llvm-project/llvm/test/CodeGen/AMDGPU/llvm.amdgcn.image.dim.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

955 lines
47 KiB
LLVM
Raw Normal View History

; RUN: llc -march=amdgcn -mcpu=verde -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,GFX6789,SI %s
; RUN: llc -march=amdgcn -mcpu=fiji -mattr=-flat-for-global -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,GFX6789,GFX8910,SIVI,PRT %s
; RUN: llc -march=amdgcn -mcpu=gfx900 -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,GFX6789,PRT %s
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; RUN: llc -march=amdgcn -mcpu=gfx900 -mattr=-enable-prt-strict-null -verify-machineinstrs < %s | FileCheck -check-prefixes=GCN,GFX900,NOPRT %s
; RUN: llc -march=amdgcn -mcpu=gfx1010 -verify-machineinstrs -show-mc-encoding < %s | FileCheck -check-prefixes=GCN,GFX10 %s
; GCN-LABEL: {{^}}load_1d:
; GFX6789: image_load v[0:3], v0, s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps <4 x float> @load_1d(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.1d.v4f32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_1d_tfe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v{{[0-9]+}}, s[0:7] dmask:0xf unorm tfe{{$}}
; GFX10: image_load v[0:4], v{{[0-9]+}}, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_1d_tfe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_1d_lwe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v{{[0-9]+}}, s[0:7] dmask:0xf unorm lwe{{$}}
; GFX10: image_load v[0:4], v{{[0-9]+}}, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm lwe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_1d_lwe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s) {
main_body:
%v = call {<4 x float>, i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 2, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_2d:
; GFX6789: image_load v[0:3], v[0:1], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load v[0:3], v[0:1], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm ;
define amdgpu_ps <4 x float> @load_2d(<8 x i32> inreg %rsrc, i32 %s, i32 %t) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.2d.v4f32.i32(i32 15, i32 %s, i32 %t, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_2d_tfe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm tfe{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_2d_tfe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.2d.v4f32i32.i32(i32 15, i32 %s, i32 %t, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_3d:
; GFX6789: image_load v[0:3], v[0:3], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load v[0:3], v[0:2], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_3D unorm ;
define amdgpu_ps <4 x float> @load_3d(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %r) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.3d.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %r, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_3d_tfe_lwe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm tfe lwe{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_3D unorm tfe lwe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_3d_tfe_lwe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t, i32 %r) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.3d.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %r, <8 x i32> %rsrc, i32 3, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_cube:
; GFX6789: image_load v[0:3], v[0:3], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load v[0:3], v[0:2], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_CUBE unorm ;
define amdgpu_ps <4 x float> @load_cube(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %slice) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.cube.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %slice, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_cube_lwe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm lwe da{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_CUBE unorm lwe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_cube_lwe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t, i32 %slice) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.cube.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %slice, <8 x i32> %rsrc, i32 2, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_1darray:
; GFX6789: image_load v[0:3], v[0:1], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load v[0:3], v[0:1], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D_ARRAY unorm ;
define amdgpu_ps <4 x float> @load_1darray(<8 x i32> inreg %rsrc, i32 %s, i32 %slice) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.1darray.v4f32.i32(i32 15, i32 %s, i32 %slice, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_1darray_tfe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm tfe da{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D_ARRAY unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_1darray_tfe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %slice) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1darray.v4f32i32.i32(i32 15, i32 %s, i32 %slice, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_2darray:
; GFX6789: image_load v[0:3], v[0:3], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load v[0:3], v[0:2], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_ARRAY unorm ;
define amdgpu_ps <4 x float> @load_2darray(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %slice) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.2darray.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %slice, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_2darray_lwe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm lwe da{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_ARRAY unorm lwe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_2darray_lwe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t, i32 %slice) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.2darray.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %slice, <8 x i32> %rsrc, i32 2, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_2dmsaa:
