llvm-project/clang/lib/Sema/Sema.cpp

548 lines
20 KiB
C++
Raw Normal View History

//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the actions class which performs semantic analysis and
// builds an AST out of a parse stream.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "llvm/ADT/DenseMap.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
/// Determines whether we should have an a.k.a. clause when
/// pretty-printing a type. There are three main criteria:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
/// user's understanding --- for example, elaborated type
/// specifiers. If this is all the sugar we see, we don't want an
/// a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
/// when seen in their sugared form --- for example, va_list,
/// vector types, and the magic Objective C types. We don't
/// want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
/// if this is the case, doing another "aka" would just be clutter.
///
static bool ShouldAKA(ASTContext &Context, QualType QT,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
QualType &DesugaredQT) {
QualType InputTy = QT;
bool AKA = false;
QualifierCollector Qc;
while (true) {
const Type *Ty = Qc.strip(QT);
// Don't aka just because we saw an elaborated type...
if (isa<ElaboratedType>(Ty)) {
QT = cast<ElaboratedType>(Ty)->desugar();
continue;
}
// ...or a qualified name type...
if (isa<QualifiedNameType>(Ty)) {
QT = cast<QualifiedNameType>(Ty)->desugar();
continue;
}
// ...or a substituted template type parameter.
if (isa<SubstTemplateTypeParmType>(Ty)) {
QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
continue;
}
// Don't desugar template specializations.
if (isa<TemplateSpecializationType>(Ty))
break;
// Don't desugar magic Objective-C types.
if (QualType(Ty,0) == Context.getObjCIdType() ||
QualType(Ty,0) == Context.getObjCClassType() ||
QualType(Ty,0) == Context.getObjCSelType() ||
QualType(Ty,0) == Context.getObjCProtoType())
break;
// Don't desugar va_list.
if (QualType(Ty,0) == Context.getBuiltinVaListType())
break;
// Otherwise, do a single-step desugar.
QualType Underlying;
bool IsSugar = false;
switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// If it wasn't sugared, we're done.
if (!IsSugar)
break;
// If the desugared type is a vector type, we don't want to expand
// it, it will turn into an attribute mess. People want their "vec4".
if (isa<VectorType>(Underlying))
break;
// Otherwise, we're tearing through something opaque; note that
// we'll eventually need an a.k.a. clause and keep going.
AKA = true;
QT = Underlying;
continue;
}
// If we never tore through opaque sugar, don't print aka.
if (!AKA) return false;
// If we did, check to see if we already desugared this type in this
// diagnostic. If so, don't do it again.
for (unsigned i = 0; i != NumPrevArgs; ++i) {
// TODO: Handle ak_declcontext case.
if (PrevArgs[i].first == Diagnostic::ak_qualtype) {
void *Ptr = (void*)PrevArgs[i].second;
QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
if (PrevTy == InputTy)
return false;
}
}
DesugaredQT = Qc.apply(QT);
return true;
}
/// \brief Convert the given type to a string suitable for printing as part of
/// a diagnostic.
///
/// \param Context the context in which the type was allocated
/// \param Ty the type to print
static std::string
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs) {
// FIXME: Playing with std::string is really slow.
std::string S = Ty.getAsString(Context.PrintingPolicy);
// Consider producing an a.k.a. clause if removing all the direct
// sugar gives us something "significantly different".
