llvm-project/bolt/lib/Passes/IdenticalCodeFolding.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

584 lines
19 KiB
C++
Raw Normal View History

//===- bolt/Passes/IdenticalCodeFolding.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the IdenticalCodeFolding class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/IdenticalCodeFolding.h"
#include "bolt/Core/ParallelUtilities.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/Timer.h"
#include <atomic>
#include <map>
#include <set>
#include <unordered_map>
#define DEBUG_TYPE "bolt-icf"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
static cl::opt<bool>
UseDFS("icf-dfs",
cl::desc("use DFS ordering when using -icf option"),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<bool>
TimeICF("time-icf",
cl::desc("time icf steps"),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
} // namespace opts
namespace {
using JumpTable = bolt::JumpTable;
/// Compare two jump tables in 2 functions. The function relies on consistent
/// ordering of basic blocks in both binary functions (e.g. DFS).
bool equalJumpTables(const JumpTable &JumpTableA, const JumpTable &JumpTableB,
const BinaryFunction &FunctionA,
const BinaryFunction &FunctionB) {
if (JumpTableA.EntrySize != JumpTableB.EntrySize)
return false;
if (JumpTableA.Type != JumpTableB.Type)
return false;
if (JumpTableA.getSize() != JumpTableB.getSize())
return false;
for (uint64_t Index = 0; Index < JumpTableA.Entries.size(); ++Index) {
const MCSymbol *LabelA = JumpTableA.Entries[Index];
const MCSymbol *LabelB = JumpTableB.Entries[Index];
const BinaryBasicBlock *TargetA = FunctionA.getBasicBlockForLabel(LabelA);
const BinaryBasicBlock *TargetB = FunctionB.getBasicBlockForLabel(LabelB);
if (!TargetA || !TargetB) {
assert((TargetA || LabelA == FunctionA.getFunctionEndLabel()) &&
"no target basic block found");
assert((TargetB || LabelB == FunctionB.getFunctionEndLabel()) &&
"no target basic block found");
if (TargetA != TargetB)
return false;
continue;
}
assert(TargetA && TargetB && "cannot locate target block(s)");
if (TargetA->getLayoutIndex() != TargetB->getLayoutIndex())
return false;
}
return true;
}
/// Helper function that compares an instruction of this function to the
/// given instruction of the given function. The functions should have
/// identical CFG.
template <class Compare>
bool isInstrEquivalentWith(const MCInst &InstA, const BinaryBasicBlock &BBA,
const MCInst &InstB, const BinaryBasicBlock &BBB,
Compare Comp) {
if (InstA.getOpcode() != InstB.getOpcode())
return false;
const BinaryContext &BC = BBA.getFunction()->getBinaryContext();
// In this function we check for special conditions:
//
// * instructions with landing pads
//
// Most of the common cases should be handled by MCPlus::equals()
// that compares regular instruction operands.
//
// NB: there's no need to compare jump table indirect jump instructions
// separately as jump tables are handled by comparing corresponding
// symbols.
const Optional<MCPlus::MCLandingPad> EHInfoA = BC.MIB->getEHInfo(InstA);
const Optional<MCPlus::MCLandingPad> EHInfoB = BC.MIB->getEHInfo(InstB);
if (EHInfoA || EHInfoB) {
if (!EHInfoA && (EHInfoB->first || EHInfoB->second))
return false;
if (!EHInfoB && (EHInfoA->first || EHInfoA->second))
return false;
if (EHInfoA && EHInfoB) {
// Action indices should match.
if (EHInfoA->second != EHInfoB->second)
return false;
if (!EHInfoA->first != !EHInfoB->first)
return false;
if (EHInfoA->first && EHInfoB->first) {
const BinaryBasicBlock *LPA = BBA.getLandingPad(EHInfoA->first);
const BinaryBasicBlock *LPB = BBB.getLandingPad(EHInfoB->first);
assert(LPA && LPB && "cannot locate landing pad(s)");
if (LPA->getLayoutIndex() != LPB->getLayoutIndex())
return false;
}
}
}
return BC.MIB->equals(InstA, InstB, Comp);
}
/// Returns true if this function has identical code and CFG with
/// the given function \p BF.
///
/// If \p CongruentSymbols is set to true, then symbolic operands that reference
/// potentially identical but different functions are ignored during the
/// comparison.
bool isIdenticalWith(const BinaryFunction &A, const BinaryFunction &B,
bool CongruentSymbols) {
assert(A.hasCFG() && B.hasCFG() && "both functions should have CFG");
// Compare the two functions, one basic block at a time.