; GFX6789: image_load v[0:3], v[0:3], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load v[0:3], v[0:2], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA unorm ;
define amdgpu_ps <4 x float> @load_2dmsaa(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %fragid) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.2dmsaa.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %fragid, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_2dmsaa_both:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm tfe lwe{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA unorm tfe lwe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_2dmsaa_both(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t, i32 %fragid) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.2dmsaa.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %fragid, <8 x i32> %rsrc, i32 3, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_2darraymsaa:
; GFX6789: image_load v[0:3], v[0:3], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load v[0:3], v[0:3], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA_ARRAY unorm ;
define amdgpu_ps <4 x float> @load_2darraymsaa(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %slice, i32 %fragid) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.2darraymsaa.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %slice, i32 %fragid, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_2darraymsaa_tfe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm tfe da{{$}}
; GFX10: image_load v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA_ARRAY unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_2darraymsaa_tfe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t, i32 %slice, i32 %fragid) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.2darraymsaa.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %slice, i32 %fragid, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_mip_1d:
; GFX6789: image_load_mip v[0:3], v[0:1], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load_mip v[0:3], v[0:1], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps <4 x float> @load_mip_1d(<8 x i32> inreg %rsrc, i32 %s, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.mip.1d.v4f32.i32(i32 15, i32 %s, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_mip_1d_lwe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load_mip v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm lwe{{$}}
; GFX10: image_load_mip v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm lwe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_mip_1d_lwe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %mip) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.mip.1d.v4f32i32.i32(i32 15, i32 %s, i32 %mip, <8 x i32> %rsrc, i32 2, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_mip_2d:
; GFX6789: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load_mip v[0:3], v[0:2], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm ;
define amdgpu_ps <4 x float> @load_mip_2d(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.mip.2d.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; GCN-LABEL: {{^}}load_mip_2d_tfe:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v4, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT-NOT: v_mov_b32_e32 v3
; GFX6789: image_load_mip v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf unorm tfe{{$}}
; GFX10: image_load_mip v[0:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v4, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v4
define amdgpu_ps <4 x float> @load_mip_2d_tfe(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s, i32 %t, i32 %mip) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.mip.2d.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; Make sure that error flag is returned even with dmask 0
; GCN-LABEL: {{^}}load_1d_V2_tfe_dmask0:
; GCN: v_mov_b32_e32 v1, 0
; PRT-DAG: v_mov_b32_e32 v2, v1
; PRT: image_load v[1:2], v0, s[0:7] dmask:0x1 unorm tfe{{$}}
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT: image_load v[0:1], v0, s[0:7] dmask:0x1 unorm tfe{{$}}
define amdgpu_ps float @load_1d_V2_tfe_dmask0(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call {<2 x float>,i32} @llvm.amdgcn.image.load.1d.v2f32i32.i32(i32 0, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.err = extractvalue {<2 x float>, i32} %v, 1
%vv = bitcast i32 %v.err to float
ret float %vv
}
; GCN-LABEL: {{^}}load_1d_V1_tfe_dmask0:
; GCN: v_mov_b32_e32 v1, 0
; PRT-DAG: v_mov_b32_e32 v2, v1
; PRT: image_load v[1:2], v0, s[0:7] dmask:0x1 unorm tfe{{$}}
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT: image_load v[0:1], v0, s[0:7] dmask:0x1 unorm tfe{{$}}
define amdgpu_ps float @load_1d_V1_tfe_dmask0(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call {float,i32} @llvm.amdgcn.image.load.1d.f32i32.i32(i32 0, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.err = extractvalue {float, i32} %v, 1
%vv = bitcast i32 %v.err to float
ret float %vv
}
; GCN-LABEL: {{^}}load_mip_2d_tfe_dmask0:
; GCN: v_mov_b32_e32 v3, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v3
; PRT: image_load_mip v[3:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x1 unorm tfe{{$}}
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT: image_load_mip v[2:3], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x1 unorm tfe{{$}}
define amdgpu_ps float @load_mip_2d_tfe_dmask0(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %mip) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.mip.2d.v4f32i32.i32(i32 0, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 1, i32 0)
%v.err = extractvalue {<4 x float>, i32} %v, 1
%vv = bitcast i32 %v.err to float
ret float %vv
}
; Do not make dmask 0 even if no result (other than tfe) is used.
