llvm-project/llvm/test/CodeGen/AMDGPU/salu-to-valu.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

514 lines
21 KiB
LLVM
Raw Normal View History

; RUN: llc -amdgpu-scalarize-global-loads=false -march=amdgcn -mcpu=tahiti -verify-machineinstrs < %s | FileCheck -check-prefix=GCN -check-prefix=GCN-NOHSA -check-prefix=SI %s
; RUN: llc -amdgpu-scalarize-global-loads=false -march=amdgcn -mcpu=bonaire -verify-machineinstrs < %s | FileCheck -check-prefix=GCN -check-prefix=GCN-NOHSA -check-prefix=CI -check-prefix=CI-NOHSA %s
; RUN: llc -amdgpu-scalarize-global-loads=false -mtriple=amdgcn--amdhsa -mcpu=bonaire -verify-machineinstrs < %s | FileCheck -check-prefix=GCN -check-prefix=CI --check-prefix=GCN-HSA %s
declare i32 @llvm.amdgcn.workitem.id.x() #0
declare i32 @llvm.amdgcn.workitem.id.y() #0
; In this test both the pointer and the offset operands to the
; BUFFER_LOAD instructions end up being stored in vgprs. This
; requires us to add the pointer and offset together, store the
; result in the offset operand (vaddr), and then store 0 in an
; sgpr register pair and use that for the pointer operand
; (low 64-bits of srsrc).
; GCN-LABEL: {{^}}mubuf:
R600/SI: Change all instruction assembly names to lowercase. This matches the format produced by the AMD proprietary driver. //==================================================================// // Shell script for converting .ll test cases: (Pass the .ll files you want to convert to this script as arguments). //==================================================================// ; This was necessary on my system so that A-Z in sed would match only ; upper case. I'm not sure why. export LC_ALL='C' TEST_FILES="$*" MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r` for f in $TEST_FILES; do # Check that there are SI tests: grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f if [ $? -eq 0 ]; then for match in $MATCHES; do sed -i -e "s/\([ :]$match\)/\L\1/" $f done # Try to get check lines with partial instruction names sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f fi done sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll //==================================================================// // Shell script for converting .td files (run this last) //==================================================================// export LC_ALL='C' sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td llvm-svn: 221350
2014-11-05 22:50:53 +08:00
; Make sure we aren't using VGPRs for the source operand of s_mov_b64
; GCN-NOT: s_mov_b64 s[{{[0-9]+:[0-9]+}}], v
; Make sure we aren't using VGPR's for the srsrc operand of BUFFER_LOAD_*
; instructions
; GCN-NOHSA: buffer_load_ubyte v{{[0-9]+}}, v[{{[0-9]+:[0-9]+}}], s[{{[0-9]+:[0-9]+}}], 0 addr64
; GCN-NOHSA: buffer_load_ubyte v{{[0-9]+}}, v[{{[0-9]+:[0-9]+}}], s[{{[0-9]+:[0-9]+}}], 0 addr64
; GCN-HSA: flat_load_ubyte v{{[0-9]+}}, v[{{[0-9]+:[0-9]+}}
; GCN-HSA: flat_load_ubyte v{{[0-9]+}}, v[{{[0-9]+:[0-9]+}}
define amdgpu_kernel void @mubuf(i32 addrspace(1)* %out, i8 addrspace(1)* %in) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = call i32 @llvm.amdgcn.workitem.id.y()
%tmp2 = sext i32 %tmp to i64
%tmp3 = sext i32 %tmp1 to i64
br label %loop
loop: ; preds = %loop, %entry
%tmp4 = phi i64 [ 0, %entry ], [ %tmp5, %loop ]
%tmp5 = add i64 %tmp2, %tmp4
%tmp6 = getelementptr i8, i8 addrspace(1)* %in, i64 %tmp5
%tmp7 = load i8, i8 addrspace(1)* %tmp6, align 1
%tmp8 = or i64 %tmp5, 1
%tmp9 = getelementptr i8, i8 addrspace(1)* %in, i64 %tmp8
