llvm-project/clang/lib/CodeGen/CGCall.cpp

528 lines
16 KiB
C++
Raw Normal View History

//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#include "CGCall.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ParameterAttributes.h"
using namespace clang;
using namespace CodeGen;
/***/
// FIXME: Use iterator and sidestep silly type array creation.
CGFunctionInfo::CGFunctionInfo(const FunctionTypeNoProto *FTNP)
: IsVariadic(true)
{
ArgTypes.push_back(FTNP->getResultType());
}
CGFunctionInfo::CGFunctionInfo(const FunctionTypeProto *FTP)
: IsVariadic(FTP->isVariadic())
{
ArgTypes.push_back(FTP->getResultType());
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
}
// FIXME: Is there really any reason to have this still?
CGFunctionInfo::CGFunctionInfo(const FunctionDecl *FD)
{
const FunctionType *FTy = FD->getType()->getAsFunctionType();
const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(FTy);
ArgTypes.push_back(FTy->getResultType());
if (FTP) {
IsVariadic = FTP->isVariadic();
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
ArgTypes.push_back(FTP->getArgType(i));
} else {
IsVariadic = true;
}
}
CGFunctionInfo::CGFunctionInfo(const ObjCMethodDecl *MD,
const ASTContext &Context)
: IsVariadic(MD->isVariadic())
{
ArgTypes.push_back(MD->getResultType());
ArgTypes.push_back(MD->getSelfDecl()->getType());
ArgTypes.push_back(Context.getObjCSelType());
for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
e = MD->param_end(); i != e; ++i)
ArgTypes.push_back((*i)->getType());
}
ArgTypeIterator CGFunctionInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGFunctionInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
CGCallInfo::CGCallInfo(QualType _ResultType, const CallArgList &_Args) {
ArgTypes.push_back(_ResultType);
for (CallArgList::const_iterator i = _Args.begin(), e = _Args.end(); i!=e; ++i)
ArgTypes.push_back(i->second);
}
ArgTypeIterator CGCallInfo::argtypes_begin() const {
return ArgTypes.begin();
}
ArgTypeIterator CGCallInfo::argtypes_end() const {
return ArgTypes.end();
}
/***/
/// ABIArgInfo - Helper class to encapsulate information about how a
/// specific C type should be passed to or returned from a function.
class ABIArgInfo {
public:
enum Kind {
Default,
StructRet, /// Only valid for aggregate return types.
Coerce, /// Only valid for aggregate types, the argument should
/// be accessed by coercion to a provided type.
ByVal, /// Only valid for aggregate argument types. The
/// structure should be passed "byval" with the
/// specified alignment (0 indicates default
/// alignment).
Expand, /// Only valid for aggregate argument types. The
/// structure should be expanded into consecutive
/// arguments for its constituent fields.
KindFirst=Default, KindLast=Expand
};
private:
Kind TheKind;
const llvm::Type *TypeData;
unsigned UIntData;
ABIArgInfo(Kind K, const llvm::Type *TD=0,
unsigned UI=0) : TheKind(K),
TypeData(TD),
UIntData(0) {}
public:
static ABIArgInfo getDefault() {
return ABIArgInfo(Default);
}
static ABIArgInfo getStructRet() {
return ABIArgInfo(StructRet);
}
static ABIArgInfo getCoerce(const llvm::Type *T) {
assert(T->isSingleValueType() && "Can only coerce to simple types");
return ABIArgInfo(Coerce, T);
}
static ABIArgInfo getByVal(unsigned Alignment) {
return ABIArgInfo(ByVal, 0, Alignment);
}
Kind getKind() const { return TheKind; }
bool isDefault() const { return TheKind == Default; }
bool isStructRet() const { return TheKind == StructRet; }
bool isCoerce() const { return TheKind == Coerce; }
bool isByVal() const { return TheKind == ByVal; }
// Coerce accessors
const llvm::Type *getCoerceToType() const {
assert(TheKind == Coerce && "Invalid kind!");
return TypeData;
}
// ByVal accessors
unsigned getByValAlignment() const {
assert(TheKind == ByVal && "Invalid kind!");
return UIntData;
}
};
/***/
static ABIArgInfo classifyReturnType(QualType RetTy,
ASTContext &Context) {
assert(!RetTy->isArrayType() &&
"Array types cannot be passed directly.");
if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
uint64_t Size = Context.getTypeSize(RetTy);
if (Size == 8) {
return ABIArgInfo::getCoerce(llvm::Type::Int8Ty);
} else if (Size == 16) {
return ABIArgInfo::getCoerce(llvm::Type::Int16Ty);
} else if (Size == 32) {
return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
} else if (Size == 64) {