; GCN-LABEL: {{^}}load_mip_2d_tfe_nouse:
; GCN: v_mov_b32_e32 v3, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v3
; PRT: image_load_mip v[3:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x1 unorm tfe{{$}}
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT: image_load_mip v[2:3], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x1 unorm tfe{{$}}
define amdgpu_ps float @load_mip_2d_tfe_nouse(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %mip) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.mip.2d.v4f32i32.i32(i32 15, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 1, i32 0)
%v.err = extractvalue {<4 x float>, i32} %v, 1
%vv = bitcast i32 %v.err to float
ret float %vv
}
; GCN-LABEL: {{^}}load_mip_2d_tfe_nouse_V2:
; GCN: v_mov_b32_e32 v3, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v3
; PRT: image_load_mip v[3:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x1 unorm tfe{{$}}
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT: image_load_mip v[2:3], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x1 unorm tfe{{$}}
define amdgpu_ps float @load_mip_2d_tfe_nouse_V2(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %mip) {
main_body:
%v = call {<2 x float>,i32} @llvm.amdgcn.image.load.mip.2d.v2f32i32.i32(i32 6, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 1, i32 0)
%v.err = extractvalue {<2 x float>, i32} %v, 1
%vv = bitcast i32 %v.err to float
ret float %vv
}
; GCN-LABEL: {{^}}load_mip_2d_tfe_nouse_V1:
; GCN: v_mov_b32_e32 v3, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v3
; PRT: image_load_mip v[3:4], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x2 unorm tfe{{$}}
; NOPRT-NOT: v_mov_b32_e32 v2
; NOPRT: image_load_mip v[2:3], v[{{[0-9]+:[0-9]+}}], s[0:7] dmask:0x2 unorm tfe{{$}}
define amdgpu_ps float @load_mip_2d_tfe_nouse_V1(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %mip) {
main_body:
%v = call {float, i32} @llvm.amdgcn.image.load.mip.2d.f32i32.i32(i32 2, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 1, i32 0)
%v.err = extractvalue {float, i32} %v, 1
%vv = bitcast i32 %v.err to float
ret float %vv
}
; Check for dmask being materially smaller than return type
; GCN-LABEL: {{^}}load_1d_tfe_V4_dmask3:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v3, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; NOPRT-NOT: v_mov_b32_e32 v2
; GFX6789: image_load v[0:3], v{{[0-9]+}}, s[0:7] dmask:0x7 unorm tfe{{$}}
; GFX10: image_load v[0:3], v{{[0-9]+}}, s[0:7] dmask:0x7 dim:SQ_RSRC_IMG_1D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v3, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v3
define amdgpu_ps <4 x float> @load_1d_tfe_V4_dmask3(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 7, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_1d_tfe_V4_dmask2:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v2, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; NOPRT-NOT: v_mov_b32_e32 v1
; GFX6789: image_load v[0:2], v{{[0-9]+}}, s[0:7] dmask:0x6 unorm tfe{{$}}
; GFX10: image_load v[0:2], v{{[0-9]+}}, s[0:7] dmask:0x6 dim:SQ_RSRC_IMG_1D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v2, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v2
define amdgpu_ps <4 x float> @load_1d_tfe_V4_dmask2(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 6, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_1d_tfe_V4_dmask1:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v1, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; GFX6789: image_load v[0:1], v{{[0-9]+}}, s[0:7] dmask:0x8 unorm tfe{{$}}
; GFX10: image_load v[0:1], v{{[0-9]+}}, s[0:7] dmask:0x8 dim:SQ_RSRC_IMG_1D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v1, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v1
define amdgpu_ps <4 x float> @load_1d_tfe_V4_dmask1(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s) {
main_body:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 8, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <4 x float> %v.vec
}
; GCN-LABEL: {{^}}load_1d_tfe_V2_dmask1:
; PRT: v_mov_b32_e32 v0, 0
; PRT-DAG: v_mov_b32_e32 v{{[0-9]+}}, v0
; NOPRT: v_mov_b32_e32 v1, 0
; NOPRT-NOT: v_mov_b32_e32 v0
; GFX6789: image_load v[0:1], v{{[0-9]+}}, s[0:7] dmask:0x8 unorm tfe{{$}}
; GFX10: image_load v[0:1], v{{[0-9]+}}, s[0:7] dmask:0x8 dim:SQ_RSRC_IMG_1D unorm tfe ;
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
; SIVI: buffer_store_dword v1, off, s[8:11], 0
; GFX900: global_store_dword v[{{[0-9]+:[0-9]+}}], v1
define amdgpu_ps <2 x float> @load_1d_tfe_V2_dmask1(<8 x i32> inreg %rsrc, i32 addrspace(1)* inreg %out, i32 %s) {