// Currently we require two identical basic blocks to have identical
// instruction sequences and the same index in their corresponding
// functions. The latter is important for CFG equality.
if (A.layout_size() != B.layout_size())
return false;
// Comparing multi-entry functions could be non-trivial.
if (A.isMultiEntry() || B.isMultiEntry())
return false;
// Process both functions in either DFS or existing order.
const BinaryFunction::BasicBlockOrderType &OrderA =
opts::UseDFS ? A.dfs() : A.getLayout();
const BinaryFunction::BasicBlockOrderType &OrderB =
opts::UseDFS ? B.dfs() : B.getLayout();
const BinaryContext &BC = A.getBinaryContext();
auto BBI = OrderB.begin();
for (const BinaryBasicBlock *BB : OrderA) {
const BinaryBasicBlock *OtherBB = *BBI;
if (BB->getLayoutIndex() != OtherBB->getLayoutIndex())
return false;
// Compare successor basic blocks.
// NOTE: the comparison for jump tables is only partially verified here.
if (BB->succ_size() != OtherBB->succ_size())
return false;
auto SuccBBI = OtherBB->succ_begin();
for (const BinaryBasicBlock *SuccBB : BB->successors()) {
const BinaryBasicBlock *SuccOtherBB = *SuccBBI;
if (SuccBB->getLayoutIndex() != SuccOtherBB->getLayoutIndex())
return false;
++SuccBBI;
}
// Compare all instructions including pseudos.
auto I = BB->begin(), E = BB->end();
auto OtherI = OtherBB->begin(), OtherE = OtherBB->end();
while (I != E && OtherI != OtherE) {
// Compare symbols.
auto AreSymbolsIdentical = [&](const MCSymbol *SymbolA,
const MCSymbol *SymbolB) {
if (SymbolA == SymbolB)
return true;
// All local symbols are considered identical since they affect a
// control flow and we check the control flow separately.
// If a local symbol is escaped, then the function (potentially) has
// multiple entry points and we exclude such functions from
// comparison.
if (SymbolA->isTemporary() && SymbolB->isTemporary())
return true;
// Compare symbols as functions.
uint64_t EntryIDA = 0;
uint64_t EntryIDB = 0;
const BinaryFunction *FunctionA =
BC.getFunctionForSymbol(SymbolA, &EntryIDA);
const BinaryFunction *FunctionB =
BC.getFunctionForSymbol(SymbolB, &EntryIDB);
if (FunctionA && EntryIDA)
FunctionA = nullptr;
if (FunctionB && EntryIDB)
FunctionB = nullptr;
if (FunctionA && FunctionB) {
// Self-referencing functions and recursive calls.
if (FunctionA == &A && FunctionB == &B)
return true;
// Functions with different hash values can never become identical,
// hence A and B are different.
if (CongruentSymbols)
return FunctionA->getHash() == FunctionB->getHash();
return FunctionA == FunctionB;
}
// One of the symbols represents a function, the other one does not.
if (FunctionA != FunctionB)
return false;
// Check if symbols are jump tables.
const BinaryData *SIA = BC.getBinaryDataByName(SymbolA->getName());
if (!SIA)
return false;
const BinaryData *SIB = BC.getBinaryDataByName(SymbolB->getName());
if (!SIB)
return false;
assert((SIA->getAddress() != SIB->getAddress()) &&
"different symbols should not have the same value");
const JumpTable *JumpTableA =
A.getJumpTableContainingAddress(SIA->getAddress());
if (!JumpTableA)
return false;
const JumpTable *JumpTableB =
B.getJumpTableContainingAddress(SIB->getAddress());
if (!JumpTableB)
return false;
if ((SIA->getAddress() - JumpTableA->getAddress()) !=
(SIB->getAddress() - JumpTableB->getAddress()))
return false;
return equalJumpTables(*JumpTableA, *JumpTableB, A, B);
};
if (!isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB,
AreSymbolsIdentical))
return false;
++I;
++OtherI;
}
// One of the identical blocks may have a trailing unconditional jump that
// is ignored for CFG purposes.
const MCInst *TrailingInstr =
(I != E ? &(*I) : (OtherI != OtherE ? &(*OtherI) : 0));
if (TrailingInstr && !BC.MIB->isUnconditionalBranch(*TrailingInstr))
return false;
++BBI;
}
// Compare exceptions action tables.
if (A.getLSDAActionTable() != B.getLSDAActionTable() ||
A.getLSDATypeTable() != B.getLSDATypeTable() ||
A.getLSDATypeIndexTable() != B.getLSDATypeIndexTable())
return false;
return true;
}
// This hash table is used to identify identical functions. It maps
// a function to a bucket of functions identical to it.
struct KeyHash {
size_t operator()(const BinaryFunction *F) const { return F->getHash(); }
};
/// Identify two congruent functions. Two functions are considered congruent,
/// if they are identical/equal except for some of their instruction operands
/// that reference potentially identical functions, i.e. functions that could
/// be folded later. Congruent functions are candidates for folding in our
/// iterative ICF algorithm.