%tmp10 = load i8, i8 addrspace(1)* %tmp9, align 1
%tmp11 = add i8 %tmp7, %tmp10
%tmp12 = sext i8 %tmp11 to i32
store i32 %tmp12, i32 addrspace(1)* %out
%tmp13 = icmp slt i64 %tmp5, 10
br i1 %tmp13, label %loop, label %done
done: ; preds = %loop
ret void
}
; Test moving an SMRD instruction to the VALU
; FIXME: movs can be moved before nop to reduce count
; GCN-LABEL: {{^}}smrd_valu:
; SI: s_movk_i32 [[OFFSET:s[0-9]+]], 0x2ee0
; SI: s_mov_b32
; GCN: v_readfirstlane_b32 s[[PTR_LO:[0-9]+]], v{{[0-9]+}}
; GCN: v_readfirstlane_b32 s[[PTR_HI:[0-9]+]], v{{[0-9]+}}
; SI: s_nop 3
; SI: s_load_dword [[OUT:s[0-9]+]], s{{\[}}[[PTR_LO]]:[[PTR_HI]]{{\]}}, [[OFFSET]]
; CI: s_load_dword [[OUT:s[0-9]+]], s{{\[}}[[PTR_LO]]:[[PTR_HI]]{{\]}}, 0xbb8
; GCN: v_mov_b32_e32 [[V_OUT:v[0-9]+]], [[OUT]]
; GCN-NOHSA: buffer_store_dword [[V_OUT]]
; GCN-HSA: flat_store_dword {{.*}}, [[V_OUT]]
define amdgpu_kernel void @smrd_valu(i32 addrspace(4)* addrspace(1)* %in, i32 %a, i32 %b, i32 addrspace(1)* %out) #1 {
entry:
%tmp = icmp ne i32 %a, 0
br i1 %tmp, label %if, label %else
if: ; preds = %entry
%tmp1 = load i32 addrspace(4)*, i32 addrspace(4)* addrspace(1)* %in
br label %endif
else: ; preds = %entry
%tmp2 = getelementptr i32 addrspace(4)*, i32 addrspace(4)* addrspace(1)* %in
%tmp3 = load i32 addrspace(4)*, i32 addrspace(4)* addrspace(1)* %tmp2
br label %endif
endif: ; preds = %else, %if
%tmp4 = phi i32 addrspace(4)* [ %tmp1, %if ], [ %tmp3, %else ]
%tmp5 = getelementptr i32, i32 addrspace(4)* %tmp4, i32 3000
%tmp6 = load i32, i32 addrspace(4)* %tmp5
store i32 %tmp6, i32 addrspace(1)* %out
ret void
}
; Test moving an SMRD with an immediate offset to the VALU
; GCN-LABEL: {{^}}smrd_valu2:
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dword v{{[0-9]+}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], 0 addr64 offset:16{{$}}
; GCN-HSA: flat_load_dword v{{[0-9]+}}, v[{{[0-9]+:[0-9]+}}]
define amdgpu_kernel void @smrd_valu2(i32 addrspace(1)* %out, [8 x i32] addrspace(4)* %in) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = add i32 %tmp, 4
%tmp2 = getelementptr [8 x i32], [8 x i32] addrspace(4)* %in, i32 %tmp, i32 4
%tmp3 = load i32, i32 addrspace(4)* %tmp2
store i32 %tmp3, i32 addrspace(1)* %out
ret void
}
; Use a big offset that will use the SMRD literal offset on CI
; GCN-LABEL: {{^}}smrd_valu_ci_offset:
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: s_movk_i32 [[OFFSET:s[0-9]+]], 0x4e20{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dword v{{[0-9]+}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET]] addr64{{$}}
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: buffer_store_dword
; GCN-HSA: flat_load_dword v{{[0-9]+}}, v[{{[0-9]+:[0-9]+}}]
; GCN-HSA: flat_store_dword v[{{[0-9]+:[0-9]+}}], v{{[0-9]+}}
define amdgpu_kernel void @smrd_valu_ci_offset(i32 addrspace(1)* %out, i32 addrspace(4)* %in, i32 %c) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp2 = getelementptr i32, i32 addrspace(4)* %in, i32 %tmp
%tmp3 = getelementptr i32, i32 addrspace(4)* %tmp2, i32 5000
%tmp4 = load i32, i32 addrspace(4)* %tmp3
%tmp5 = add i32 %tmp4, %c
store i32 %tmp5, i32 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}smrd_valu_ci_offset_x2:
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: s_mov_b32 [[OFFSET:s[0-9]+]], 0x9c40{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dwordx2 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET]] addr64{{$}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: buffer_store_dwordx2