main_body:
%v = call {<2 x float>,i32} @llvm.amdgcn.image.load.1d.v2f32i32.i32(i32 8, i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<2 x float>, i32} %v, 0
%v.err = extractvalue {<2 x float>, i32} %v, 1
store i32 %v.err, i32 addrspace(1)* %out, align 4
ret <2 x float> %v.vec
}
; GCN-LABEL: {{^}}load_mip_3d:
; GFX6789: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_3D unorm ;
define amdgpu_ps <4 x float> @load_mip_3d(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %r, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.mip.3d.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %r, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}load_mip_cube:
; GFX6789: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_CUBE unorm ;
define amdgpu_ps <4 x float> @load_mip_cube(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %slice, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.mip.cube.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %slice, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}load_mip_1darray:
; GFX6789: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load_mip v[0:3], v[0:2], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D_ARRAY unorm ;
define amdgpu_ps <4 x float> @load_mip_1darray(<8 x i32> inreg %rsrc, i32 %s, i32 %slice, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.mip.1darray.v4f32.i32(i32 15, i32 %s, i32 %slice, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}load_mip_2darray:
; GFX6789: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_load_mip v[0:3], v[0:3], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_ARRAY unorm ;
define amdgpu_ps <4 x float> @load_mip_2darray(<8 x i32> inreg %rsrc, i32 %s, i32 %t, i32 %slice, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.mip.2darray.v4f32.i32(i32 15, i32 %s, i32 %t, i32 %slice, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}store_1d:
; GFX6789: image_store v[0:3], v4, s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store v[0:3], v4, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps void @store_1d(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s) {
main_body:
call void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_2d:
; GFX6789: image_store v[0:3], v[4:5], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store v[0:3], v[4:5], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm ;
define amdgpu_ps void @store_2d(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t) {
main_body:
call void @llvm.amdgcn.image.store.2d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_3d:
; GFX6789: image_store v[0:3], v[4:7], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store v[0:3], v[4:6], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_3D unorm ;
define amdgpu_ps void @store_3d(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %r) {
main_body:
call void @llvm.amdgcn.image.store.3d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %r, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_cube:
; GFX6789: image_store v[0:3], v[4:7], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store v[0:3], v[4:6], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_CUBE unorm ;
define amdgpu_ps void @store_cube(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %slice) {
main_body:
call void @llvm.amdgcn.image.store.cube.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %slice, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_1darray:
; GFX6789: image_store v[0:3], v[4:5], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store v[0:3], v[4:5], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D_ARRAY unorm ;
define amdgpu_ps void @store_1darray(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %slice) {
main_body:
call void @llvm.amdgcn.image.store.1darray.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %slice, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_2darray:
; GFX6789: image_store v[0:3], v[4:7], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store v[0:3], v[4:6], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_ARRAY unorm ;
define amdgpu_ps void @store_2darray(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %slice) {
main_body:
call void @llvm.amdgcn.image.store.2darray.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %slice, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_2dmsaa:
; GFX6789: image_store v[0:3], v[4:7], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store v[0:3], v[4:6], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA unorm ;