QualType DesugaredTy;
if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) {
S = "'"+S+"' (aka '";
S += DesugaredTy.getAsString(Context.PrintingPolicy);
S += "')";
return S;
}
S = "'" + S + "'";
return S;
}
/// ConvertQualTypeToStringFn - This function is used to pretty print the
/// specified QualType as a string in diagnostics.
static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val,
const char *Modifier, unsigned ModLen,
const char *Argument, unsigned ArgLen,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
llvm::SmallVectorImpl<char> &Output,
void *Cookie) {
ASTContext &Context = *static_cast<ASTContext*>(Cookie);
std::string S;
bool NeedQuotes = true;
switch (Kind) {
default: assert(0 && "unknown ArgumentKind");
case Diagnostic::ak_qualtype: {
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for QualType argument");
QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs);
NeedQuotes = false;
break;
}
case Diagnostic::ak_declarationname: {
DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
S = N.getAsString();
if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
S = '+' + S;
else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0)
S = '-' + S;
else
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for DeclarationName argument");
break;
}
case Diagnostic::ak_nameddecl: {
bool Qualified;
if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
Qualified = true;
else {
assert(ModLen == 0 && ArgLen == 0 &&
"Invalid modifier for NamedDecl* argument");
Qualified = false;
}
reinterpret_cast<NamedDecl*>(Val)->
getNameForDiagnostic(S, Context.PrintingPolicy, Qualified);
break;
}
case Diagnostic::ak_nestednamespec: {
llvm::raw_string_ostream OS(S);
reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
Context.PrintingPolicy);
NeedQuotes = false;
break;
}
case Diagnostic::ak_declcontext: {
DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
assert(DC && "Should never have a null declaration context");
if (DC->isTranslationUnit()) {
// FIXME: Get these strings from some localized place
if (Context.getLangOptions().CPlusPlus)
S = "the global namespace";
else
S = "the global scope";
} else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
S = ConvertTypeToDiagnosticString(Context, Context.getTypeDeclType(Type),
PrevArgs, NumPrevArgs);
} else {
// FIXME: Get these strings from some localized place
NamedDecl *ND = cast<NamedDecl>(DC);
if (isa<NamespaceDecl>(ND))
S += "namespace ";
else if (isa<ObjCMethodDecl>(ND))
S += "method ";
else if (isa<FunctionDecl>(ND))
S += "function ";
S += "'";
ND->getNameForDiagnostic(S, Context.PrintingPolicy, true);
S += "'";
}
NeedQuotes = false;
break;
}
}
if (NeedQuotes)
Output.push_back('\'');
Output.append(S.begin(), S.end());
if (NeedQuotes)
Output.push_back('\'');
}
This reworks some of the Diagnostic interfaces a bit to change how diagnostics are formed. In particular, a diagnostic with all its strings and ranges is now packaged up and sent to DiagnosticClients as a DiagnosticInfo instead of as a ton of random stuff. This has the benefit of simplifying the interface, making it more extensible, and allowing us to do more checking for things like access past the end of the various arrays passed in. In addition to introducing DiagnosticInfo, this also substantially changes how Diagnostic::Report works. Instead of being passed in all of the info required to issue a diagnostic, Report now takes only the required info (a location and ID) and returns a fresh DiagnosticInfo *by value*. The caller is then free to stuff strings and ranges into the DiagnosticInfo with the << operator. When the dtor runs on the DiagnosticInfo object (which should happen at the end of the statement), the diagnostic is actually emitted with all of the accumulated information. This is a somewhat tricky dance, but it means that the accumulated DiagnosticInfo is allowed to keep pointers to other expression temporaries without those pointers getting invalidated. This is just the minimal change to get this stuff working, but this will allow us to eliminate the zillions of variant "Diag" methods scattered throughout (e.g.) sema. For example, instead of calling: Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, SourceRange(BuiltinLoc, RParenLoc)); We will soon be able to just do: Diag(BuiltinLoc, diag::err_overload_no_match) << typeNames << SourceRange(BuiltinLoc, RParenLoc)); This scales better to support arbitrary types being passed in (not just strings) in a type-safe way. Go operator overloading?! llvm-svn: 59502
2008-11-18 15:04:44 +08:00
static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) {
if (C.getLangOptions().CPlusPlus)
return CXXRecordDecl::Create(C, TagDecl::TK_struct,
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
return RecordDecl::Create(C, TagDecl::TK_struct,
C.getTranslationUnitDecl(),
SourceLocation(), &C.Idents.get(Name));
}
void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {
TUScope = S;
PushDeclContext(S, Context.getTranslationUnitDecl());
if (PP.getTargetInfo().getPointerWidth(0) >= 64) {
DeclaratorInfo *DInfo;
// Install [u]int128_t for 64-bit targets.