; GCN-HSA: flat_load_dwordx2 v[{{[0-9]+:[0-9]+}}], v[{{[0-9]+:[0-9]+}}]
define amdgpu_kernel void @smrd_valu_ci_offset_x2(i64 addrspace(1)* %out, i64 addrspace(4)* %in, i64 %c) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp2 = getelementptr i64, i64 addrspace(4)* %in, i32 %tmp
%tmp3 = getelementptr i64, i64 addrspace(4)* %tmp2, i32 5000
%tmp4 = load i64, i64 addrspace(4)* %tmp3
%tmp5 = or i64 %tmp4, %c
store i64 %tmp5, i64 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}smrd_valu_ci_offset_x4:
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: s_movk_i32 [[OFFSET:s[0-9]+]], 0x4d20{{$}}
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET]] addr64{{$}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: buffer_store_dwordx4
; GCN-HSA: flat_load_dwordx4 v[{{[0-9]+:[0-9]+}}], v[{{[0-9]+:[0-9]+}}]
define amdgpu_kernel void @smrd_valu_ci_offset_x4(<4 x i32> addrspace(1)* %out, <4 x i32> addrspace(4)* %in, <4 x i32> %c) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp2 = getelementptr <4 x i32>, <4 x i32> addrspace(4)* %in, i32 %tmp
%tmp3 = getelementptr <4 x i32>, <4 x i32> addrspace(4)* %tmp2, i32 1234
%tmp4 = load <4 x i32>, <4 x i32> addrspace(4)* %tmp3
%tmp5 = or <4 x i32> %tmp4, %c
store <4 x i32> %tmp5, <4 x i32> addrspace(1)* %out
ret void
}
; Original scalar load uses SGPR offset on SI and 32-bit literal on
; CI.
; GCN-LABEL: {{^}}smrd_valu_ci_offset_x8:
; GCN-NOHSA-DAG: s_mov_b32 [[OFFSET0:s[0-9]+]], 0x9a40{{$}}
; CI-NOHSA-DAG: s_mov_b32 [[OFFSET1:s[0-9]+]], 0x9a50{{$}}
; CI-NOHSA-NOT: v_add
; SI: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], 0 addr64 offset:16
; CI-NOHSA: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET1]] addr64{{$}}
; GCN-NOHSA: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET0]] addr64{{$}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: buffer_store_dwordx4
; GCN-NOHSA: buffer_store_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
define amdgpu_kernel void @smrd_valu_ci_offset_x8(<8 x i32> addrspace(1)* %out, <8 x i32> addrspace(4)* %in, <8 x i32> %c) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp2 = getelementptr <8 x i32>, <8 x i32> addrspace(4)* %in, i32 %tmp
%tmp3 = getelementptr <8 x i32>, <8 x i32> addrspace(4)* %tmp2, i32 1234
%tmp4 = load <8 x i32>, <8 x i32> addrspace(4)* %tmp3
%tmp5 = or <8 x i32> %tmp4, %c
store <8 x i32> %tmp5, <8 x i32> addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}smrd_valu_ci_offset_x16:
; SI: s_mov_b32 {{s[0-9]+}}, 0x13480
; SI: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], 0 addr64 offset:16
; SI: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], 0 addr64 offset:32
; SI: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], 0 addr64 offset:48
; SI: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], {{s[0-9]+}} addr64
; CI-NOHSA-DAG: s_mov_b32 [[OFFSET0:s[0-9]+]], 0x13480{{$}}
; CI-NOHSA-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET0]] addr64{{$}}
; CI-NOHSA-DAG: s_mov_b32 [[OFFSET1:s[0-9]+]], 0x13490{{$}}
; CI-NOHSA-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET1]] addr64{{$}}
; CI-NOHSA-DAG: s_mov_b32 [[OFFSET2:s[0-9]+]], 0x134a0{{$}}
; CI-NOHSA-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET2]] addr64{{$}}
; CI-NOHSA-DAG: s_mov_b32 [[OFFSET3:s[0-9]+]], 0x134b0{{$}}
; CI-NOHSA-DAG: buffer_load_dwordx4 v{{\[[0-9]+:[0-9]+\]}}, v{{\[[0-9]+:[0-9]+\]}}, s[{{[0-9]+:[0-9]+}}], [[OFFSET3]] addr64{{$}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: v_or_b32_e32 {{v[0-9]+}}, {{s[0-9]+}}, {{v[0-9]+}}