return ABIArgInfo::getCoerce(llvm::Type::Int64Ty);
} else {
return ABIArgInfo::getStructRet();
}
} else {
return ABIArgInfo::getDefault();
}
}
static ABIArgInfo classifyArgumentType(QualType Ty,
ASTContext &Context,
CodeGenTypes &Types) {
assert(!Ty->isArrayType() && "Array types cannot be passed directly.");
if (!Types.ConvertType(Ty)->isSingleValueType()) {
return ABIArgInfo::getByVal(0);
} else {
return ABIArgInfo::getDefault();
}
}
/***/
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGCallInfo &CI, bool IsVariadic) {
return GetFunctionType(CI.argtypes_begin(), CI.argtypes_end(), IsVariadic);
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
return GetFunctionType(FI.argtypes_begin(), FI.argtypes_end(), FI.isVariadic());
}
const llvm::FunctionType *
CodeGenTypes::GetFunctionType(ArgTypeIterator begin, ArgTypeIterator end,
bool IsVariadic) {
std::vector<const llvm::Type*> ArgTys;
const llvm::Type *ResultType = 0;
QualType RetTy = *begin;
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
case ABIArgInfo::Default:
if (RetTy->isVoidType()) {
ResultType = llvm::Type::VoidTy;
} else {
ResultType = ConvertType(RetTy);
}
break;
case ABIArgInfo::StructRet: {
ResultType = llvm::Type::VoidTy;
const llvm::Type *STy = ConvertType(RetTy);
ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
break;
}
case ABIArgInfo::Coerce:
ResultType = RetAI.getCoerceToType();
break;
}
for (++begin; begin != end; ++begin) {
ABIArgInfo AI = classifyArgumentType(*begin, getContext(), *this);
const llvm::Type *Ty = ConvertType(*begin);
switch (AI.getKind()) {
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
case ABIArgInfo::ByVal:
// byval arguments are always on the stack, which is addr space #0.
ArgTys.push_back(llvm::PointerType::getUnqual(Ty));
assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled");
break;
case ABIArgInfo::Default:
ArgTys.push_back(Ty);
break;
case ABIArgInfo::Coerce:
assert(0 && "FIXME: ABIArgInfo::Coerce unhandled for arguments");
break;
case ABIArgInfo::Expand:
assert(0 && "FIXME: ABIArgInfo::Expand unhandled for arguments");
break;
}
}
return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
}
bool CodeGenModule::ReturnTypeUsesSret(QualType RetTy) {
return classifyReturnType(RetTy, getContext()).isStructRet();
}
void CodeGenModule::ConstructParamAttrList(const Decl *TargetDecl,
ArgTypeIterator begin,
ArgTypeIterator end,
ParamAttrListType &PAL) {
unsigned FuncAttrs = 0;
if (TargetDecl) {
if (TargetDecl->getAttr<NoThrowAttr>())
FuncAttrs |= llvm::ParamAttr::NoUnwind;
if (TargetDecl->getAttr<NoReturnAttr>())
FuncAttrs |= llvm::ParamAttr::NoReturn;
}
QualType RetTy = *begin;
unsigned Index = 1;
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::Default:
if (RetTy->isPromotableIntegerType()) {
if (RetTy->isSignedIntegerType()) {
FuncAttrs |= llvm::ParamAttr::SExt;
} else if (RetTy->isUnsignedIntegerType()) {
FuncAttrs |= llvm::ParamAttr::ZExt;
}
}
break;
case ABIArgInfo::StructRet:
PAL.push_back(llvm::ParamAttrsWithIndex::get(Index,
llvm::ParamAttr::StructRet));
++Index;
break;
case ABIArgInfo::Coerce:
break;
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
if (FuncAttrs)
PAL.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs));
for (++begin; begin != end; ++begin, ++Index) {
QualType ParamType = *begin;
unsigned ParamAttrs = 0;
ABIArgInfo AI = classifyArgumentType(ParamType, getContext(), getTypes());
switch (AI.getKind()) {
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
case ABIArgInfo::ByVal:
ParamAttrs |= llvm::ParamAttr::ByVal;
assert(AI.getByValAlignment() == 0 && "FIXME: alignment unhandled");
break;
case ABIArgInfo::Default:
if (ParamType->isPromotableIntegerType()) {
if (ParamType->isSignedIntegerType()) {
ParamAttrs |= llvm::ParamAttr::SExt;
} else if (ParamType->isUnsignedIntegerType()) {
ParamAttrs |= llvm::ParamAttr::ZExt;
}
}
break;
case ABIArgInfo::Coerce:
assert(0 && "FIXME: ABIArgInfo::Coerce unhandled for arguments");
break;
case ABIArgInfo::Expand:
assert(0 && "FIXME: ABIArgInfo::Expand unhandled for arguments");
break;
}
if (ParamAttrs)
PAL.push_back(llvm::ParamAttrsWithIndex::get(Index, ParamAttrs));
}
}
void CodeGenFunction::EmitFunctionProlog(llvm::Function *Fn,
QualType RetTy,
const FunctionArgList &Args) {
// Emit allocs for param decls. Give the LLVM Argument nodes names.