define amdgpu_ps void @store_2dmsaa(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %fragid) {
main_body:
call void @llvm.amdgcn.image.store.2dmsaa.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %fragid, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_2darraymsaa:
; GFX6789: image_store v[0:3], v[4:7], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store v[0:3], v[4:7], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA_ARRAY unorm ;
define amdgpu_ps void @store_2darraymsaa(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %slice, i32 %fragid) {
main_body:
call void @llvm.amdgcn.image.store.2darraymsaa.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %slice, i32 %fragid, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_mip_1d:
; GFX6789: image_store_mip v[0:3], v[4:5], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store_mip v[0:3], v[4:5], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps void @store_mip_1d(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %mip) {
main_body:
call void @llvm.amdgcn.image.store.mip.1d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_mip_2d:
; GFX6789: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store_mip v[0:3], v[4:6], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm ;
define amdgpu_ps void @store_mip_2d(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %mip) {
main_body:
call void @llvm.amdgcn.image.store.mip.2d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_mip_3d:
; GFX6789: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_3D unorm ;
define amdgpu_ps void @store_mip_3d(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %r, i32 %mip) {
main_body:
call void @llvm.amdgcn.image.store.mip.3d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %r, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_mip_cube:
; GFX6789: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_CUBE unorm ;
define amdgpu_ps void @store_mip_cube(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %slice, i32 %mip) {
main_body:
call void @llvm.amdgcn.image.store.mip.cube.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %slice, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_mip_1darray:
; GFX6789: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store_mip v[0:3], v[4:6], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D_ARRAY unorm ;
define amdgpu_ps void @store_mip_1darray(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %slice, i32 %mip) {
main_body:
call void @llvm.amdgcn.image.store.mip.1darray.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %slice, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_mip_2darray:
; GFX6789: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_store_mip v[0:3], v[4:7], s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_ARRAY unorm ;
define amdgpu_ps void @store_mip_2darray(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s, i32 %t, i32 %slice, i32 %mip) {
main_body:
call void @llvm.amdgcn.image.store.mip.2darray.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, i32 %t, i32 %slice, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}getresinfo_1d:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps <4 x float> @getresinfo_1d(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.1d.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_2d:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D unorm ;
define amdgpu_ps <4 x float> @getresinfo_2d(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.2d.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_3d:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_3D unorm ;
define amdgpu_ps <4 x float> @getresinfo_3d(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.3d.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_cube:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_CUBE unorm ;
define amdgpu_ps <4 x float> @getresinfo_cube(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.cube.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_1darray:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D_ARRAY unorm ;
define amdgpu_ps <4 x float> @getresinfo_1darray(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.1darray.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_2darray:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_ARRAY unorm ;
define amdgpu_ps <4 x float> @getresinfo_2darray(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.2darray.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_2dmsaa:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA unorm ;