; GCN-NOHSA: buffer_store_dwordx4
; GCN-NOHSA: buffer_store_dwordx4
; GCN-NOHSA: buffer_store_dwordx4
; GCN-NOHSA: buffer_store_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN: s_endpgm
define amdgpu_kernel void @smrd_valu_ci_offset_x16(<16 x i32> addrspace(1)* %out, <16 x i32> addrspace(4)* %in, <16 x i32> %c) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp2 = getelementptr <16 x i32>, <16 x i32> addrspace(4)* %in, i32 %tmp
%tmp3 = getelementptr <16 x i32>, <16 x i32> addrspace(4)* %tmp2, i32 1234
%tmp4 = load <16 x i32>, <16 x i32> addrspace(4)* %tmp3
%tmp5 = or <16 x i32> %tmp4, %c
store <16 x i32> %tmp5, <16 x i32> addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}smrd_valu2_salu_user:
; GCN-NOHSA: buffer_load_dword [[MOVED:v[0-9]+]], v{{\[[0-9]+:[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0 addr64 offset:16{{$}}
; GCN-HSA: flat_load_dword [[MOVED:v[0-9]+]], v[{{[0-9+:[0-9]+}}]
; GCN: v_add_i32_e32 [[ADD:v[0-9]+]], vcc, s{{[0-9]+}}, [[MOVED]]
; GCN-NOHSA: buffer_store_dword [[ADD]]
; GCN-HSA: flat_store_dword {{.*}}, [[ADD]]
define amdgpu_kernel void @smrd_valu2_salu_user(i32 addrspace(1)* %out, [8 x i32] addrspace(4)* %in, i32 %a) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = add i32 %tmp, 4
%tmp2 = getelementptr [8 x i32], [8 x i32] addrspace(4)* %in, i32 %tmp, i32 4
%tmp3 = load i32, i32 addrspace(4)* %tmp2
%tmp4 = add i32 %tmp3, %a
store i32 %tmp4, i32 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}smrd_valu2_max_smrd_offset:
; GCN-NOHSA: buffer_load_dword v{{[0-9]+}}, v{{\[[0-9]+:[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0 addr64 offset:1020{{$}}
; GCN-HSA flat_load_dword v{{[0-9]}}, v{{[0-9]+:[0-9]+}}
define amdgpu_kernel void @smrd_valu2_max_smrd_offset(i32 addrspace(1)* %out, [1024 x i32] addrspace(4)* %in) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = add i32 %tmp, 4
%tmp2 = getelementptr [1024 x i32], [1024 x i32] addrspace(4)* %in, i32 %tmp, i32 255
%tmp3 = load i32, i32 addrspace(4)* %tmp2
store i32 %tmp3, i32 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}smrd_valu2_mubuf_offset:
; GCN-NOHSA-NOT: v_add
; GCN-NOHSA: buffer_load_dword v{{[0-9]+}}, v{{\[[0-9]+:[0-9]+\]}}, s{{\[[0-9]+:[0-9]+\]}}, 0 addr64 offset:1024{{$}}
; GCN-HSA: flat_load_dword v{{[0-9]}}, v[{{[0-9]+:[0-9]+}}]
define amdgpu_kernel void @smrd_valu2_mubuf_offset(i32 addrspace(1)* %out, [1024 x i32] addrspace(4)* %in) #1 {
entry:
%tmp = call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = add i32 %tmp, 4
%tmp2 = getelementptr [1024 x i32], [1024 x i32] addrspace(4)* %in, i32 %tmp, i32 256
%tmp3 = load i32, i32 addrspace(4)* %tmp2
store i32 %tmp3, i32 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}s_load_imm_v8i32:
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
define amdgpu_kernel void @s_load_imm_v8i32(<8 x i32> addrspace(1)* %out, i32 addrspace(4)* nocapture readonly %in) #1 {
entry:
%tmp0 = tail call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = getelementptr inbounds i32, i32 addrspace(4)* %in, i32 %tmp0
%tmp2 = bitcast i32 addrspace(4)* %tmp1 to <8 x i32> addrspace(4)*
%tmp3 = load <8 x i32>, <8 x i32> addrspace(4)* %tmp2, align 4
store <8 x i32> %tmp3, <8 x i32> addrspace(1)* %out, align 32
ret void
}
; GCN-LABEL: {{^}}s_load_imm_v8i32_salu_user:
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: buffer_store_dword
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
define amdgpu_kernel void @s_load_imm_v8i32_salu_user(i32 addrspace(1)* %out, i32 addrspace(4)* nocapture readonly %in) #1 {