///
/// Congruent functions are required to have identical hash.
struct KeyCongruent {
bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
if (A == B)
return true;
return isIdenticalWith(*A, *B, /*CongruentSymbols=*/true);
}
};
struct KeyEqual {
bool operator()(const BinaryFunction *A, const BinaryFunction *B) const {
if (A == B)
return true;
return isIdenticalWith(*A, *B, /*CongruentSymbols=*/false);
}
};
typedef std::unordered_map<BinaryFunction *, std::set<BinaryFunction *>,
KeyHash, KeyCongruent>
CongruentBucketsMap;
typedef std::unordered_map<BinaryFunction *, std::vector<BinaryFunction *>,
KeyHash, KeyEqual>
IdenticalBucketsMap;
std::string hashInteger(uint64_t Value) {
std::string HashString;
if (Value == 0)
HashString.push_back(0);
while (Value) {
uint8_t LSB = Value & 0xff;
HashString.push_back(LSB);
Value >>= 8;
}
return HashString;
}
std::string hashSymbol(BinaryContext &BC, const MCSymbol &Symbol) {
std::string HashString;
// Ignore function references.
if (BC.getFunctionForSymbol(&Symbol))
return HashString;
llvm::ErrorOr<uint64_t> ErrorOrValue = BC.getSymbolValue(Symbol);
if (!ErrorOrValue)
return HashString;
// Ignore jump table references.
if (BC.getJumpTableContainingAddress(*ErrorOrValue))
return HashString;
return HashString.append(hashInteger(*ErrorOrValue));
}
std::string hashExpr(BinaryContext &BC, const MCExpr &Expr) {
switch (Expr.getKind()) {
case MCExpr::Constant:
return hashInteger(cast<MCConstantExpr>(Expr).getValue());
case MCExpr::SymbolRef:
return hashSymbol(BC, cast<MCSymbolRefExpr>(Expr).getSymbol());
case MCExpr::Unary: {
const auto &UnaryExpr = cast<MCUnaryExpr>(Expr);
return hashInteger(UnaryExpr.getOpcode())
.append(hashExpr(BC, *UnaryExpr.getSubExpr()));
}
case MCExpr::Binary: {
const auto &BinaryExpr = cast<MCBinaryExpr>(Expr);
return hashExpr(BC, *BinaryExpr.getLHS())
.append(hashInteger(BinaryExpr.getOpcode()))
.append(hashExpr(BC, *BinaryExpr.getRHS()));
}
case MCExpr::Target:
return std::string();
}
llvm_unreachable("invalid expression kind");
}
std::string hashInstOperand(BinaryContext &BC, const MCOperand &Operand) {
if (Operand.isImm())
return hashInteger(Operand.getImm());
if (Operand.isReg())
return hashInteger(Operand.getReg());
if (Operand.isExpr())
return hashExpr(BC, *Operand.getExpr());
return std::string();
}
} // namespace
namespace llvm {
namespace bolt {
void IdenticalCodeFolding::runOnFunctions(BinaryContext &BC) {
const size_t OriginalFunctionCount = BC.getBinaryFunctions().size();
uint64_t NumFunctionsFolded = 0;
std::atomic<uint64_t> NumJTFunctionsFolded{0};
std::atomic<uint64_t> BytesSavedEstimate{0};
std::atomic<uint64_t> CallsSavedEstimate{0};
std::atomic<uint64_t> NumFoldedLastIteration{0};
CongruentBucketsMap CongruentBuckets;
// Hash all the functions
auto hashFunctions = [&]() {
NamedRegionTimer HashFunctionsTimer("hashing", "hashing", "ICF breakdown",
"ICF breakdown", opts::TimeICF);
ParallelUtilities::WorkFuncTy WorkFun = [&](BinaryFunction &BF) {
// Make sure indices are in-order.
BF.updateLayoutIndices();
// Pre-compute hash before pushing into hashtable.
// Hash instruction operands to minimize hash collisions.