define amdgpu_ps <4 x float> @getresinfo_2dmsaa(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.2dmsaa.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}getresinfo_2darraymsaa:
; GFX6789: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf unorm da{{$}}
; GFX10: image_get_resinfo v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_2D_MSAA_ARRAY unorm ;
define amdgpu_ps <4 x float> @getresinfo_2darraymsaa(<8 x i32> inreg %rsrc, i32 %mip) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.getresinfo.2darraymsaa.v4f32.i32(i32 15, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}load_1d_V1:
; GFX6789: image_load v0, v0, s[0:7] dmask:0x8 unorm{{$}}
; GFX10: image_load v0, v0, s[0:7] dmask:0x8 dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps float @load_1d_V1(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call float @llvm.amdgcn.image.load.1d.f32.i32(i32 8, i32 %s, <8 x i32> %rsrc, i32 0, i32 0)
ret float %v
}
; GCN-LABEL: {{^}}load_1d_V2:
; GFX6789: image_load v[0:1], v0, s[0:7] dmask:0x9 unorm{{$}}
; GFX10: image_load v[0:1], v0, s[0:7] dmask:0x9 dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps <2 x float> @load_1d_V2(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call <2 x float> @llvm.amdgcn.image.load.1d.v2f32.i32(i32 9, i32 %s, <8 x i32> %rsrc, i32 0, i32 0)
ret <2 x float> %v
}
; GCN-LABEL: {{^}}store_1d_V1:
; GFX6789: image_store v0, v1, s[0:7] dmask:0x2 unorm{{$}}
; GFX10: image_store v0, v1, s[0:7] dmask:0x2 dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps void @store_1d_V1(<8 x i32> inreg %rsrc, float %vdata, i32 %s) {
main_body:
call void @llvm.amdgcn.image.store.1d.f32.i32(float %vdata, i32 2, i32 %s, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}store_1d_V2:
; GFX6789: image_store v[0:1], v2, s[0:7] dmask:0xc unorm{{$}}
; GFX10: image_store v[0:1], v2, s[0:7] dmask:0xc dim:SQ_RSRC_IMG_1D unorm ;
define amdgpu_ps void @store_1d_V2(<8 x i32> inreg %rsrc, <2 x float> %vdata, i32 %s) {
main_body:
call void @llvm.amdgcn.image.store.1d.v2f32.i32(<2 x float> %vdata, i32 12, i32 %s, <8 x i32> %rsrc, i32 0, i32 0)
ret void
}
; GCN-LABEL: {{^}}load_1d_glc:
; GFX6789: image_load v[0:3], v0, s[0:7] dmask:0xf unorm glc{{$}}
; GFX10: image_load v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm glc ;
define amdgpu_ps <4 x float> @load_1d_glc(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.1d.v4f32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 1)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}load_1d_slc:
; GFX6789: image_load v[0:3], v0, s[0:7] dmask:0xf unorm slc{{$}}
; GFX10: image_load v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm slc ;
define amdgpu_ps <4 x float> @load_1d_slc(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.1d.v4f32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 2)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}load_1d_glc_slc:
; GFX6789: image_load v[0:3], v0, s[0:7] dmask:0xf unorm glc slc{{$}}
; GFX10: image_load v[0:3], v0, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm glc slc ;
define amdgpu_ps <4 x float> @load_1d_glc_slc(<8 x i32> inreg %rsrc, i32 %s) {
main_body:
%v = call <4 x float> @llvm.amdgcn.image.load.1d.v4f32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 3)
ret <4 x float> %v
}
; GCN-LABEL: {{^}}store_1d_glc:
; GFX6789: image_store v[0:3], v4, s[0:7] dmask:0xf unorm glc{{$}}
; GFX10: image_store v[0:3], v4, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm glc ;
define amdgpu_ps void @store_1d_glc(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s) {
main_body:
call void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 1)
ret void
}
; GCN-LABEL: {{^}}store_1d_slc:
; GFX6789: image_store v[0:3], v4, s[0:7] dmask:0xf unorm slc{{$}}
; GFX10: image_store v[0:3], v4, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm slc ;
define amdgpu_ps void @store_1d_slc(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s) {
main_body:
call void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 2)
ret void
}
; GCN-LABEL: {{^}}store_1d_glc_slc:
; GFX6789: image_store v[0:3], v4, s[0:7] dmask:0xf unorm glc slc{{$}}
; GFX10: image_store v[0:3], v4, s[0:7] dmask:0xf dim:SQ_RSRC_IMG_1D unorm glc slc ;
define amdgpu_ps void @store_1d_glc_slc(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %s) {
main_body:
call void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float> %vdata, i32 15, i32 %s, <8 x i32> %rsrc, i32 0, i32 3)
ret void
}
; GCN-LABEL: {{^}}getresinfo_dmask0:
; GCN-NOT: image