entry:
%tmp0 = tail call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = getelementptr inbounds i32, i32 addrspace(4)* %in, i32 %tmp0
%tmp2 = bitcast i32 addrspace(4)* %tmp1 to <8 x i32> addrspace(4)*
%tmp3 = load <8 x i32>, <8 x i32> addrspace(4)* %tmp2, align 4
%elt0 = extractelement <8 x i32> %tmp3, i32 0
%elt1 = extractelement <8 x i32> %tmp3, i32 1
%elt2 = extractelement <8 x i32> %tmp3, i32 2
%elt3 = extractelement <8 x i32> %tmp3, i32 3
%elt4 = extractelement <8 x i32> %tmp3, i32 4
%elt5 = extractelement <8 x i32> %tmp3, i32 5
%elt6 = extractelement <8 x i32> %tmp3, i32 6
%elt7 = extractelement <8 x i32> %tmp3, i32 7
%add0 = add i32 %elt0, %elt1
%add1 = add i32 %add0, %elt2
%add2 = add i32 %add1, %elt3
%add3 = add i32 %add2, %elt4
%add4 = add i32 %add3, %elt5
%add5 = add i32 %add4, %elt6
%add6 = add i32 %add5, %elt7
store i32 %add6, i32 addrspace(1)* %out
ret void
}
; GCN-LABEL: {{^}}s_load_imm_v16i32:
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
define amdgpu_kernel void @s_load_imm_v16i32(<16 x i32> addrspace(1)* %out, i32 addrspace(4)* nocapture readonly %in) #1 {
entry:
%tmp0 = tail call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = getelementptr inbounds i32, i32 addrspace(4)* %in, i32 %tmp0
%tmp2 = bitcast i32 addrspace(4)* %tmp1 to <16 x i32> addrspace(4)*
%tmp3 = load <16 x i32>, <16 x i32> addrspace(4)* %tmp2, align 4
store <16 x i32> %tmp3, <16 x i32> addrspace(1)* %out, align 32
ret void
}
; GCN-LABEL: {{^}}s_load_imm_v16i32_salu_user:
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: buffer_load_dwordx4
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: v_add_i32_e32
; GCN-NOHSA: buffer_store_dword
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
; GCN-HSA: flat_load_dwordx4
define amdgpu_kernel void @s_load_imm_v16i32_salu_user(i32 addrspace(1)* %out, i32 addrspace(4)* nocapture readonly %in) #1 {
entry:
%tmp0 = tail call i32 @llvm.amdgcn.workitem.id.x()
%tmp1 = getelementptr inbounds i32, i32 addrspace(4)* %in, i32 %tmp0
%tmp2 = bitcast i32 addrspace(4)* %tmp1 to <16 x i32> addrspace(4)*
%tmp3 = load <16 x i32>, <16 x i32> addrspace(4)* %tmp2, align 4
%elt0 = extractelement <16 x i32> %tmp3, i32 0
%elt1 = extractelement <16 x i32> %tmp3, i32 1
%elt2 = extractelement <16 x i32> %tmp3, i32 2
%elt3 = extractelement <16 x i32> %tmp3, i32 3
%elt4 = extractelement <16 x i32> %tmp3, i32 4
%elt5 = extractelement <16 x i32> %tmp3, i32 5
%elt6 = extractelement <16 x i32> %tmp3, i32 6
%elt7 = extractelement <16 x i32> %tmp3, i32 7
%elt8 = extractelement <16 x i32> %tmp3, i32 8
%elt9 = extractelement <16 x i32> %tmp3, i32 9
%elt10 = extractelement <16 x i32> %tmp3, i32 10
%elt11 = extractelement <16 x i32> %tmp3, i32 11
%elt12 = extractelement <16 x i32> %tmp3, i32 12
%elt13 = extractelement <16 x i32> %tmp3, i32 13
%elt14 = extractelement <16 x i32> %tmp3, i32 14
%elt15 = extractelement <16 x i32> %tmp3, i32 15
%add0 = add i32 %elt0, %elt1
%add1 = add i32 %add0, %elt2
%add2 = add i32 %add1, %elt3
%add3 = add i32 %add2, %elt4
%add4 = add i32 %add3, %elt5
%add5 = add i32 %add4, %elt6
%add6 = add i32 %add5, %elt7
%add7 = add i32 %add6, %elt8
%add8 = add i32 %add7, %elt9
%add9 = add i32 %add8, %elt10
%add10 = add i32 %add9, %elt11
%add11 = add i32 %add10, %elt12
%add12 = add i32 %add11, %elt13
%add13 = add i32 %add12, %elt14
%add14 = add i32 %add13, %elt15
store i32 %add14, i32 addrspace(1)* %out
ret void
}
; Make sure we legalize vopc operands after moving an sopc to the value.