BF.computeHash(opts::UseDFS, [&BC](const MCOperand &Op) {
return hashInstOperand(BC, Op);
});
};
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return !shouldOptimize(BF);
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_TRIVIAL, WorkFun, SkipFunc,
"hashFunctions", /*ForceSequential*/ false, 2);
};
// Creates buckets with congruent functions - functions that potentially
// could be folded.
auto createCongruentBuckets = [&]() {
NamedRegionTimer CongruentBucketsTimer("congruent buckets",
"congruent buckets", "ICF breakdown",
"ICF breakdown", opts::TimeICF);
for (auto &BFI : BC.getBinaryFunctions()) {
BinaryFunction &BF = BFI.second;
if (!this->shouldOptimize(BF))
continue;
CongruentBuckets[&BF].emplace(&BF);
}
};
// Partition each set of congruent functions into sets of identical functions
// and fold them
auto performFoldingPass = [&]() {
NamedRegionTimer FoldingPassesTimer("folding passes", "folding passes",
"ICF breakdown", "ICF breakdown",
opts::TimeICF);
Timer SinglePass("single fold pass", "single fold pass");
LLVM_DEBUG(SinglePass.startTimer());
ThreadPool *ThPool;
if (!opts::NoThreads)
ThPool = &ParallelUtilities::getThreadPool();
// Fold identical functions within a single congruent bucket
auto processSingleBucket = [&](std::set<BinaryFunction *> &Candidates) {
Timer T("folding single congruent list", "folding single congruent list");
LLVM_DEBUG(T.startTimer());
// Identical functions go into the same bucket.
IdenticalBucketsMap IdenticalBuckets;
for (BinaryFunction *BF : Candidates) {
IdenticalBuckets[BF].emplace_back(BF);
}
for (auto &IBI : IdenticalBuckets) {
// Functions identified as identical.
std::vector<BinaryFunction *> &Twins = IBI.second;
if (Twins.size() < 2)
continue;
// Fold functions. Keep the order consistent across invocations with
// different options.
std::stable_sort(Twins.begin(), Twins.end(),
[](const BinaryFunction *A, const BinaryFunction *B) {
return A->getFunctionNumber() <
B->getFunctionNumber();
});
BinaryFunction *ParentBF = Twins[0];
for (unsigned I = 1; I < Twins.size(); ++I) {
BinaryFunction *ChildBF = Twins[I];
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: folding " << *ChildBF << " into "
<< *ParentBF << '\n');
// Remove child function from the list of candidates.
auto FI = Candidates.find(ChildBF);
assert(FI != Candidates.end() &&
"function expected to be in the set");
Candidates.erase(FI);
// Fold the function and remove from the list of processed functions.
BytesSavedEstimate += ChildBF->getSize();
CallsSavedEstimate += std::min(ChildBF->getKnownExecutionCount(),
ParentBF->getKnownExecutionCount());
BC.foldFunction(*ChildBF, *ParentBF);
++NumFoldedLastIteration;
if (ParentBF->hasJumpTables())
++NumJTFunctionsFolded;
}
}
LLVM_DEBUG(T.stopTimer());
};
// Create a task for each congruent bucket
for (auto &Entry : CongruentBuckets) {
std::set<BinaryFunction *> &Bucket = Entry.second;
if (Bucket.size() < 2)
continue;
if (opts::NoThreads)
processSingleBucket(Bucket);
else
ThPool->async(processSingleBucket, std::ref(Bucket));
}
if (!opts::NoThreads)
ThPool->wait();
LLVM_DEBUG(SinglePass.stopTimer());
};
hashFunctions();
createCongruentBuckets();
unsigned Iteration = 1;
// We repeat the pass until no new modifications happen.
do {
NumFoldedLastIteration = 0;
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ICF iteration " << Iteration << "...\n");
performFoldingPass();
NumFunctionsFolded += NumFoldedLastIteration;
++Iteration;
} while (NumFoldedLastIteration > 0);
LLVM_DEBUG({
// Print functions that are congruent but not identical.
for (auto &CBI : CongruentBuckets) {
std::set<BinaryFunction *> &Candidates = CBI.second;
if (Candidates.size() < 2)
continue;
dbgs() << "BOLT-DEBUG: the following " << Candidates.size()
<< " functions (each of size " << (*Candidates.begin())->getSize()
<< " bytes) are congruent but not identical:\n";
for (BinaryFunction *BF : Candidates) {
dbgs() << " " << *BF;
if (BF->getKnownExecutionCount())
dbgs() << " (executed " << BF->getKnownExecutionCount() << " times)";
dbgs() << '\n';
}
}
});
if (NumFunctionsFolded)
outs() << "BOLT-INFO: ICF folded " << NumFunctionsFolded << " out of "
<< OriginalFunctionCount << " functions in " << Iteration
<< " passes. " << NumJTFunctionsFolded
<< " functions had jump tables.\n"
<< "BOLT-INFO: Removing all identical functions will save "
<< format("%.2lf", (double)BytesSavedEstimate / 1024)
<< " KB of code space. Folded functions were called "
<< CallsSavedEstimate << " times based on profile.\n";
}
} // namespace bolt
} // namespace llvm