shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
int NarrowElts = X->getType()->getVectorNumElements();
int WideElts = Shuffle0->getType()->getVectorNumElements();
assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
SmallVector<int, 16> Mask = Shuf.getShuffleMask();
SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
for (int i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] == -1)
continue;
// If this shuffle is choosing an undef element from 1 of the sources, that
// element is undef.
if (Mask[i] < WideElts) {
if (Shuffle0->getMaskValue(Mask[i]) == -1)
continue;
} else {
if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
continue;
}
// If this shuffle is choosing from the 1st narrow op, the mask element is
// the same. If this shuffle is choosing from the 2nd narrow op, the mask
// element is offset down to adjust for the narrow vector widths.
if (Mask[i] < WideElts) {
assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
} else {
assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
}
}
return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Value *LHS = SVI.getOperand(0);
Value *RHS = SVI.getOperand(1);
if (auto *V = SimplifyShuffleVectorInst(
LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
return replaceInstUsesWith(SVI, V);
// Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
// Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
unsigned VWidth = SVI.getType()->getVectorNumElements();
unsigned LHSWidth = LHS->getType()->getVectorNumElements();
SmallVector<int, 16> Mask = SVI.getShuffleMask();
Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
if (LHS == RHS || isa<UndefValue>(LHS)) {
// Remap any references to RHS to use LHS.
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
if (Mask[i] < 0) {
Elts.push_back(UndefValue::get(Int32Ty));
continue;
}
if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
(Mask[i] < (int)e && isa<UndefValue>(LHS))) {
Mask[i] = -1; // Turn into undef.
Elts.push_back(UndefValue::get(Int32Ty));
} else {
Mask[i] = Mask[i] % e; // Force to LHS.
Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
}
}
SVI.setOperand(0, SVI.getOperand(1));
SVI.setOperand(1, UndefValue::get(RHS->getType()));
SVI.setOperand(2, ConstantVector::get(Elts));
return &SVI;
}
if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
return I;
if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
return I;
if (Instruction *I = narrowVectorSelect(SVI, Builder))
return I;
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
if (V != &SVI)
return replaceInstUsesWith(SVI, V);
return &SVI;
}
if (Instruction *I = foldIdentityExtractShuffle(SVI))
return I;
// These transforms have the potential to lose undef knowledge, so they are
// intentionally placed after SimplifyDemandedVectorElts().
if (Instruction *I = foldShuffleWithInsert(SVI))
return I;
if (Instruction *I = foldIdentityPaddedShuffles(SVI))
return I;
if (VWidth == LHSWidth) {
// Analyze the shuffle, are the LHS or RHS and identity shuffles?
bool isLHSID, isRHSID;
recognizeIdentityMask(Mask, isLHSID, isRHSID);
// Eliminate identity shuffles.
if (isLHSID) return replaceInstUsesWith(SVI, LHS);
if (isRHSID) return replaceInstUsesWith(SVI, RHS);
}
if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
Value *V = evaluateInDifferentElementOrder(LHS, Mask);
return replaceInstUsesWith(SVI, V);
}
// SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
// a non-vector type. We can instead bitcast the original vector followed by
// an extract of the desired element:
//
// %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
// <4 x i32> <i32 0, i32 1, i32 2, i32 3>
// %1 = bitcast <4 x i8> %sroa to i32
// Becomes:
// %bc = bitcast <16 x i8> %in to <4 x i32>
// %ext = extractelement <4 x i32> %bc, i32 0
//
// If the shuffle is extracting a contiguous range of values from the input
// vector then each use which is a bitcast of the extracted size can be
// replaced. This will work if the vector types are compatible, and the begin
// index is aligned to a value in the casted vector type. If the begin index
// isn't aligned then we can shuffle the original vector (keeping the same
// vector type) before extracting.
//
// This code will bail out if the target type is fundamentally incompatible
// with vectors of the source type.
//
// Example of <16 x i8>, target type i32:
// Index range [4,8): v-----------v Will work.