; {{^}}sopc_vopc_legalize_bug:
; GCN: s_load_dword [[SGPR:s[0-9]+]]
; GCN: v_cmp_le_u32_e32 vcc, [[SGPR]], v{{[0-9]+}}
; GCN: s_and_b64 vcc, exec, vcc
; GCN: s_cbranch_vccnz [[EXIT:[A-Z0-9_]+]]
; GCN: v_mov_b32_e32 [[ONE:v[0-9]+]], 1
; GCN-NOHSA: buffer_store_dword [[ONE]]
; GCN-HSA: flat_store_dword v[{{[0-9]+:[0-9]+}}], [[ONE]]
Codegen: Make chains from trellis-shaped CFGs Lay out trellis-shaped CFGs optimally. A trellis of the shape below: A B |\ /| | \ / | | X | | / \ | |/ \| C D would be laid out A; B->C ; D by the current layout algorithm. Now we identify trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an increasing number of predecessors. A trellis is a a group of 2 or more predecessor blocks that all have the same successors. because of this we can tail duplicate to extend existing trellises. As an example consider the following CFG: B D F H / \ / \ / \ / \ A---C---E---G---Ret Where A,C,E,G are all small (Currently 2 instructions). The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret. The current code will copy C into B, E into D and G into F and yield the layout A,C,B(C),E,D(E),F(G),G,H,ret define void @straight_test(i32 %tag) { entry: br label %test1 test1: ; A %tagbit1 = and i32 %tag, 1 %tagbit1eq0 = icmp eq i32 %tagbit1, 0 br i1 %tagbit1eq0, label %test2, label %optional1 optional1: ; B call void @a() br label %test2 test2: ; C %tagbit2 = and i32 %tag, 2 %tagbit2eq0 = icmp eq i32 %tagbit2, 0 br i1 %tagbit2eq0, label %test3, label %optional2 optional2: ; D call void @b() br label %test3 test3: ; E %tagbit3 = and i32 %tag, 4 %tagbit3eq0 = icmp eq i32 %tagbit3, 0 br i1 %tagbit3eq0, label %test4, label %optional3 optional3: ; F call void @c() br label %test4 test4: ; G %tagbit4 = and i32 %tag, 8 %tagbit4eq0 = icmp eq i32 %tagbit4, 0 br i1 %tagbit4eq0, label %exit, label %optional4 optional4: ; H call void @d() br label %exit exit: ret void } here is the layout after D27742: straight_test: # @straight_test ; ... Prologue elided ; BB#0: # %entry ; A (merged with test1) ; ... More prologue elided mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_2 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_3 b .LBB0_4 .LBB0_2: # %optional1 ; B (copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_4 .LBB0_3: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_5 b .LBB0_6 .LBB0_4: # %optional2 ; D (copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_5: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 b .LBB0_7 .LBB0_6: # %optional3 ; F (copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit ; Ret ld 30, 96(1) # 8-byte Folded Reload addi 1, 1, 112 ld 0, 16(1) mtlr 0 blr The tail-duplication has produced some benefit, but it has also produced a trellis which is not laid out optimally. With this patch, we improve the layouts of such trellises, and decrease the cost calculation for tail-duplication