DInfo = Context.getTrivialDeclaratorInfo(Context.Int128Ty);
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("__int128_t"),
DInfo), TUScope);
DInfo = Context.getTrivialDeclaratorInfo(Context.UnsignedInt128Ty);
PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
SourceLocation(),
&Context.Idents.get("__uint128_t"),
DInfo), TUScope);
}
if (!PP.getLangOptions().ObjC1) return;
// Built-in ObjC types may already be set by PCHReader (hence isNull checks).
if (Context.getObjCSelType().isNull()) {
// Synthesize "typedef struct objc_selector *SEL;"
RecordDecl *SelTag = CreateStructDecl(Context, "objc_selector");
PushOnScopeChains(SelTag, TUScope);
QualType SelT = Context.getPointerType(Context.getTagDeclType(SelTag));
DeclaratorInfo *SelInfo = Context.getTrivialDeclaratorInfo(SelT);
TypedefDecl *SelTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("SEL"), SelInfo);
PushOnScopeChains(SelTypedef, TUScope);
Context.setObjCSelType(Context.getTypeDeclType(SelTypedef));
}
// Synthesize "@class Protocol;
if (Context.getObjCProtoType().isNull()) {
ObjCInterfaceDecl *ProtocolDecl =
ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Protocol"),
SourceLocation(), true);
Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl));
PushOnScopeChains(ProtocolDecl, TUScope);
}
// Create the built-in typedef for 'id'.
if (Context.getObjCIdType().isNull()) {
QualType IdT = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy);
DeclaratorInfo *IdInfo = Context.getTrivialDeclaratorInfo(IdT);
TypedefDecl *IdTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("id"), IdInfo);
PushOnScopeChains(IdTypedef, TUScope);
Context.setObjCIdType(Context.getTypeDeclType(IdTypedef));
Context.ObjCIdRedefinitionType = Context.getObjCIdType();
}
// Create the built-in typedef for 'Class'.
if (Context.getObjCClassType().isNull()) {
QualType ClassType
= Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy);
DeclaratorInfo *ClassInfo = Context.getTrivialDeclaratorInfo(ClassType);
TypedefDecl *ClassTypedef
= TypedefDecl::Create(Context, CurContext, SourceLocation(),
&Context.Idents.get("Class"), ClassInfo);
PushOnScopeChains(ClassTypedef, TUScope);
Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef));
Context.ObjCClassRedefinitionType = Context.getObjCClassType();
}
}
Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
bool CompleteTranslationUnit)
: LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer),
Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
ExternalSource(0), CodeCompleter(0), CurContext(0),
PreDeclaratorDC(0), CurBlock(0), PackContext(0), ParsingDeclDepth(0),
IdResolver(pp.getLangOptions()), StdNamespace(0), StdBadAlloc(0),
GlobalNewDeleteDeclared(false), ExprEvalContext(PotentiallyEvaluated),
CompleteTranslationUnit(CompleteTranslationUnit),
NumSFINAEErrors(0), CurrentInstantiationScope(0) {
TUScope = 0;
if (getLangOptions().CPlusPlus)
FieldCollector.reset(new CXXFieldCollector());
// Tell diagnostics how to render things from the AST library.
PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context);
}
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
/// If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty,
CastExpr::CastKind Kind, bool isLvalue) {
QualType ExprTy = Context.getCanonicalType(Expr->getType());
QualType TypeTy = Context.getCanonicalType(Ty);
if (ExprTy == TypeTy)
return;
if (Expr->getType().getTypePtr()->isPointerType() &&
Ty.getTypePtr()->isPointerType()) {
QualType ExprBaseType =
cast<PointerType>(ExprTy.getUnqualifiedType())->getPointeeType();
QualType BaseType =
cast<PointerType>(TypeTy.getUnqualifiedType())->getPointeeType();
if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) {
Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast)
<< Expr->getSourceRange();
}
}
if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) {
if (ImpCast->getCastKind() == Kind) {
ImpCast->setType(Ty);
ImpCast->setLvalueCast(isLvalue);
return;
}
}
Expr = new (Context) ImplicitCastExpr(Ty, Kind, Expr, isLvalue);
}
void Sema::DeleteExpr(ExprTy *E) {
if (E) static_cast<Expr*>(E)->Destroy(Context);
}
void Sema::DeleteStmt(StmtTy *S) {
if (S) static_cast<Stmt*>(S)->Destroy(Context);
}
/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
void Sema::ActOnEndOfTranslationUnit() {
// C++: Perform implicit template instantiations.
//
// FIXME: When we perform these implicit instantiations, we do not carefully
// keep track of the point of instantiation (C++ [temp.point]). This means
// that name lookup that occurs within the template instantiation will
// always happen at the end of the translation unit, so it will find
// some names that should not be found. Although this is common behavior
// for C++ compilers, it is technically wrong. In the future, we either need
// to be able to filter the results of name lookup or we need to perform
// template instantiations earlier.
PerformPendingImplicitInstantiations();
// Check for #pragma weak identifiers that were never declared
// FIXME: This will cause diagnostics to be emitted in a non-determinstic
// order! Iterating over a densemap like this is bad.
for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
I = WeakUndeclaredIdentifiers.begin(),
E = WeakUndeclaredIdentifiers.end(); I != E; ++I) {
if (I->second.getUsed()) continue;
Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared)
<< I->first;
}
if (!CompleteTranslationUnit)
return;
// C99 6.9.2p2:
// A declaration of an identifier for an object that has file
// scope without an initializer, and without a storage-class
// specifier or with the storage-class specifier static,
// constitutes a tentative definition. If a translation unit
// contains one or more tentative definitions for an identifier,
// and the translation unit contains no external definition for
// that identifier, then the behavior is exactly as if the
// translation unit contains a file scope declaration of that
// identifier, with the composite type as of the end of the
// translation unit, with an initializer equal to 0.
for (unsigned i = 0, e = TentativeDefinitionList.size(); i != e; ++i) {
VarDecl *VD = TentativeDefinitions.lookup(TentativeDefinitionList[i]);
// If the tentative definition was completed, it will be in the list, but
// not the map.
if (VD == 0 || VD->isInvalidDecl() || !VD->isTentativeDefinition(Context))
continue;
if (const IncompleteArrayType *ArrayT
= Context.getAsIncompleteArrayType(VD->getType())) {
if (RequireCompleteType(VD->getLocation(),
ArrayT->getElementType(),
diag::err_tentative_def_incomplete_type_arr)) {
VD->setInvalidDecl();
continue;
}
// Set the length of the array to 1 (C99 6.9.2p5).
Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
One, ArrayType::Normal, 0);
VD->setType(T);
} else if (RequireCompleteType(VD->getLocation(), VD->getType(),
diag::err_tentative_def_incomplete_type))
VD->setInvalidDecl();
// Notify the consumer that we've completed a tentative definition.
if (!VD->isInvalidDecl())
Consumer.CompleteTentativeDefinition(VD);
}
}
//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//
DeclContext *Sema::getFunctionLevelDeclContext() {
DeclContext *DC = PreDeclaratorDC ? PreDeclaratorDC : CurContext;
while (isa<BlockDecl>(DC))
DC = DC->getParent();
return DC;
}
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *Sema::getCurFunctionDecl() {
DeclContext *DC = getFunctionLevelDeclContext();
return dyn_cast<FunctionDecl>(DC);
}
ObjCMethodDecl *Sema::getCurMethodDecl() {
DeclContext *DC = getFunctionLevelDeclContext();
return dyn_cast<ObjCMethodDecl>(DC);
}
NamedDecl *Sema::getCurFunctionOrMethodDecl() {
DeclContext *DC = getFunctionLevelDeclContext();
if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
return cast<NamedDecl>(DC);
return 0;
}
Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
if (!this->Emit())
return;
// If this is not a note, and we're in a template instantiation
// that is different from the last template instantiation where
// we emitted an error, print a template instantiation
// backtrace.