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// <16 x i8>: | | | | | | | | | | | | | | | | |
// <4 x i32>: | | | | |
// +-----------+-----------+-----------+-----------+
// Index range [6,10): ^-----------^ Needs an extra shuffle.
// Target type i40: ^--------------^ Won't work, bail.
bool MadeChange = false;
if (isShuffleExtractingFromLHS(SVI, Mask)) {
Value *V = LHS;
unsigned MaskElems = Mask.size();
VectorType *SrcTy = cast<VectorType>(V->getType());
unsigned VecBitWidth = SrcTy->getBitWidth();
unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
assert(SrcElemBitWidth && "vector elements must have a bitwidth");
unsigned SrcNumElems = SrcTy->getNumElements();
SmallVector<BitCastInst *, 8> BCs;
DenseMap<Type *, Value *> NewBCs;
for (User *U : SVI.users())
if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
if (!BC->use_empty())
// Only visit bitcasts that weren't previously handled.
BCs.push_back(BC);
for (BitCastInst *BC : BCs) {
unsigned BegIdx = Mask.front();
Type *TgtTy = BC->getDestTy();
unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
if (!TgtElemBitWidth)
continue;
unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
if (!VecBitWidthsEqual)
continue;
if (!VectorType::isValidElementType(TgtTy))
continue;
VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
if (!BegIsAligned) {
// Shuffle the input so [0,NumElements) contains the output, and
// [NumElems,SrcNumElems) is undef.
SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
UndefValue::get(Int32Ty));
for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
ConstantVector::get(ShuffleMask),
SVI.getName() + ".extract");
BegIdx = 0;
}
unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
assert(SrcElemsPerTgtElem);
BegIdx /= SrcElemsPerTgtElem;
bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
auto *NewBC =
BCAlreadyExists
? NewBCs[CastSrcTy]
: Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
if (!BCAlreadyExists)
NewBCs[CastSrcTy] = NewBC;
auto *Ext = Builder.CreateExtractElement(
NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
// The shufflevector isn't being replaced: the bitcast that used it
// is. InstCombine will visit the newly-created instructions.
replaceInstUsesWith(*BC, Ext);
MadeChange = true;
}
}
// If the LHS is a shufflevector itself, see if we can combine it with this
// one without producing an unusual shuffle.
// Cases that might be simplified:
// 1.
// x1=shuffle(v1,v2,mask1)
// x=shuffle(x1,undef,mask)
// ==>
// x=shuffle(v1,undef,newMask)
// newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
// 2.
// x1=shuffle(v1,undef,mask1)
// x=shuffle(x1,x2,mask)
// where v1.size() == mask1.size()
// ==>
// x=shuffle(v1,x2,newMask)
// newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
// 3.
// x2=shuffle(v2,undef,mask2)
// x=shuffle(x1,x2,mask)
// where v2.size() == mask2.size()
// ==>
// x=shuffle(x1,v2,newMask)
// newMask[i] = (mask[i] < x1.size())
// ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
// 4.