llvm::Function::arg_iterator AI = Fn->arg_begin();
// Name the struct return argument.
if (CGM.ReturnTypeUsesSret(RetTy)) {
AI->setName("agg.result");
++AI;
}
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
i != e; ++i, ++AI) {
const VarDecl *Arg = i->first;
QualType T = i->second;
ABIArgInfo ArgI = classifyArgumentType(T, getContext(), CGM.getTypes());
switch (ArgI.getKind()) {
case ABIArgInfo::ByVal:
case ABIArgInfo::Default: {
assert(AI != Fn->arg_end() && "Argument mismatch!");
llvm::Value* V = AI;
if (!getContext().typesAreCompatible(T, Arg->getType())) {
// This must be a promotion, for something like
// "void a(x) short x; {..."
V = EmitScalarConversion(V, T, Arg->getType());
}
EmitParmDecl(*Arg, V);
break;
}
case ABIArgInfo::Coerce:
assert(0 && "FIXME: ABIArgInfo::Coerce unhandled for arguments");
break;
case ABIArgInfo::Expand:
assert(0 && "FIXME: ABIArgInfo::Expand unhandled for arguments");
break;
case ABIArgInfo::StructRet:
assert(0 && "Invalid ABI kind for non-return argument");
}
}
assert(AI == Fn->arg_end() && "Argument mismatch!");
}
void CodeGenFunction::EmitFunctionEpilog(QualType RetTy,
llvm::Value *ReturnValue) {
llvm::Value *RV = 0;
// Functions with no result always return void.
if (ReturnValue) {
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
break;
case ABIArgInfo::Default:
RV = Builder.CreateLoad(ReturnValue);
break;
case ABIArgInfo::Coerce: {
const llvm::Type *CoerceToPTy =
llvm::PointerType::getUnqual(RetAI.getCoerceToType());
RV = Builder.CreateLoad(Builder.CreateBitCast(ReturnValue, CoerceToPTy));
break;
}
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
}
if (RV) {
Builder.CreateRet(RV);
} else {
Builder.CreateRetVoid();
}
}
RValue CodeGenFunction::EmitCall(llvm::Value *Callee,
QualType RetTy,
const CallArgList &CallArgs) {
// FIXME: Factor out code to load from args into locals into target.
llvm::SmallVector<llvm::Value*, 16> Args;
llvm::Value *TempArg0 = 0;
// Handle struct-return functions by passing a pointer to the
// location that we would like to return into.
ABIArgInfo RetAI = classifyReturnType(RetTy, getContext());
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
// Create a temporary alloca to hold the result of the call. :(
TempArg0 = CreateTempAlloca(ConvertType(RetTy));
Args.push_back(TempArg0);
break;
case ABIArgInfo::Default:
case ABIArgInfo::Coerce:
break;
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
I != E; ++I) {
RValue RV = I->first;
if (RV.isScalar()) {
Args.push_back(RV.getScalarVal());
} else if (RV.isComplex()) {
// Make a temporary alloca to pass the argument.
Args.push_back(CreateTempAlloca(ConvertType(I->second)));
StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
} else {
Args.push_back(RV.getAggregateAddr());
}
}
llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
CGCallInfo CallInfo(RetTy, CallArgs);
// FIXME: Provide TargetDecl so nounwind, noreturn, etc, etc get set.
CodeGen::ParamAttrListType ParamAttrList;
CGM.ConstructParamAttrList(0,
CallInfo.argtypes_begin(), CallInfo.argtypes_end(),
ParamAttrList);
CI->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(),
ParamAttrList.size()));
if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
CI->setCallingConv(F->getCallingConv());
if (CI->getType() != llvm::Type::VoidTy)
CI->setName("call");
switch (RetAI.getKind()) {
case ABIArgInfo::StructRet:
if (RetTy->isAnyComplexType())
return RValue::getComplex(LoadComplexFromAddr(TempArg0, false));
else
// Struct return.
return RValue::getAggregate(TempArg0);
case ABIArgInfo::Default:
return RValue::get(RetTy->isVoidType() ? 0 : CI);
case ABIArgInfo::Coerce: {
const llvm::Type *CoerceToPTy =
llvm::PointerType::getUnqual(RetAI.getCoerceToType());
llvm::Value *V = CreateTempAlloca(ConvertType(RetTy), "tmp");
Builder.CreateStore(CI, Builder.CreateBitCast(V, CoerceToPTy));
return RValue::getAggregate(V);
}
case ABIArgInfo::ByVal:
case ABIArgInfo::Expand:
assert(0 && "Invalid ABI kind for return argument");
}
assert(0 && "Unhandled ABIArgInfo::Kind");
return RValue::get(0);
}