accordingly. This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have back edges, which is a negative, but it has a bigger compensating positive, which is that it handles the case where there are long strings of skipped blocks much better than the original layout. Both layouts handle runs of executed blocks equally well. Branch prediction also improves if there is any correlation between subsequent optional blocks. Here is the resulting concrete layout: straight_test: # @straight_test ; BB#0: # %entry ; A (merged with test1) mr 30, 3 andi. 3, 30, 1 bc 12, 1, .LBB0_4 ; BB#1: # %test2 ; C rlwinm. 3, 30, 0, 30, 30 bne 0, .LBB0_5 .LBB0_2: # %test3 ; E rlwinm. 3, 30, 0, 29, 29 bne 0, .LBB0_6 .LBB0_3: # %test4 ; G rlwinm. 3, 30, 0, 28, 28 bne 0, .LBB0_7 b .LBB0_8 .LBB0_4: # %optional1 ; B (Copy of C) bl a nop rlwinm. 3, 30, 0, 30, 30 beq 0, .LBB0_2 .LBB0_5: # %optional2 ; D (Copy of E) bl b nop rlwinm. 3, 30, 0, 29, 29 beq 0, .LBB0_3 .LBB0_6: # %optional3 ; F (Copy of G) bl c nop rlwinm. 3, 30, 0, 28, 28 beq 0, .LBB0_8 .LBB0_7: # %optional4 ; H bl d nop .LBB0_8: # %exit Differential Revision: https://reviews.llvm.org/D28522 llvm-svn: 295223
2017-02-16 03:49:14 +08:00
; GCN: {{^}}[[EXIT]]:
; GCN: s_endpgm
define amdgpu_kernel void @sopc_vopc_legalize_bug(i32 %cond, i32 addrspace(1)* %out, i32 addrspace(1)* %in) {
bb3: ; preds = %bb2
%tmp0 = bitcast i32 %cond to float
%tmp1 = fadd float %tmp0, 2.500000e-01
%tmp2 = bitcast float %tmp1 to i32
%tmp3 = icmp ult i32 %tmp2, %cond
br i1 %tmp3, label %bb6, label %bb7
bb6:
store i32 1, i32 addrspace(1)* %out
br label %bb7
bb7: ; preds = %bb3
ret void
}
; GCN-LABEL: {{^}}phi_visit_order:
; GCN: v_add_i32_e64 v{{[0-9]+}}, s{{\[[0-9]+:[0-9]+\]}}, 1, v{{[0-9]+}}
define amdgpu_kernel void @phi_visit_order() {
bb:
br label %bb1
bb1:
%tmp = phi i32 [ 0, %bb ], [ %tmp5, %bb4 ]
%tid = call i32 @llvm.amdgcn.workitem.id.x()
%cnd = icmp eq i32 %tid, 0
br i1 %cnd, label %bb4, label %bb2
bb2:
%tmp3 = add nsw i32 %tmp, 1
br label %bb4
bb4:
%tmp5 = phi i32 [ %tmp3, %bb2 ], [ %tmp, %bb1 ]
store volatile i32 %tmp5, i32 addrspace(1)* undef
br label %bb1
}
; GCN-LABEL: {{^}}phi_imm_in_sgprs
; GCN: s_movk_i32 [[A:s[0-9]+]], 0x400
; GCN: s_movk_i32 [[B:s[0-9]+]], 0x400
; GCN: [[LOOP_LABEL:[0-9a-zA-Z_]+]]:
; GCN: s_xor_b32 [[B]], [[B]], [[A]]
; GCN: s_cbranch_scc{{[01]}} [[LOOP_LABEL]]
define amdgpu_kernel void @phi_imm_in_sgprs(i32 addrspace(3)* %out, i32 %cond) {
entry:
br label %loop
loop:
%i = phi i32 [0, %entry], [%i.add, %loop]
%offset = phi i32 [1024, %entry], [%offset.xor, %loop]
%offset.xor = xor i32 %offset, 1024
%offset.i = add i32 %offset.xor, %i
%ptr = getelementptr i32, i32 addrspace(3)* %out, i32 %offset.i
store i32 0, i32 addrspace(3)* %ptr
%i.add = add i32 %i, 1
%cmp = icmp ult i32 %i.add, %cond
br i1 %cmp, label %loop, label %exit
exit:
ret void
}
attributes #0 = { nounwind readnone }
attributes #1 = { nounwind }