; GCN: ; return to shader part epilog
define amdgpu_ps <4 x float> @getresinfo_dmask0(<8 x i32> inreg %rsrc, <4 x float> %vdata, i32 %mip) #0 {
main_body:
%r = call <4 x float> @llvm.amdgcn.image.getresinfo.1d.v4f32.i32(i32 0, i32 %mip, <8 x i32> %rsrc, i32 0, i32 0)
ret <4 x float> %r
}
; Ideally, the register allocator would avoid the wait here
;
; GCN-LABEL: {{^}}image_store_wait:
; GCN: image_store v[0:3], v4, s[0:7] dmask:0xf
; SI: s_waitcnt expcnt(0)
; GCN: image_load v[0:3], v4, s[8:15] dmask:0xf
; GCN: s_waitcnt vmcnt(0)
; GCN: image_store v[0:3], v4, s[16:23] dmask:0xf
define amdgpu_ps void @image_store_wait(<8 x i32> inreg %arg, <8 x i32> inreg %arg1, <8 x i32> inreg %arg2, <4 x float> %arg3, i32 %arg4) #0 {
main_body:
call void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float> %arg3, i32 15, i32 %arg4, <8 x i32> %arg, i32 0, i32 0)
%data = call <4 x float> @llvm.amdgcn.image.load.1d.v4f32.i32(i32 15, i32 %arg4, <8 x i32> %arg1, i32 0, i32 0)
call void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float> %data, i32 15, i32 %arg4, <8 x i32> %arg2, i32 0, i32 0)
ret void
}
; SI won't merge ds memory operations, because of the signed offset bug, so
; we only have check lines for VI+.
; GFX8910-LABEL: image_load_mmo
; GFX8910: v_mov_b32_e32 [[ZERO:v[0-9]+]], 0
; GFX8910: ds_write2_b32 v{{[0-9]+}}, [[ZERO]], [[ZERO]] offset1:4
define amdgpu_ps float @image_load_mmo(<8 x i32> inreg %rsrc, float addrspace(3)* %lds, <2 x i32> %c) #0 {
store float 0.000000e+00, float addrspace(3)* %lds
%c0 = extractelement <2 x i32> %c, i32 0
%c1 = extractelement <2 x i32> %c, i32 1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
%tex = call float @llvm.amdgcn.image.load.2d.f32.i32(i32 1, i32 %c0, i32 %c1, <8 x i32> %rsrc, i32 0, i32 0)
%tmp2 = getelementptr float, float addrspace(3)* %lds, i32 4
store float 0.000000e+00, float addrspace(3)* %tmp2
ret float %tex
}
declare <4 x float> @llvm.amdgcn.image.load.1d.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {float,i32} @llvm.amdgcn.image.load.1d.f32i32.i32(i32, i32, <8 x i32>, i32, i32) #1
declare {<2 x float>,i32} @llvm.amdgcn.image.load.1d.v2f32i32.i32(i32, i32, <8 x i32>, i32, i32) #1
declare {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.2d.v4f32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.2d.v4f32i32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.3d.v4f32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.3d.v4f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.cube.v4f32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.cube.v4f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.1darray.v4f32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.1darray.v4f32i32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.2darray.v4f32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.2darray.v4f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.2dmsaa.v4f32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.2dmsaa.v4f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.2darraymsaa.v4f32.i32(i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.2darraymsaa.v4f32i32.i32(i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.mip.1d.v4f32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.mip.2d.v4f32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
[AMDGPU] Add support for TFE/LWE in image intrinsics. 2nd try TFE and LWE support requires extra result registers that are written in the event of a failure in order to detect that failure case. The specific use-case that initiated these changes is sparse texture support. This means that if image intrinsics are used with either option turned on, the programmer must ensure that the return type can contain all of the expected results. This can result in redundant registers since the vector size must be a power-of-2. This change takes roughly 6 parts: 1. Modify the instruction defs in tablegen to add new instruction variants that can accomodate the extra return values. 2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE (where the bulk of the work for these instruction types is now done) 3. Extra verification code to catch cases where intrinsics have been used but insufficient return registers are used. 4. Modification to the adjustWritemask optimisation to account for TFE/LWE being enabled (requires extra registers to be maintained for error return value). 5. An extra pass to zero initialize the error value return - this is because if the error does not occur, the register is not written and thus must be zeroed before use. Also added a new (on by default) option to ensure ALL return values are zero-initialized that is required for sparse texture support. 