// x1=shuffle(v1,undef,mask1)
// x2=shuffle(v2,undef,mask2)
// x=shuffle(x1,x2,mask)
// where v1.size() == v2.size()
// ==>
// x=shuffle(v1,v2,newMask)
// newMask[i] = (mask[i] < x1.size())
// ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
//
// Here we are really conservative:
// we are absolutely afraid of producing a shuffle mask not in the input
// program, because the code gen may not be smart enough to turn a merged
// shuffle into two specific shuffles: it may produce worse code. As such,
// we only merge two shuffles if the result is either a splat or one of the
// input shuffle masks. In this case, merging the shuffles just removes
// one instruction, which we know is safe. This is good for things like
// turning: (splat(splat)) -> splat, or
// merge(V[0..n], V[n+1..2n]) -> V[0..2n]
ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
if (LHSShuffle)
if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
LHSShuffle = nullptr;
if (RHSShuffle)
if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
RHSShuffle = nullptr;
if (!LHSShuffle && !RHSShuffle)
return MadeChange ? &SVI : nullptr;
Value* LHSOp0 = nullptr;
Value* LHSOp1 = nullptr;
Value* RHSOp0 = nullptr;
unsigned LHSOp0Width = 0;
unsigned RHSOp0Width = 0;
if (LHSShuffle) {
LHSOp0 = LHSShuffle->getOperand(0);
LHSOp1 = LHSShuffle->getOperand(1);
LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
}
if (RHSShuffle) {
RHSOp0 = RHSShuffle->getOperand(0);
RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
}
Value* newLHS = LHS;
Value* newRHS = RHS;
if (LHSShuffle) {
// case 1
if (isa<UndefValue>(RHS)) {
newLHS = LHSOp0;
newRHS = LHSOp1;
}
// case 2 or 4
else if (LHSOp0Width == LHSWidth) {
newLHS = LHSOp0;
}
}
// case 3 or 4
if (RHSShuffle && RHSOp0Width == LHSWidth) {
newRHS = RHSOp0;
}
// case 4
if (LHSOp0 == RHSOp0) {
newLHS = LHSOp0;
newRHS = nullptr;
}
if (newLHS == LHS && newRHS == RHS)
return MadeChange ? &SVI : nullptr;
SmallVector<int, 16> LHSMask;
SmallVector<int, 16> RHSMask;
if (newLHS != LHS)
LHSMask = LHSShuffle->getShuffleMask();
if (RHSShuffle && newRHS != RHS)
RHSMask = RHSShuffle->getShuffleMask();
unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
SmallVector<int, 16> newMask;
bool isSplat = true;
int SplatElt = -1;
// Create a new mask for the new ShuffleVectorInst so that the new
// ShuffleVectorInst is equivalent to the original one.
for (unsigned i = 0; i < VWidth; ++i) {
int eltMask;
if (Mask[i] < 0) {
// This element is an undef value.
eltMask = -1;
} else if (Mask[i] < (int)LHSWidth) {
// This element is from left hand side vector operand.
//
// If LHS is going to be replaced (case 1, 2, or 4), calculate the
// new mask value for the element.
if (newLHS != LHS) {
eltMask = LHSMask[Mask[i]];
// If the value selected is an undef value, explicitly specify it
// with a -1 mask value.
if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
eltMask = -1;
} else
eltMask = Mask[i];
} else {
// This element is from right hand side vector operand
//
// If the value selected is an undef value, explicitly specify it
// with a -1 mask value. (case 1)
if (isa<UndefValue>(RHS))
eltMask = -1;
// If RHS is going to be replaced (case 3 or 4), calculate the
// new mask value for the element.
else if (newRHS != RHS) {
eltMask = RHSMask[Mask[i]-LHSWidth];
// If the value selected is an undef value, explicitly specify it
// with a -1 mask value.
if (eltMask >= (int)RHSOp0Width) {
assert(isa<UndefValue>(RHSShuffle->getOperand(1))
&& "should have been check above");
eltMask = -1;
}
} else
eltMask = Mask[i]-LHSWidth;
// If LHS's width is changed, shift the mask value accordingly.
// If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
// references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
// If newRHS == newLHS, we want to remap any references from newRHS to
// newLHS so that we can properly identify splats that may occur due to
// obfuscation across the two vectors.
if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
eltMask += newLHSWidth;
}
// Check if this could still be a splat.
if (eltMask >= 0) {
if (SplatElt >= 0 && SplatElt != eltMask)
isSplat = false;
SplatElt = eltMask;
}
newMask.push_back(eltMask);
}
// If the result mask is equal to one of the original shuffle masks,
// or is a splat, do the replacement.
if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
if (newMask[i] < 0) {
Elts.push_back(UndefValue::get(Int32Ty));
} else {
Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
}
}
if (!newRHS)
newRHS = UndefValue::get(newLHS->getType());
return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
}
// If the result mask is an identity, replace uses of this instruction with
// corresponding argument.
bool isLHSID, isRHSID;
recognizeIdentityMask(newMask, isLHSID, isRHSID);
if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
return MadeChange ? &SVI : nullptr;
}