if (!SemaRef.Diags.isBuiltinNote(DiagID) &&
!SemaRef.ActiveTemplateInstantiations.empty() &&
SemaRef.ActiveTemplateInstantiations.back()
!= SemaRef.LastTemplateInstantiationErrorContext) {
SemaRef.PrintInstantiationStack();
SemaRef.LastTemplateInstantiationErrorContext
= SemaRef.ActiveTemplateInstantiations.back();
}
}
Add support for retrieving the Doxygen comment associated with a given declaration in the AST. The new ASTContext::getCommentForDecl function searches for a comment that is attached to the given declaration, and returns that comment, which may be composed of several comment blocks. Comments are always available in an AST. However, to avoid harming performance, we don't actually parse the comments. Rather, we keep the source ranges of all of the comments within a large, sorted vector, then lazily extract comments via a binary search in that vector only when needed (which never occurs in a "normal" compile). Comments are written to a precompiled header/AST file as a blob of source ranges. That blob is only lazily loaded when one requests a comment for a declaration (this never occurs in a "normal" compile). The indexer testbed now supports comment extraction. When the -point-at location points to a declaration with a Doxygen-style comment, the indexer testbed prints the associated comment block(s). See test/Index/comments.c for an example. Some notes: - We don't actually attempt to parse the comment blocks themselves, beyond identifying them as Doxygen comment blocks to associate them with a declaration. - We won't find comment blocks that aren't adjacent to the declaration, because we start our search based on the location of the declaration. - We don't go through the necessary hops to find, for example, whether some redeclaration of a declaration has comments when our current declaration does not. Similarly, we don't attempt to associate a \param Foo marker in a function body comment with the parameter named Foo (although that is certainly possible). - Verification of my "no performance impact" claims is still "to be done". llvm-svn: 74704
2009-07-03 01:08:52 +08:00
Sema::SemaDiagnosticBuilder
Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
PD.Emit(Builder);
return Builder;
}
Add support for retrieving the Doxygen comment associated with a given declaration in the AST. The new ASTContext::getCommentForDecl function searches for a comment that is attached to the given declaration, and returns that comment, which may be composed of several comment blocks. Comments are always available in an AST. However, to avoid harming performance, we don't actually parse the comments. Rather, we keep the source ranges of all of the comments within a large, sorted vector, then lazily extract comments via a binary search in that vector only when needed (which never occurs in a "normal" compile). Comments are written to a precompiled header/AST file as a blob of source ranges. That blob is only lazily loaded when one requests a comment for a declaration (this never occurs in a "normal" compile). The indexer testbed now supports comment extraction. When the -point-at location points to a declaration with a Doxygen-style comment, the indexer testbed prints the associated comment block(s). See test/Index/comments.c for an example. Some notes: - We don't actually attempt to parse the comment blocks themselves, beyond identifying them as Doxygen comment blocks to associate them with a declaration. - We won't find comment blocks that aren't adjacent to the declaration, because we start our search based on the location of the declaration. - We don't go through the necessary hops to find, for example, whether some redeclaration of a declaration has comments when our current declaration does not. Similarly, we don't attempt to associate a \param Foo marker in a function body comment with the parameter named Foo (although that is certainly possible). - Verification of my "no performance impact" claims is still "to be done". llvm-svn: 74704
2009-07-03 01:08:52 +08:00
void Sema::ActOnComment(SourceRange Comment) {
Context.Comments.push_back(Comment);
}