6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO for this to re-enable and handle correctly). There's an additional fix now to avoid a dmask=0 For an image intrinsic with tfe where all result channels except tfe were unused, I was getting an image instruction with dmask=0 and only a single vgpr result for tfe. That is incorrect because the hardware assumes there is at least one vgpr result, plus the one for tfe. Fixed by forcing dmask to 1, which gives the desired two vgpr result with tfe in the second one. The TFE or LWE result is returned from the intrinsics using an aggregate type. Look in the test code provided to see how this works, but in essence IR code to invoke the intrinsic looks as follows: %v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15, i32 %s, <8 x i32> %rsrc, i32 1, i32 0) %v.vec = extractvalue {<4 x float>, i32} %v, 0 %v.err = extractvalue {<4 x float>, i32} %v, 1 This re-submit of the change also includes a slight modification in SIISelLowering.cpp to work-around a compiler bug for the powerpc_le platform that caused a buildbot failure on a previous submission. Differential revision: https://reviews.llvm.org/D48826 Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda Work around for ppcle compiler bug Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b llvm-svn: 351054
2019-01-14 19:55:24 +08:00
declare {<4 x float>,i32} @llvm.amdgcn.image.load.mip.1d.v4f32i32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
declare {<4 x float>,i32} @llvm.amdgcn.image.load.mip.2d.v4f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare {<2 x float>,i32} @llvm.amdgcn.image.load.mip.2d.v2f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare {float,i32} @llvm.amdgcn.image.load.mip.2d.f32i32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.mip.3d.v4f32.i32(i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.mip.cube.v4f32.i32(i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.mip.1darray.v4f32.i32(i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare <4 x float> @llvm.amdgcn.image.load.mip.2darray.v4f32.i32(i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #1
declare void @llvm.amdgcn.image.store.1d.v4f32.i32(<4 x float>, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.2d.v4f32.i32(<4 x float>, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.3d.v4f32.i32(<4 x float>, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.cube.v4f32.i32(<4 x float>, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.1darray.v4f32.i32(<4 x float>, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.2darray.v4f32.i32(<4 x float>, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.2dmsaa.v4f32.i32(<4 x float>, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.2darraymsaa.v4f32.i32(<4 x float>, i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.mip.1d.v4f32.i32(<4 x float>, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.mip.2d.v4f32.i32(<4 x float>, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.mip.3d.v4f32.i32(<4 x float>, i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.mip.cube.v4f32.i32(<4 x float>, i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.mip.1darray.v4f32.i32(<4 x float>, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.mip.2darray.v4f32.i32(<4 x float>, i32, i32, i32, i32, i32, <8 x i32>, i32, i32) #0
declare <4 x float> @llvm.amdgcn.image.getresinfo.1d.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.2d.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.3d.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.cube.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.1darray.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.2darray.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.2dmsaa.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare <4 x float> @llvm.amdgcn.image.getresinfo.2darraymsaa.v4f32.i32(i32, i32, <8 x i32>, i32, i32) #2
declare float @llvm.amdgcn.image.load.1d.f32.i32(i32, i32, <8 x i32>, i32, i32) #1
declare float @llvm.amdgcn.image.load.2d.f32.i32(i32, i32, i32, <8 x i32>, i32, i32) #1
declare <2 x float> @llvm.amdgcn.image.load.1d.v2f32.i32(i32, i32, <8 x i32>, i32, i32) #1
declare void @llvm.amdgcn.image.store.1d.f32.i32(float, i32, i32, <8 x i32>, i32, i32) #0
declare void @llvm.amdgcn.image.store.1d.v2f32.i32(<2 x float>, i32, i32, <8 x i32>, i32, i32) #0
attributes #0 = { nounwind }
attributes #1 = { nounwind readonly }
attributes #2 = { nounwind readnone }